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Abstract—In this paper we consider a novel approach of
a control design for single-input nonlinear systems. This
approach employs a formal linearization method of poly-
nomial type so as to apply linear control theories. Non-
linear systems are linearized with respect to a linearization
function which consists of polynomials, and then utilized
the linear feedback control law. As a result, the designing
of this nonlinear control is reduced to a problem of pole
placement in the linear control theories. Numerical exper-
iments indicate that the approach is effective in the face of
significant nonlinearities. Modeling errors caused by the
linearization can be reduced as the order of linearization
function increases.

1. Introduction

Studies of nonlinear control systems have been energet-
ically done for many years [1]∼[10]. To apply the linear
system theories, a linearization based on Taylor expansion
truncating up to the first order is well known as easy way
to design nonlinear control. But this linearization is not
effective for wider region of state space because of poor
approximation. It has been reported [8, 9, 10] that a for-
mal linearization with higher order polynomials has excel-
lent accuracy in approximation and is easy in execution by
computers.

In this paper, we consider a novel approach for a design
of nonlinear control for single-input nonlinear systems us-
ing a formal linearization method of polynomial type. In-
troducing a linearization function which consists of poly-
nomials, the input function is assumed to be linear with
respect to the linearization function. We derive the deriva-
tive of the linearization function along the trajectories of
single-input nonlinear systems and exploit Taylor expan-
sion to them. By truncation of the polynomials, a formal
linear systems with respect to the linearization function are
obtained. To this formal linear system, we apply the linear
state feedback control theory [11]. A feedback gain is de-
cided by pole placement so as to achieve the desired pole
locations of linearized systems. As a result, a problem of
designing nonlinear control is reduced to a problem of pole
placement in the linear control theory by making use of the
formal linearization method.

Numerical experiments are included to demonstrate the

method and show that the approach is effective in the face
of significant nonlinearities. By simulations, model errors
caused by the linearization can be reduced by increasing
the order of linearization function.

2. Control design via formal linearization

Assume that a single-input nonlinear system is given by

Σ1 : ẋ(t) = f (x) + bu, (1)

x(0) = x0 ∈ D ⊂ Rn

where· = d/dt, x = [x1, x2, · · · , xn]T is a state vector,f ∈
CN is a nonlinear function,b is a constant vector andu is a
single input.

In this paper we exploit a formal linearization of polyno-
mial type [8, 9, 10] using Taylor expansion truncating up to
the N-th order. We define anN-th order formal lineariza-
tion function by

φ(x) = [T(10···0)(x),T(01···0)(x), · · · ,T(0···01)(x),

T(11···0)(x),T(101···0)(x), · · · ,T(10···1)(x),

T(20···0)(x),T(21···0)(x), · · · ,T(r1···rn)(x),

· · · ,T(N···N)(x)]T (2)

where

T(r1···rn)(x) =

n∏

i=1

xr i
i .

For this linearization function, we suppose that the control
is well given by a closed-loop form :

u = kφ(x) (3)

wherek is a feedback gain :

k = [k1, · · · , k(N+1)n−1].

We linearize the given nonlinear system (Eq. (1)) into lin-
ear system with respect to the linearization function, and
the gaink is decided by pole placement using the linear
feedback control law so as to achieve the desired pole loca-
tions of the linearized system [11].

The derivative of the element of theφ is

φ̇α(x) = Ṫ(r1···rn)(x)
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= (
d
dt

xr1
1 )xr2

2 · · · xrn−1
n−1 xrn

n + · · · + xr1
1 xr2

2 · · · xrn−1
n−1 (

d
dt

xrn
n )

=

n∑

`=1

r`( f`(x) + b`kφ(x))
T(r1···rn)(x)

x`
, (4)

α = α(r1, · · · , rn).

Note that Taylor expansion up to theN-th order derives

f`(x) + b`kφ(x) = [g`1,g`2, · · · ,g`(N+1)n−1]φ(x) + b`kφ(x)

+ higher order (5)

where

g` j =
∂(r1+r2+···+rn)

∂xr1
1 ∂xr2

2 · · · ∂xrn
n

f`(x)
∣∣∣x=0

,

j = j(r1, · · · , rn).

From Eqs.(4) and (5), it follows that

φ̇α(x) = r1[g11 + b1k1, g12 + b1k2, · · · ,

g1(N+1)n−1 + b1k(N+1)n−1]φ(x)xr1−1
1 xr2

2 · · · xrn
n +

r2[g21 + b2k1,g22 + b2k2, · · · ,
g2(N+1)n−1 + b2k(N+1)n−1]φ(x)xr1

1 xr2−1
2 · · · xrn

n +

...

rn[gn1 + bnk1,gn2 + bnk2, · · · ,
gn(N+1)n−1 + bnk(N+1)n−1]φ(x)xr1

1 xr2
2 · · · xrn−1

n

+ higher order

= [Gα1(k), · · · ,Gαβ(k), · · · ,Gα(N+1)n−1(k)]φ(x)

+εα(k, x) (6)

where

Gαβ(k) =

n∑

`=1

r`{g` β(q1−r1,···,q`−r`+1,···,qn−rn)

+b`kβ(q1−r1,···,q`−r`+1,···,qn−rn)}, (7)

g`β + b`kβ =

{
g` j + b`k j (β = j)
0 (β , j)

.

The εα(k, x) is the error term whose order includes higher
thanN with respect to somexi (i = 1, · · · ,n). By consider-
ing εα(k, x) being model error noise, a formal linear system
is derived by

Σ2 : φ̇(x) = A(k)φ(x) + ε(k, x), (8)

A(k) = [Gi j (k)] ∈ R{(N+1)n−1}×{(N+1)n−1},

ε(k, x) = [ε j(k, x)] ∈ R(N+1)n−1.

We would like to find such feedback gaink as the linearized
system (Eq. (8)) approaches to zero as small as possible
whent → ∞. Computer procedure is as follows.

At first, we initialize thek ask = 0. Sinceε(k, x) is error
function caused by approximation,k∗i (i = n + 1, · · · , (N +

1)n − 1) are found so as to minimize the norm ofε(k, x) :

{k∗n+1, · · · , k∗(N+1)n−1} =

{ min
{kn+1,···,k(N+1)n−1}

sup
{|xi |,(i=1,···,n)}

‖ε(k, x)‖ |{ki=0, (i=1,···,n)}} (9)

where‖ · ‖ is Euclidean norm. Next,k∗i (i = 1, · · · ,n) is
chosen so that all poles of the matrixA(k) have negative
real parts on the s-plane by pole placement to achieve the
desired pole locationssi (i = 1, · · · ,n) :

{k∗1, · · · , k∗n} =

{Poles ofA(k1, k2, · · · , kn,

k∗n+1, · · · , k∗(N+1)n−1) = si , (i = 1, · · · ,n)} (10)

where
Real part ofsi < 0.

As a result, we can construct a nonlinear control as fol-
lowing steps.

<Algorithm >

step 1 Apply a formal linearization to the given nonlinear
system and obtain A(k) andε(k,x) in Eq. (8) .

setp 2 Setk = 0.

step 3 Find {k∗n+1, · · · , k∗(N+1)n−1} by minimizing the norm
of ε(k, x) in Eq. (9) and fix them.

step 4 Decide polessi (i = 1, · · · ,n) and find{k∗1, · · · , k∗n}
in Eq. (10), and then fix them.

step 5 Construct a closed-loop controlu = k∗φ(x) .

This method approximates the derivative of the lineariza-
tion function based on Taylor expansion truncating up to
the N-th order of each state variablexi (i = 1, · · · ,n). Let
εF(x) be the norm of the error function in Eq. (8) when
k = k∗ :

εF(x) =‖ ( f (x) + bk∗φ(x)) − A(k∗)φ(x) ‖

=‖ ε(k∗, x) ‖ . (11)

In case of a linearization based on Taylor expansion up to
the first order, a model error normεT(x) is defined by

εT(x) =‖ ( f (x) + bu) − {(∂ f (x)
∂xT

) |x=xs (x − xs) + bu} ‖

=‖ f (x) − (
∂ f (x)
∂xT

) |x=xs (x − xs) ‖ (12)

wherexs is an operating point.
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3. Numerical examples

We illustrate numerical experiments of the above pro-
posed nonlinear control and the conventional control via
linearization of the first order Taylor expansion method for
comparison.

3.1. Example 1
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Figure 1: Responses for the scalar system
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Figure 2: Model errors for the scalar system

We consider the following scalar system :

ẋ = e−x − cos(x) + u , D = [0,50]. (13)

This nonlinear system (Eq. (13)) is transformed into the
formal linear system (Eq. (8)). By minimizing the norm of
ε(k, x) in Eq. (9) ,

{k∗2 = −1, k∗3 = −2, k∗4 = 0, k∗5 =
−1
5
, k∗6 =

−2
6
, k∗7 =

−1
7
}

are found whenN = 7. We decide a pole ofA(k) in Eq. (8)
as

s1 = −1

so that
k∗1 = −2

is set. Using this feedback gaink∗, we construct a nonlinear
controlu (Eq. (3)). Fig. 1 shows time responsesx(t) using
this u by the formal linearization (F. L.) whenN = 4, and
by the conventional first order Taylor expansion (Taylor)
when a pole is set the same value{−1} andxs = 0.

Fig. 2 shows the model errorsεF(x) of Eq. (11) when
the order of linearization function is varied fromN = 2 to
7, andεT(x) of Eq. (12).

Table 1 shows the maximum points of stable region in
which x(t)→ 0 ast → ∞.

Table 1: Stable regions for the scalar system

Taylor N=2 N=3 N=4 N=5 N=6 N=7
0.86 2.07 2.74 2.94 3.09 3.90 4.50

3.2. Example 2

We consider the following two-dimensional system :


ẋ1(t) = x2

ẋ2(t) = −x2 + x2
1x2

2 + 2x3
1 + x4

2 + u
, (14)

D = [−100,100]× [−100,100].

This nonlinear system (Eq. (14)) is transformed into the
formal linear system (Eq. (8)). By minimizing the norm of
ε(k, x) in Eq. (9),

k∗i =

{−2 (i = α(2,2), α(3,0))
0 (otherwise)

are found whenN = 3. We decide poles ofA(k) in Eq. (8)
as

s1 = s2 = −1

so that
k∗1 = −1 and k∗2 = −1

are set. Using this feedback gaink∗, we construct a non-
linear controlu (Eq. (3)). Figs. 3 and 4 show time re-
sponses ofx1 andx2, respectively, which compare between
the formal linearization (by F. L.) and Taylor expansion
(by Taylor) when poles are set the same values{−1,−1}
andxs = 0. Fig. 5 depicts the stable regions in these cases.

4. Conclusions

We have considered a new approach for a design of non-
linear control for single-input nonlinear systems using a
formal linearization method to apply linear control theo-
ries. By this approach, a problem of designing nonlinear
control is able to be reduced to a problem of pole placement
applying the linear control theories. The numerical exam-
ples confirm that this approach is better in accuracy than
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the conventional one like the linearization based on Tay-
lor expansion. These results have illustrated that the model
error caused by approximation using this method could be
improved as the order of formal linearization function in-
creases. It is left in future works to solve problems of cases
such as 1) multi-input system, 2) more general nonlinear
system, and 3) another formal linearization like Chebyshev
polynomials.
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Figure 3: Responsesx1(t) for the two-dimensional system
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Figure 4: Responsesx2(t) for the two-dimensional system
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