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Abstract—In this paper we consider a novel approach ofmethod and show that the approachfigetive in the face
a control design for single-input nonlinear systems. Thisf significant nonlinearities. By simulations, model errors
approach employs a formal linearization method of polyeaused by the linearization can be reduced by increasing
nomial type so as to apply linear control theories. Nonthe order of linearization function.
linear systems are linearized with respect to a linearization
function which consists of polynomials, and then utilized, cgntrol design via formal linearization
the linear feedback control law. As a result, the designing
of this nonlinear control is reduced to a problem of pole Assume that a single-input nonlinear system is given by
placement in the linear control theories. Numerical exper-

iments indicate that the approach feetive in the face of o X = f(x)+bu, )

significant nonlinearities. Modeling errors caused by the X(0)=xgeDcR

linearization can be reduced as the order of linearization

function increases. where- = d/dt, X = [X1, X, -+, X]" is a state vectorf €
CN is a nonlinear functionh is a constant vector andis a
single input.

1. Introduction In this paper we exploit a formal linearization of polyno-

Studies of nonlinear control systems have been energ8tia! type [8, 9, 10] using Taylor expansion truncating up to
ically done for many years [1[10]. To apply the linear t_he N-th qrder. We define aN-th order formal lineariza-
system theories, a linearization based on Taylor expansidRn function by
truncating up to the first order is well known as easy way ) = [T )T ) - T X
to design nonlinear control. But this linearization is not () [Tao-0/(x). Toz-0/(x) -~ Tro-on(X).

effective for wider region of state space because of poor Taz-0)(X). Taor-0)(X), - Tao-1)(X),
approximation. It has been reported [8, 9, 10] that a for- T(20-0)(X), T22-0)(X)s * + * Ty (X)s
mal linearization with higher order polynomials has excel- o Ty (0] 2)
lent accuracy in approximation and is easy in execution by
computers. where N

In this paper, we consider a novel approach for a design Ty (X) = 1_[ Xlr ]
of nonlinear control for single-input nonlinear systems us- ! )

Ing a fprmal !meanzagon method of polynom[al type. Ir"For this linearization function, we suppose that the control
troducing a linearization function which consists of poly-

nomials, the input function is assumed to be linear witt|1S well given by a closed-loop form :
respect to the linearization function. We derive the deriva- u = ke(x) (3)
tive of the linearization function along the trajectories of
single-input nonlinear systems and exploit Taylor expariwherek is a feedback gain :
sion to them. By truncation of the polynomials, a formal

k= [kl’ T k(N+l)n—1]'

linear systems with respect to the linearization function are

obtained. To this formal linear system, we apply th_e I_inee\we linearize the given nonlinear system (Eq. (1)) into lin-
state feedback control theory [11]. A feedback gain is d&say system with respect to the linearization function, and
cided by pole placement so as to achieve the desired pgjg, gaink is decided by pole placement using the linear

locations of linearized systems. As a result, a problem qgedpack control law so as to achieve the desired pole loca-
designing nonlinear control is reduced to a problem of polgons of the linearized system [11].

placement in the linear control theory by making use of the The gerivative of the element of thpeis
formal linearization method. . .
Numerical experiments are included to demonstrate the (X)) = T(rporn)(X)
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d
—( DX X +xr11x;2-~-x[1_‘11(ax{1")
= D710 + kg 0 Teel)
a=afy, - ,rn).

Note that Taylor expansion up to tiheth order derives

fe(X) + brké(X) = [De1, Or2, - -

+ higher order

> Oen+1p-1](X) + beke(X)
)

where
a(r1+r2+ “+rn)

{j = Flax; a 'n
J = J(rl9 e 9 n)'
From Egs.(4) and (5), it follows that

(%) |xeor

(ba(x) =

rifgu + biky, Qiz+bika,---,
Jrn+1y-1 + bikoveap-1] ()X X Iz g
r2[Ge1 + boki, G2z + boko, - -,
OaN+1y—-1 + oK1 ] OO X X -+ X+
Mn[Gn1 + bnki, Gz + brko, - -,
On(N+1y-1 + Pkve -1 ] ) XX - - Xt

+ higher order

= [Ga1(K), -+, Gap(K), - - -, Gaqns1yp-1(K)] #(X)
+éeq(K, x) (6)
where
n
Gup(K) = 3 FelQ plau-rr L)
=1
+bfk/3((h—f1 o Qe=Te+Ll,e Qn—rn)}’ (7)

O + beks = {gt’J"‘bf’k (g;i;

At first, we initialize thek ask = 0. Sincee(Kk, x) is error

function caused by approximatiokf, (i = n+1,---,(N +
1)" - 1) are found so as to minimize the normegk, x) :
{k:+1’ B kZN+1)”—1} =
{ ~min sup ek, ¥)Il li=0, (=1~} (9)
{kn+1,“',k(N+1)” {Ix1,(i=1,--,n)}
where|| - || is Euclidean norm. Next (i = 1,---,n) is

chosen so that all poles of the mat#k) have negative
real parts on the s-plane by pole placement to achieve the
desired pole locations (i=1,---,n):

’ k:} =
{Poles OfA(kj_, k2, ce

K,
kZNJr]_)n,l) =S, (I =1, n)} (10)

where
Real part ofs < 0.

As a result, we can construct a nonlinear control as fol-
lowing steps.

<Algorithm >

step 1 Apply a formal linearization to the given nonlinear
system and obtain Aj) ande(k,x) in Eq. (8) .

setp 2 Setk = 0.

step 3 Find { kn+1

-+ Kinsp-1} DY minimizing the norm
of e(k, x) in EQ. (93

and fix them.

step 4 Decide poless (i = 1,---,n) and find{
in Eq. (10), and then fix them.

ki~ k)

step 5 Construct a closed-loop control= k*¢(x) .

This method approximates the derivative of the lineariza-
tion function based on Taylor expansion truncating up to
the N-th order of each state variable (i = 1,---,n). Let
er(X) be the norm of the error function in Eq. (8) when
k=k":

Thee,(k, X) is the error term whose order includes higher

thanN with respect to somg (i = 1,-- -, n). By consider-

e (X) =Il (F(x) + bK'¢(x)) — A(k")(x) |l

ing €, (k, x) being model error noise, a formal linear system

is derived by

T2 $(x) = AK)B(x) + e(k, %), (8)

A(K) = [Gij(K)] € RIN+D"-IxI(N+1-1),

e(k, x) = [j(k, x)] € RN*D"1,

We would like to find such feedback galiras the linearized
system (Eqg. (8)) approaches to zero as small as possible

whent — co. Computer procedure is as follows.

=l (k. x) II. (11)

In case of a linearization based on Taylor expansion up to
the first order, a model error norep(x) is defined by

09 =1 (£ + ) — 1 00 e, (¢ x9) + bu |
1100~ G hex, x-x9 1l (12)

wherexg is an operating point.
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3. Numerical examples

is set. Using this feedback gari, we construct a nonlinear
controlu (Eq. (3)). Fig. 1 shows time responsd$) using

We illustrate numerical experiments of the above progis by the formal linearizationR. L.) whenN = 4, and

posed nonlinear control and the conventional control Vigy the conventional first order Taylor expansidiaglor)
linearization of the first order Taylor expansion method fo{yhen a pole is set the same valuel} andxs = 0.

comparison. Fig. 2 shows the model erroes(x) of Eq. (11) when
the order of linearization function is varied frolh = 2 to
3.1. Example 1 7, ander (X) of Eq. (12).
Table 1 shows the maximum points of stable region in
which x(t) — 0 ast — co.
0.6
X Table 1: Stable regions for the scalar system
04 Taylor | N=2 | N=3 | N=4 | N=5 | N=6 | N=7
0.86 | 2.07| 2.74| 2.94 | 3.09| 3.90 | 4.50
0.2
3.2. Example 2

Figure 1: Responses for the scalar system
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We consider the following two-dimensional system :

x(t) = %
. (14
Xo(t) = =X + X0X5 + 2 + X5 + U

D = [-10Q 100] x [-10Q 100]

This nonlinear system (Eq. (14)) is transformed into the
formal linear system (Eq. (8)). By minimizing the norm of
e(k, x) in Eq. (9),

2
Pt P N=4 . (=2 (i=a22),a(3,0)

s\ 7 j\ -1 -
5 // '/.\ N=5. 6 0 (otherwisg

/ e are found wheN = 3. We decide poles d&(k) in Eq. (8)

/ /'/ N=7 as

-10 I / L I ! S=%=-1
0 0.5 1 15 X 2 sSo that

Figure 2: Model errors for the scalar system

We consider the following scalar system :

ki=-1land K=-1

are set. Using this feedback g&i\, we construct a non-
linear controlu (Eq. (3)). Figs. 3 and 4 show time re-
sponses 0k, andxy, respectively, which compare between

the formal linearizationkfy F. L.) and Taylor expansion
(by Taylon when poles are set the same valges, —1}
This nonlinear system (Eq. (13)) is transformed into thandxs = 0. Fig. 5 depicts the stable regions in these cases.
formal linear system (Eq. (8)). By minimizing the norm of
e(k,x)in Eq. (9),

Xx=e*-cosik) +u, D=1]0,50] 13)

4. Conclusions
-1
7} We have considered a new approach for a design of non-
linear control for single-input nonlinear systems using a

-1 -2
=-Lk=-2k=0k=7. k=45 k=

are found whemN = 7. We decide a pole d&(k) in Eqg. (8)

formal linearization method to apply linear control theo-

as ries. By this approach, a problem of designing nonlinear
s1=-1 control is able to be reduced to a problem of pole placement
so that applying the linear control theories. The numerical exam-
ki=-2 ples confirm that this approach is better in accuracy than
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the conventional one like the linearization based on Tay-

lor expansion. These results have illustrated that the model 16

error caused by approximation using this method could b&&
improved as the order of formal linearization function in- %'
creases. Itis left in future works to solve problems of cases
such as 1) multi-input system, 2) more general nonlinear
system, and 3) another formal linearization like Chebyshev
polynomials.
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Figure 4: Responses(t) for the two-dimensional system
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Figure 5: Stable regions for the two-dimensional system
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