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Abstract—A novel design method of cellular neural net-
works (CNNs) for associative memories is presented. The
proposed method can realize as high recall probability as
the method based on generalized eigenvalue minimization
(GEVM), which is known as the most efficient CNN de-
sign method so far. On the other hand, since the proposed
method is based on linear programming, its computation
time is much shorter than the GEVM-based method.

1. Introduction
Realization of associative memories is one of the fun-

damental design problems for cellular neural networks
(CNNs) [1, 2]. Recently a method of designing CNNs
for associative memories based on generalized eigenvalue
minimization (GEVM) has been proposed [3, 4]. This is
regarded as one of the most effective CNN design methods
because every prototype vector is stored as a memory vec-
tor and the basin of attraction of each prototype vector is
maximized in a certain sense.

In this paper, a novel design method of CNNs based on
linear programming (LP) will be presented. Since the pro-
posed method relies on the basic idea of the GEVM-based
method, the average recall probability [3] is kept at the
same level as the GEVM-based method. On the other hand,
computation time of the proposed method is much shorter
than the GEVM-based method since LP problems can be
solved more easily than GEVM problems in general.

In what follows, we first introduce a couple of theorems
concerning the basin of attraction of a memory vector de-
rived by Biseet al. [4] and the basic strategy used in the
GEVM-based method. We next show that the strategy can
be formulated as LP problems. We then give our CNN de-
sign procedure and show its efficiency by computer simu-
lations.

2. Problem Formulation
Let us consider CNNs described by the following differ-

ential equations:

dxi

dt
= −xi +

∑

j∈N̄i

Ai j y j + I i , i = 1,2, . . . ,n (1)

wherexi is the state of thei-th cell,yi the output of thei-th
cell determined byxi through

yi = f (xi) ,
1
2

(|xi + 1| − |xi − 1|), (2)

Ai j the coupling coefficient from the j-th cell to thei-th
cell, I i the bias of thei-th cell, andN̄i ⊆ {1,2, . . . , n} the
set of indices of the cells belonging to the neighborhood
of the i-th cell. In the following, the neighborhood of the
i-th cell excluding itself is represented byNi , that is,Ni ,
N̄i \ {i}. Although it is often assumed in CNN literature that
coupling coefficients between cells are space-invariant [5],
we will not make this assumption in this paper.

A vector ye = [ye
1, y

e
2, . . . , y

e
n]T is referred to as a mem-

ory vector of a CNN described by (1) and (2) if the
CNN has an asymptotically stable equilibrium pointxe =

[xe
1, x

e
2, . . . , x

e
n]T such thatye

i = f (xe
i ) for i = 1,2, . . . ,n.

The set of initial statesx(0) such that limt→∞ x(t) = xe is
called the basin of attraction of the memory vectorye.

CNN design problem can be stated as follows: For given
prototype vectorsα1,α2, . . . ,αm ∈ {1,−1}n and the sets
N̄1, N̄2, . . . , N̄n, find Ai j , j ∈ N̄i and I i for i = 1,2, . . . ,n
such that the synthesized CNN has the following proper-
ties: 1) all prototype vectorsα1,α2, . . . ,αm are memory
vectors, 2) the total number of spurious memory vectors,
that is, the memory vectors of the CNN not contained in
{α1,α2, . . . ,αm}, is as small as possible, 3) the basin of at-
traction of each prototype vector is as large as possible,
and 4) the CNN has no oscillatory solution. As well as the
GEVM-based method [3, 4], we will focus our attention
only on the first three properties in this paper.

3. Analysis

We introduce some analytical results derived by Biseet
al. [4] concerning the basin of attraction of a memory vec-
tor which play important roles in the GEVM-based method.

Theorem 1 Suppose a set̄Ni ⊆ {1,2, . . . , n} and a binary
vectorα∗ = [α∗1, α

∗
2, . . . , α

∗
n]T ∈ {1,−1}n are given. If the

coupling coefficientsAi j , j ∈ Ni and the biasI i satisfy

α∗i


∑

j∈Ni

Ai jα
∗
j + I i

 > κi max
j∈Ni

|Ai j | + (Aii − 1) (3)

with Aii ≥ 1 and κi ≥ 0, then any vectorβ = [β1,
β2, . . . , βn]T ∈ Rn such thatf (βi) , α∗i and

∑
j∈Ni
| f (β j) −

α∗j | ≤ κi has the following properties.

1. f (β) = [ f (β1), . . . , f (βn)]T is not a memory vector.
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2. If x(0) = β thenxi(t) moves towardα∗i at t = 0.

Theorem 2 Suppose a set̄Ni ⊆ {1,2, . . . ,n} and a binary
vectorα∗ = [α∗1, α

∗
2, . . . , α

∗
n]T ∈ {1,−1}n are given. If the

coupling coefficientsAi j , j ∈ N̄i and the biasI i satisfy

α∗i


∑

j∈Ni

Ai jα
∗
j + I i

 > κi max
j∈N̄i

|Ai j | − (Aii − 1) (4)

with κi ≥ 0, then any vectorβ ∈ Rn such thatf (βi) , α∗i
and

∑
j∈N̄i
| f (β j) − α∗j | ≤ κi has the followings properties.

1. f (β) = [ f (β1), . . . , f (βn)]T is not a memory vector.

2. If x(0) = β thenxi(t) moves towardα∗i at t = 0.

4. Design Method
4.1. Basic Idea

The most important thing in the CNN design problem is
to storemprototype vectorsα1,α2, . . . ,αm as memory vec-
tors. This is achieved by choosing the coupling coefficients
Ai j , j ∈ N̄i and the biasI i such that the set of inequalities

αk
i


∑

j∈N̄i

Ai jα
k
j + I i

 > 1, k = 1,2, . . . ,m (5)

holds fori = 1,2, . . . , n.
The basic strategy of the CNN design method proposed

by Biseet al. is as follows: Fori = 1,2, . . . , n, first examine
whether (5) is feasible withAii = 1 or not. If it is feasible
then we setAii = 1 and determine the values ofAi j , j ∈ Ni

andI i by solving the following optimization problem.

Problem 1 Find Ai j , j ∈ Ni andI i which maximizeκi under
the constraints

αk
i


∑

j∈Ni

Ai jα
k
j + I i

 > κi max
j∈Ni

|Ai j |, k = 1,2, . . . ,m. (6)

If (5) is not feasible withAii = 1, we setAii = 1 + ε where
ε is a positive constant, and determine the values ofAi j , j ∈
Ni andI i by solving the following optimization problem.

Problem 2 Find Ai j , j ∈ Ni andI i which maximizeκi under
the constraints

αk
i


∑

j∈Ni

Ai jα
k
j + I i

 >

κi max{1 + ε, max
j∈Ni

|Ai j |} − ε, k = 1,2, . . . ,m, (7)

This method tries to make the basin of attraction of pro-
totype vectors as large as possible by making use of Theo-
rems 1 and 2 while guaranteeing (5). The total number of
spurious memory vectors is expected to be reduced if the
basins of attraction become large. Also, only binary vec-
tors can become memory vectors asAii ≥ 1, i = 1,2, . . . , n
are always satisfied.

4.2. Transformation to Linear Programming Problem
Park et al. have shown that Problem 1 can be trans-

formed into a GEVM problem [3]. Based on their idea,
Bise et al. have shown that Problem 2 can also be trans-
formed into a GEVM problem [4]. In this section, we will
show that both Problems 1 and 2 are intrinsically equivalent
to LP problems.

First we assume as a special case that

α1
i = α2

i = · · · = αm
i (8)

holds. In this case, it is apparent that Eq.(5) is feasible with
Aii = 1. In addition, if we setAi j to 0 for all j ∈ Ni and I i

to some positive (negative, resp.) value ifαk
i = 1 (αk

i = −1,
resp.) for allk then Eq.(6) becomes|I i | > κi ·0. Hence there
is no upper bound for the value ofκi . This means that

yi(∞) =


+1, if αk

i = +1,∀k
−1, if αk

i = −1,∀k

holds for any initial statex(0). Consequently, in the case
where Eq.(8) holds, we do not have to solve Problem 1. In
other words, it suffices for us to set the values of parameters
asAi j = 0, ∀ j ∈ Ni andI i = sgn(α1

i ).
In the following, we assume that there exists at least one

pair (k1, k2) such thatαk1
i α

k2
i = −1. Let us now consider the

following optimization problem.

Problem 3 Find Ai j , j ∈ Ni andI i which maximizeκi under
the constraints

αk
i


∑

j∈Ni

Ai jα
k
j + I i

 > κi , k = 1,2, . . . ,m

|Ai j | ≤ 1, ∀ j ∈ Ni

For Problem 3, the following theorem holds.

Theorem 3 Suppose that (5) is feasible withAii = 1. Then
any optimal solution of Problem 3 is also an optimal solu-
tion of Problem 1.

Proof: Let (A∗i j1
,A∗i j2

, . . . ,A∗i j |Ni |
, I ∗i ) be any optimal solution

of Problem 1 where|Ni | denotes the cardinality of the set
Ni . Then (cA∗i j1

, cA∗i j2
, . . . , cA∗i j |Ni |

, cI∗i ) wherec is any posi-
tive number, is also an optimal solution of Problem 1. This
means Problem 1 always has an optimal solution satisfying
maxj∈Ni |Ai j | = 1. Therefore any optimal solution of Prob-
lem 4 given below is an optimal solution of Problem 1.

Problem 4 Find Ai j , j ∈ Ni andI i which maximizeκi under
the constraints

αk
i


∑

j∈Ni

Ai jα
k
j + I i

 > κi , k = 1,2, . . . ,m

max
j∈Ni

|Ai j | = 1
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Next we will show that any optimal solution (Ãi j1,
Ãi j2, . . . , Ãi j |Ni | , Ĩ i) of Problem 3 satisfies

max
j∈Ni

∣∣∣Ãi j

∣∣∣ = 1. (9)

If this is the case, we can easily see that any optimal solu-
tion of Problem 3 is an optimal solution of Problem 4 and
vice versa. Let us assume Eq.(9) does not hold. Then there
exists a sufficiently small positive numberδ such that

αk
i


∑

j∈Ni

(1 + δ) Ãi jα
k
j + (1 + δ) Ĩ i



> αk
i


∑

j∈Ni

Ãi jα
k
j + Ĩ j

 , k = 1,2, . . . ,m (10)

∣∣∣(1 + δ) Ãi j

∣∣∣ ≤ 1, ∀ j ∈ Ni

which meansκi can be increased if we setAi j = (1 +

δ) Ãi j , j ∈ Ni and I i = (1 + δ) Ĩ i . However, this contradicts
the assumption that (Ãi j1, Ãi j2, . . . , Ãi j |Ni | , Ĩ i) is an optimal
solution. Hence Eq.(9) holds true.

From the above discussions on the relationship among
optimal solutions of Problems 1, 3 and 4, we can conclude
that any optimal solution of Problem 3 is also an optimal
solution of Problem 1. �

Let us next consider the following optimization problem.

Problem 5 Find Ai j , j ∈ Ni andI i which maximizeκi under
the constraints

αk
i


∑

j∈Ni

Ai jα
k
j + I i

 > (1 + ε) κi − ε, k = 1,2, . . . ,m

|Ai j | ≤ 1 + ε, ∀ j ∈ Ni

Theorem 4 Any optimal solution of Problem 5 is an opti-
mal solution of Problem 2.

Proof: Let (A∗i j1
,A∗i j2

, . . . ,A∗i j |Ni |
, I ∗i ) be any optimal solution

of Problem 2. Then the upper bound forκi in Problem 2 is
given by the following equation:

αk
i

(∑
j∈Ni

A∗i jα
k
j + I ∗i

)
+ ε

max
{
1 + ε,maxj∈Ni |A∗i j |

} (11)

We will show in the following that any optimal solution
(A∗i j1

,A∗i j2
, . . . ,A∗i j |Ni |

, I ∗i ) of Problem 2 satisfies

max
j∈Ni

|A∗i j | ≤ 1 + ε. (12)

Suppose (12) does not hold. Then there exists a sufficiently
small positive numberδ such that maxj∈Ni |(1 − δ) A∗i j | >

1 + ε. We therefore have

αk
i

(∑
j∈Ni

(1− δ) A∗i jα
k
j + (1− δ) I ∗i

)
+ ε

max
{
1 + ε,maxj∈Ni (1− δ) |A∗i j |

}

=
(1− δ)αk

i

(∑
j∈Ni

A∗i jα
k
j + I ∗i

)
+ ε

(1− δ) max
{
1 + ε,maxj∈Ni |A∗i j |

}

>
αk

i

(∑
j∈Ni

A∗i jα
k
j + I ∗i

)
+ ε

max
{
1 + ε,maxj∈Ni |A∗i j |

} , k = 1,2, . . . ,m

which means that the upper bound forκi can be in-
creased by settingAi j = (1 − δ) A∗i j , j ∈ Ni and I i =

(1 − δ) I ∗i . However, this contradicts the assumption that
(A∗i j1

,A∗i j2
, . . . ,A∗i j |Ni |

, I ∗i ) is an optimal solution of Prob-
lem 2. Hence Eq.(12) holds. Since Problem 5 is derived
by adding the constraint|Ai j | ≤ 1+ ε,∀ j ∈ Ni to Problem 2,
we can state from the above discussion that any optimal
solution of Problem 2 is an optimal solution of Problem 5.
Also, it is obvious that the opposite is also true. �

4.3. CNN Design Procedure
Based on the analysis in the preceding subsection, we

propose the following CNN design procedure.

CNN Design Procedure: Given n setsN̄1, N̄2, . . . , N̄n ⊆
{1,2, . . . , n} andm prototype vectorsα1,α2, . . . ,αm ∈ Bn,
execute the following procedure fori = 1,2, . . . , n.

1) Check whether the set of inequalities (5) is feasible
with Aii = 1. If it is feasible go to Step 2), otherwise
go to Step 3).

2) SetAii = 1, and findAi j , j ∈ Ni andI i which maximize
κi under the constraints

αk
i


∑

j∈Ni

Ai jα
k
j + I i

 ≥ κi , k = 1,2, . . . ,m

|Ai j | ≤ 1, ∀ j ∈ Ni

3) SetAii = 1 + ε whereε is a positive number and find
Ai j , j ∈ Ni and I i which maximizeκi under the con-
straints

αk
i


∑

j∈Ni

Ai jα
k
j + I i

 ≥ (1 + ε) κi − ε, k = 1,2, . . . ,m

|Ai j | ≤ 1 + ε, ∀ j ∈ Ni

Since optimization problems in Step 2) and Step 3) are
LP problems, they can be solved efficiently by using the
simplex method or interior point methods. It is thus ex-
pected that the proposed method can find the parameter val-
ues much faster than the GEVM-based method proposed by
Biseet al. [4]. It is also expected that the basin of attrac-
tion of each prototype vector for the proposed method is
as large as that for the GEVM-based method because both
methods rely on the same basic idea described in Sec.4.1.

643



Figure 1: Prototype vectors

It should be noted here that the LP problem in Step 3)
has a trivial solutionAi j = 0,∀ j ∈ Ni and I i = 0 because
Step 3) is carried out only if Eq.(5) is not feasible. So one
may claim that there is no need to solve the LP problem.
However, as shown in the next section, the trivial solution
lead to lower recall probability than nontrivial solutions.

5. Computer Simulation

In order to verify efficiency of the proposed method, we
have applied the proposed method and the GEVM-based
method proposed by Biseet al. [4] to the same set of pro-
totype vectors shown in Fig.1, and investigated the com-
putation time and the average recall probability [3] of the
synthesized CNNs for both methods.

Table 1 shows the CPU time required for finding the
parameter values with the GEVM-based method and the
proposed method for some values ofr, radius of neighbor-
hood for each cell [5]. Both methods are implemented in
MATLAB and executed on a PC with 1.2GHz Pentium III
processor and 256MB RAM. As one can see, CPU time
is considerably reduced by using the proposed method for
each value ofr. Moreover, as far as our simulation results
are concerned, CPU time for the proposed method is kept
almost constant, while it increases rapidly withr for the
GEVM-based method.

Table 1: CPU time

r Method Time (s)
GEVM 27.1431

Proposed 6.123
GEVM 75.1122

Proposed 5.881
GEVM 197.2503

Proposed 6.597

Table 2 shows the average recall probabilities for the
GEVM-based method, the proposed method, and the pro-
posed method with trivial solution which is a special case
of the proposed method where the parameters are set as
Ai j = 0,∀ j ∈ Ni and I i = 0 in Step 3). As one can see

from Table 2, the average recall probability for the pro-
posed method is kept at the same level as the GEVM-based
method in all cases, while for the proposed method with
trivial solution it is lower than other two methods. This
means it is important to find a nontrivial solution in Step 3)
of the proposed CNN design procedure.

Table 2: Comparison of Average Recall Probability

Average recall probabilityPav(d)r Method
d = 1 d = 2 d = 3 d = 4 d = 5

GEVM 0.5479 0.2969 0.1623 0.0879 0.0455
1 Proposed 0.5345 0.2894 0.1699 0.0906 0.0542

Proposed/Triv. 0.3328 0.1017 0.0326 0.0114 0.0028
GEVM 0.9584 0.8898 0.8046 0.7080 0.6026

2 Proposed 0.9427 0.8776 0.7895 0.6958 0.6009
Proposed/Triv. 0.8831 0.7633 0.6606 0.5419 0.4409

GEVM 0.9937 0.9766 0.9585 0.9298 0.8891
3 Proposed 0.9922 0.9691 0.9518 0.9213 0.8872

Proposed/Triv. 0.9733 0.9367 0.9055 0.8624 0.8169

6. Conclusion
We have proposed a CNN design method for associa-

tive memories based on LP. The proposed method can re-
duce significantly the computation time compared to the
GEVM-based method while keeping the average recall
probability at the same level. In this sense, the proposed
method is superior to the GEVM-based method.
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