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Abstract—A novel design method of cellular neural net-A;; the coupling cofficient from thej-th cell to thei-th
works (CNNs) for associative memories is presented. Trezll, I; the bias of theé-th cell, andN; € {1,2,...,n} the
proposed method can realize as high recall probability aet of indices of the cells belonging to the neighborhood
the method based on generalized eigenvalue minimizatiarf thei-th cell. In the following, the neighborhood of the
(GEVM), which is known as the mostftcient CNN de- i-th cell excluding itself is represented by, that is,N; =
sigh method so far. On the other hand, since the proposel\ {i}. Although it is often assumed in CNN literature that
method is based on linear programming, its computatioooupling codicients between cells are space-invariant [5],

time is much shorter than the GEVM-based method. we will not make this assumption in this paper.
. A vectory® = [y}, Y5, ... YT is referred to as a mem-
1. Introduction ory vector of a CNN described by (1) and (2) if the

Realization of associative memories is one of the funeNN has an asymptotically stable equilibrium poiét=
damental design problems for cellular neural network%’ xS,....x¢]T such thaty® = f(x®) fori = 1,2,...,n,
(CNNs) [1, 2]. Recently a method of designing CNNSThe set of initial statex(0) such that ling,. x(t) = x¢ is
for associative memories based on generalized eigenvalgiglied the basin of attraction of the memory vegttr

minimization (GEVM) has been proposed [3, 4]. This is  cNN design problem can be stated as follows: For given
regarded as one of the mosfeetive CNN design methods prototype vectorsit,a?,...,e™ € {1,-1)" and the sets

because every prototype vector is stored as a memory Ve§; N, ..., N,, find Aj,j € N, andl; for i = 1,2,....n
tor and the basin of attraction of each prototype vector igch that the synthesized CNN has the following proper-
maximized in a certain sense. ties: 1) all prototype vectorg?,a?,...,a™ are memory

~ In this paper, a novel design method of CNNs based Qpectors, 2) the total number of spurious memory vectors,
linear programming (LP) will be presented. Since the progat is, the memory vectors of the CNN not contained in
posed method relies on the basic idea of the GEVM-baseg1 2 oM is as small as possible, 3) the basin of at-
method, the average recall probability [3] is kept at theaction of each prototype vector is as large as possible,
same level as the GEVM-based method. On the other hanghq 4) the CNN has no oscillatory solution. As well as the

computation time of the proposeq method is much shortetev/m-based method [3, 4], we will focus our attention
than the GEVM-based method since LP problems can Qﬁ-”y on the first three properties in this paper.

solved more easily than GEVM problems in general.
In what follows, we first introduce a couple of theoremss. Analysis

concerning the basin of attraction of a memory vector de- We introduce some analytical results derived by Rise

rived by Biseet al. [4] and the basic strategy used in they 141 concerning the basin of attraction of a memory vec-

GEVM-based method. We next show that.the strategy cag\hich play important roles in the GEVM-based method.
be formulated as LP problems. We then give our CNN de-

sign procedure and show itffieiency by computer simu- Theorem 1 Suppose a sé¥, C {1,2,...,n} and a binary

lations. vectore® = [a], a;,...,a;’;]T € {1,-1}" are given. If the
2. Problem Formulation coupling cogficientsA;, j € N; and the biad; satisfy
Let us consider CNNs described by the followin¢feli-
ential equations:
| of | Y A+ 1i | > imaxiAjl + (A - 1) (3)
%——-+ZA@- j+l, i=12 1 N Jem
i X; A L T=1 ,...,N (1)

ety with A; > 1 andk > 0, then any vecto3 = [B1,

wherex; is the state of theth cell,y; the output of the-th g, ... B.]T € R" such thatf(8)) # af and Yjen, T(85) —
cell determined by; through ;| < i has the following properties.

yi = f(x) = %(|Xi +1] = Ix - 1)), (2) 1. f(B) =[f(B)..... f(B)]" is not a memory vector.
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2. If x(0) = B thenx;(t) moves toward; att = O. 4.2. Transformation to Linear Programming Problem
_ ) Park et al. have shown that Problem 1 can be trans-
Theorem 2 Suppose a séfi  {1,2,....n} and a binary  foymed into a GEVM problem [3]. Based on their idea,
vectora* = [}, a5,....ap]"_€ {1,-1)" are given. Ifthe piseet al. have shown that Problem 2 can also be trans-
coupling cogicientsA;j, j € N; and the biad; satisfy formed into a GEVM problem [4]. In this section, we will
show that both Problems 1 and 2 are intrinsically equivalent

of | " Ae; +1i| > imaxiAy - (A - 1) (4) 1O LP problems. |
N jeNy First we assume as a special case that

with «; > 0, then any vectop € R" such thatf(3;) # o at=a?=---=a" (8)
andy .y If(8)) - ajl <« has the followings properties.
holds. In this case, it is apparent that Eq.(5) is feasible with
1. f(B) = [f(B1).-.., f(Bn)]" is nota memory vector.  A. = 1. In addition, if we sety; to O for all j € N; andl
2. If x(0) = B thenx;(t) moves toward; att = 0. to some positive (negative, resp.) valuelif= 1 (of = -1,
resp.) for alk then Eq.(6) becomeg| > «; - 0. Hence there
is no upper bound for the value gf This means that
4. Design Method
4.1. Basic Idea +1, if off = +1,Vk

The most important thing in the CNN design problem is yi(eo) = 1 ifaX=—-1Vk
to storem prototype vectorg?, o?, . .., @™ as memory vec- | ' |
tors. This is achieved by choosing the couplingfio®nts  holds for any initial statex(0). Consequently, in the case
Ay, j € Nj and the biag; such that the set of inequalities  where Eq.(8) holds, we do not have to solve Problem 1. In
other words, it sfiices for us to set the values of parameters
asAjj =0, ¥j € N andl; = sgng).

In the following, we assume that there exists at least one
pair (k;, kz) such tha*a!* = —1. Let us now consider the
holds fori=1,2,...,n. following optimization problem.

The basic strategy of the CNN design method propos
by Biseet al. is as follows: For = 1,2, ..., n, first examine
whether (5) is feasible witly = 1 or not. If it is feasible
then we sefy; = 1 and determine the values Afj, j € N; k[

a;

aF[ZAJa$+Ii]>1, k=12...m  (5)

jEN;

%iroblem 3 Find Ajj, j € N; andl; which maximize; under
the constraints

andl; by solving the following optimization problem. Z A@ja'j< + Ii] > K, k=1,2,...,m

Problem 1 Find Ajj, j € N; andl; which maximize; under JeN

the constraints IAjl < 1, VjeN

For Problem 3, the following theorem holds.
ak ZA,-ja'j‘+li > maxAjl, k=12...m (6)
JEN;

JeN Theorem 3 Suppose that (5) is feasible wiffy = 1. Then

If (5) is not feasible withA; = 1, we set; = 1+ e where any optimal solution of Problem 3 is also an optimal solu-
e is a positive constant, and determine the valueiofj ¢ ~ tion of Problem 1.

N; andl; by solving the following optimization problem. _ _
Proof: Let (A, A, - - A I) be any optimal solution

of Problem 1 wheréN;| denotes the cardinality of the set

Ni. Then €A . cAj,.....cA;  .cli) wherecis any posi-

) tive number, is also an optimal solution of Problem 1. This
>

Problem 2 Find A;j, j € N; andl; which maximize; under
the constraints

a:( [Z A”-czlj( + |

jENi

means Problem 1 always has an optimal solution satisfying
maxen, |Aij| = 1. Therefore any optimal solution of Prob-
kimaxl+e, rjrlﬁx|A4-j|} -¢ k=1,2,....m (7) lem4given below is an optimal solution of Problem 1.
) ) ) ) Problem 4 Find A;j, j € Ni andl; which maximize; under
This method tries to make th(_a basin of a‘Ftracnon of Proghe constraints

totype vectors as large as possible by making use of Theo-
rems 1 and 2 while guaranteeing (5). The total number of k[
spurious memory vectors is expected to be reduced if the a;
basins of attraction become large. Also, only binary vec-
tors can become memory vectors/s> 1, i =1,2,...,n ij;ﬁiXIAijl =1
are always satisfied.

ZA@](Z']-(-FH] > K, k:1,2,...,m

jENi
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Next we will show that any optimal solutlonAgl,
A, ..., Ay, i) of Problem 3 satisfies

max|A| =

(9)

If this is the case, we can easily see that any optimal solu-
tion of Problem 3 is an optimal solution of Problem 4 and
vice versa. Let us assume Eq.(9) does not hold. Then there

exists a sfficiently small positive numbef such that

ak [Z(ua)&ja'j‘ +(1+9) ﬂ)

jENi

>aik[2/3qja7+rj], k=1,2,...,m (10)
jeN;

|Q+0)Ajl <1 VjeN

which meanss; can be increased if we séf; = (1 +
6)A”,] e N, andl; = (1+ 6) l;. However, this contradicts
the assumption tha1A(,1, A.,z,.. A.“N‘,I ) is an optimal
solution. Hence Eq.(9) holds true.

From the above discussions on the relationship amo
optimal solutions of Problems 1, 3 and 4, we can concludéNN Design Procedure: Given n setle, N, ...,
that any optimal solution of Problem 3 is also an optimall, 2, .

solution of Problem 1. [

Let us next consider the following optimization problem.

Problem 5 Find A;j, j € N; andl; which maximize; under
the constraints

aik[ZA”a/Ij(+|i]>(l+6)Ki -6, k=1,2,....m
jeN;

|Ajl<1l+e, VjeN

Theorem 4 Any optimal solution of Problem 5 is an opti-

mal solution of Problem 2.

Proof: Let (A, AYj,. - .. A, + i) be any optimal solution
of Problem 2. Then the upper bound fgiin Problem 2 is
given by the following equation:

k * k *
@ (ZieN‘ Aijaj +1; ) +e€

max{1 + e, maxien, |A; ]

(11

We will show in the following that any optimal solution
(A A, - A 17 of Problem 2 satisfies

max|A1 |[<1+e
jeN;

(12)

Suppose (12) does not hold. Then there existdiicgntly
small positive numbeé such that mayy, [(1 - 6) Ai*j| >

1+ e. We therefore have

of (Zjen @A -8) Ajak + (1-0)17) + e
max{l + €, maXen, (1 - 9) |Ai*j |}

(1-0)af (Zjen Ajak +17) + €

(1-9¢) max{l + €, maxien, A |}

a':‘ (ZjENi Ai*j(x'j‘ + Ii*) +€

max{l + €, maxen, 1A |}’

=1,2,....,m

which means that the upper bound fer can be in-
creased by settingy; = (1 - 9) Ai*j,j e Nyandl; =

(1 -96)17. However, this contradicts the assumption that
(Ai*]l,,o\i*jz,...,ﬂ*w,Ii*) is an optimal solution of Prob-
lem 2. Hence Eq.(12) holds. Since Problem 5 is derived
by adding the constraim;| < 1+¢,Vj € N; to Problem 2,

we can state from the above discussion that any optimal
solution of Problem 2 is an optimal solution of Problem 5.
Also, it is obvious that the opposite is also true. [

4.3. CNN Design Procedure
Based on the analysis in the preceding subsection, we

rjloropose the following CNN design procedure.

N, C
,n} andm prototype vectors!, a?,...,a™ € B",
execute the following procedure foe 1, 2, ...,N

1) Check whether the set of inequalities (5) is feasible
with A; = 1. If it is feasible go to Step 2), otherwise
go to Step 3).

2) SetA; = 1, and find4;j, j € N; andl; which maximize
k under the constraints

QF(ZAHQ'T"' |i]ZKi, k=12,....m
jeN;
Al < 1,

3) SetA; = 1+ e wheree is a positive number and find
Ajj, j € N andl; which maximizex; under the con-
straints

a/ik[ZAija'lj(-}- li

jeN;

VjGNi

]Z(1+E)Ki—6, k=12,....m

IAjl<l+e VYjeN

Since optimization problems in Step 2) and Step 3) are
LP problems, they can be solveffieiently by using the
simplex method or interior point methods. It is thus ex-
pected that the proposed method can find the parameter val-
ues much faster than the GEVM-based method proposed by
Biseet al. [4]. It is also expected that the basin of attrac-
tion of each prototype vector for the proposed method is
as large as that for the GEVM-based method because both
methods rely on the same basic idea described in Sec.4.1.
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from Table 2, the average recall probability for the pro-
posed method is kept at the same level as the GEVM-based
method in all cases, while for the proposed method with

E trivial solution it is lower than other two methods. This

means it is important to find a nontrivial solution in Step 3)
of the proposed CNN design procedure.

= X ]

Table 2: Comparison of Average Recall Probability

oD
L Tl
e
X
] &5 1 P

Average recall probabilityPay(d)
' Method d=1 d=2 d=3 d=4 d=5
GEVM 0.5479 02969 01623 00879 00455
1 Proposed 0.5345 02894 01699 00906 00542
Proposefrriv. 0.3328 01017 00326 00114 00028
. i GEVM 0.9584 08898 08046 Q7080 06026
Figure 1: Prototype vectors 2 Proposed | 09427 08776 (07895 06958 06009
Proposefrriv. 0.8831 07633 06606 05419 04409
GEVM 0.9937 09766 09585 09298 08891
. 3 Proposed 0.9922 09691 09518 09213 08872
It should be noted here that the LP problem in Step 3) propogegrriv, 09733 09367 09055 08624 08169

has a trivial solutiordj = 0,¥j € N; andl; = O because

Step 3) is carried out only if Eq.(5) is not feasible. So one

may claim that there is no need to solve the LP problen§. Conclusion

However, as shown in the next section, the trivial solution We have proposed a CNN design method for associa-

lead to lower recall probability than nontrivial solutions. tive memories based on LP. The proposed method can re-
duce significantly the computation time compared to the

5. Computer Simulation GEVM-based method while keeping the average recall

In order to verify dficiency of the proposed method, Weprobability at thg same level. In this sense, the proposed
have applied the proposed method and the GEVM-bas&gethod is superior to the GEVM-based method.
method proposed by Bisat al. [4] to the same set of pro-
totype vectors shown in Fig.1, and investigated the com- Acknowledgement
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