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Abstract—We consider the problem of using the least
squares method for building models which have large num-
bers of parameters. When using the least squares method
for parameter estimation in practice, although we want to
use the true state (noise free data), we usually use noisy da-
ta as a proxy of the true state in the formula, because we
do not know the true state. When the noise level is low,
although this gives good estimates for the parameters, the
models selected as the best model by information criteria
tend to over-fit because of the proxy. We show a signifi-
cant example that the correct model is not selected as the
best model, propose an idea to overcome the problem and
demonstrate the ability to find better models.

1. Introduction

In this paper we consider the problem of using the least
squares method for building pseudo-linear models [1] of a
nonlinear dynamical system. The models have large num-
bers of parameters and information criteria are applied to
find the best (optimal) model. For parameter estimation,
the least squares method is usually applied, where although
we want to use the true state (noise free data), we usually
use noisy data as a proxy of the true state as the common
usage, because we do not know the true state. Even when
the noise level is low, although this gives good estimates
for the parameters, because of the proxy, the models se-
lected as the best model by information criteria tend to be
over-fitted, that is, the model size becomes unnecessarily
larger. However, it should be noted that the usage of the
least squares method is not particular but rather ordinary.

2. The least squares method and parameter estimation

We now consider the problem of estimating the parame-
tersλ ∈ Rk of a modelxt+1 = f (xt, λ), x ∈ Rd of a nonlinear
deterministic dynamical system given only a finite time se-
ries of observationsst contaminated by observational noise,
where the data comprises a set ofn scalar measurements.
We will assume that the model classf (xt, λ) is perfect, that
is, there is a correct value ofλ, where the model is identical
to the system. A commonly used method to estimateλ is
by least squares, that is, to solve the optimization problem

min
λ

n−1
∑

t=1

‖st+1 − f (st, λ)‖2 , (1)
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Figure 1: The Henon map attractors reconstructed with d-
ifferent observational noise levels. (a) noise free, (b) 40dB
and (c) 20dB.

where only the noisy observations st are used for the fit-
ting. This is a maximum likelihood method that makes
theassumption that thenoise isGaussian and independent.
When the noise level is low this gives good estimates for
the parameters. However, when not so, it is well known
that even when these assumptionshold, least squares does
not providegood estimates for theparameters, because the
estimates show significant bias. The parameter estimates
would be much less biased if we could solve the optimiza-
tion problem

min
λ

n−1
∑

t=1

‖st+1 − f (xt, λ)‖2 , (2)

where xt is the true state (noise free data) at time t, but of
course we cannot know xt, so in Eq. (1) noisy data st is
used as a proxy for the noise free data xt. This is clearly
not agood thing to do because st iscorrupted by noise. We
consider that the usage of Eq. (1) is “ inappropriate” and
that of Eq. (2) is “appropriate” as the least squaresmethod.

We compare parameter estimations and fitting errors
when using both theequations. We use theHenon map [1]
as one example of nonlinear models. The Henon map,
when formulated as a second order difference equation, is
given by xt = A0 + A1xt−2 + A2x2

t−1, where (A0,A1,A2) =
(1.0, 0.3,−1.4). Figure 1 shows the reconstructed attrac-
tors of noise free, 40dB and 20dB noisy data. Panel (b) is
very similar to panel (a) where the noise freedataareplot-
ted. However, panel (c) shows that the shape of the recon-
structed attractor is very fuzzy. When the number of data
points used is 1,000, the parameters estimated (A0,A1,A2)
are (0.9646, 0.3038, -1.3316) using Eq. (1) and (0.9966,
0.3044, -1.3968) using Eq. (2) at the noise level 20dB, and
the parametersestimated are (0.9991, 0.3008, -1.3990) us-
ing Eq. (1) and (0.9997, 0.3004, -1.3997) using Eq. (2) at
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Figure 2: The fitting error for the Henon map when the
noise level is 40dB and the number of data points used is
1, 000, where Eq. (1) is used for (a) and (b), and Eq. (2) is
used for (c). (a): The distribution of the fitting error. (b)
and (c): The fitting errors and observational noise added.

the noise level 40dB. When the noise level is 20dB, the
parameters estimated using Eq. (2) are good estimates, but
those using Eq. (1) are not, and the difference between both
the parameters are very large. However, when the noise
level is 40dB, although the parameters estimated using E-
q. (2) are better estimates than those using Eq. (1), the dif-
ference between both the parameters are not significant and
both the parameters are good estimates.

However, there is a problem to use Eq. (1), even when
the noise level is low. We show it in Figure 2. Panel (a)
shows the distribution of the fitting error (prediction error),
where the histogram is obtained from the fitting errors and
the solid line is a theoretical Gaussian with the same stan-
dard deviation as the fitting errors. As the figure shows
clearly, the distribution of the fitting error is not normal.
We also investigate the relationship of the fitting errors and
Gaussian observational noise added. Panel (b) shows that
the fitting errors obtained using Eq. (1) and the observation-
al noise added are uncorrelated: the correlation coefficient
is 0.42889. We expect that the fitting error is the same as
the observational noise included in the data. However, this
seems to indicate that there is no connection between them.
Also, although the standard deviation of the 40dB observa-
tional noise added is 0.00724, that of the fitting errors is
0.01678, which is much larger than that of the observation-
al noise added. Panel (c) shows that the fitting errors ob-
tained using Eq. (2) and the observational noise added are
almost identical. These results show adverse affects due
to using Eq. (1) and that it is very useful to use Eq. (2).
However, we cannot know the noise free data in the real
world. We show a problem due to that noisy data is used as
a proxy of the true state in the least squares method in the
next section.

3. Degeneracy of time series models

In this section we will observe a significant example as
the correct model is not selected as the best model when
using Eq. (1).

When building pseudo-linear models, many candidate
basis functions are first prepared in the form of a dictio-
nary, which one hopes will be able to describe any likely
nonlinearity and feature of the data. Then, basis function-

s are selected from the dictionary by a selection method,
and models are obtained by taking a linear combination of
these to form the model. It is considered that the minimum
value of the information criterion yields the best (optimal)
model. Hence, selection algorithms usually employ some
information criteria to find a model that balances the mod-
el error against model size so as to prevent over-fitting and
under-fitting data.

Another important reason for using information crite-
ria is to avoid unnecessary increase in the model size,
which occurs when a model is build that models a nested,
that is, self-iterated form of the original system. A sim-
ple example is the following. Let the original model be
xt = a1xt−1 + a3xt−3, which has model size 2. This model
can be rewritten asxt−1 = a1xt−2 + a3xt−4, which is essen-
tially the same as the original model. Using the latter ex-
pression to replace the basis function1

2 xt−1 in the original
model givesxt =

1
2a1xt−1 +

1
2a2

1xt−2 + a3xt−3 +
1
2a1a3xt−4.

Although the model is identical to the original model, its
size is 4, which is larger than that of the original model.
We refer to this kind of model asdegenerate. If such an
operation is done continuously, the model size increases
infinitely. Hence, it is important to remove the above men-
tioned nesting effect and determine the smallest model size
which can model the system.

Some information criteria have already been proposed
for these purposes. The criterion we use is the Rissanen’s
Description Length modified by Judd and Mees (DL) [1].

3.1. Degenerate models

We consider the Henon map using multivariate polyno-
mial models, and choosing lag=3 and degree=3 gives 20
candidate basis functions in the dictionary. From the dic-
tionary we can build a modelxt−1 = A0 + A1xt−3 + A2x2

t−2,
from which we can build the degenerate models. The lev-
els of observational noise added are 20dB, 40dB, 60dB and
80dB, the number of data points used are 1,000 and 10,000,
and Eq. (1) is used. We calculate all possible combination-
s (an exhaustive search) to obtain the truly best model.

Table 1 shows the model size of the best model select-
ed at different noise levels. In all cases,DL (description
length) is not the smallest when the model size is 3 (the
correct model size). However, it should be noted that the
correct model is selected at the correct model size. That is,
the correct model is not the best model. It should be noted
that this is not particular phenomenon usingDL. Although
we show the results using onlyDL, we have confirmed that
the results using other information criteria, for example the
Normalized Maximum Likelihood criterion [1], are essen-
tially the same.

It is usually considered that larger incorrect models may
predict a given noisy time series more effectively than the
correct model. If this is correct, the reason that the size of
the best models was larger than that of the correct model
was expected that this would be due to the high noise level.
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Table 1: The size of the best model for the Henon map at
different noise levels.

Number of data points
Noise level 1,000 10,000

20dB 8 10
40dB 8 8
60dB 6 8
80dB 6 8

However, even when the noise levels are lower, the correct
model is not selected as the best model in all cases. The
size of the best model selected is larger than that of the
correct model. These results imply that this phenomenon
is more complicated than the above mentioned reason.

We investigate this phenomenon. The formula obtained
as the best model when the noise level is 40dB and the
number of data points is 10,000 is

xt = 0.7781− 0.4539xt−1 + 0.3004xt−2 − 0.0663xt−3

− 0.7235x2
t−1 + 0.3097x2

t−2 − 0.2032xt−1xt−3

+ 0.9460xt−1x2
t−2. (3)

This is, in fact, a very good butdegenerate, approximation
to the correct model. That is, the model can be reduced
to the essentially correct model. We can find such good
but degenerate approximations of sizes 6, 8 and 11 in most
cases. Furthermore, these degenerate models are selected
as the best models in most cases.

The results show that we cannot avoid unnecessary in-
crease in the model size and we cannot select the correct
model as the best model, even when the noise level is low
and truly the best model is obtained by calculating all pos-
sible combinations. This is a very significant problem for
building models.

Here, we use the previous true state (noise free data) and
the current noisy datum to investigate the performance of
the optimization problem, Eq. (2), under the same condi-
tion. We again calculate all possible combinations to ob-
tain the truly best model. In all cases the correct model is
selected as the best model. This indicates that it is very
useful to use the noise free data for not only parameter esti-
mation and but also take advantage of information criteria
effectively. However, we usually must use the noisy data as
proxy for the noise free data, because we cannot know the
noise free data.

4. An idea to use the least squares method more appro-
priately

As shown in previous section, it is very useful to use the
true state (noise free data). However, very large problem is
that it is difficult work to obtain true state from noisy state.
Hence, we propose an idea to use the lease squares method

more appropriately without using the true state. The only
assumption we use is that the observational noise is Gaus-
sian.

As Figure 1 (b) shows, the reconstructed attractor with
40dB noise is very similar to that with noise free, and the
parameters estimated are almost the same as the correct val-
ues. These facts indicate that the noisy data can be regard-
ed as a good proxy for the true state when the noise level is
low. Hence, to achieve a proxy of Eq. (2) using only noisy
data, we propose the addition of larger Gaussian noise to
the part ofst+1 in Eq. (1).

Let the added Gaussian noise beε′t ands′t+1 = st+1+ ε
′
t+1.

Then we obtain new optimization problem

min
λ

n−1
∑

t=1

∥

∥

∥s′t+1 − f (st, λ)
∥

∥

∥

2
. (4)

In Eq. (2), thest+1 term has more noise thanxt. Hence,
when the level of the added noise is large enough relative
to the noise included in the original noisy datast, we expect
that the Eq. (4) can be good approximation to the Eq. (2).
We refer to the method as the “additional Gaussian noise
least squares (AGLS)” method.

We apply the idea to the same example used in sec-
tion 3.1. We again calculate all possible combinations to
obtain the truly best model. We add the noise level up to
0dB from 80dB every 10dB, and see what happen. The se-
lected basis functions does not change when the noise level
added is lower than that included in the original noisy data.
However, as the noise level added becomes larger, only the
basis functions in the correct model are selected. That is,
the correct model is selected as the best model. This result
indicates that applying the idea can avoid over-fitting and
degeneracy.

5. Application

In the earlier examples, we always could obtain clear re-
sults in any noise level even when the noise level was 20dB,
which is relative large noise level. This would be possible,
because there were the correct basis functions in the dic-
tionary and all possible combination sets were calculated.
However, it is very unrealistic, because in practical cases,
there is no correct basis functions, instead of calculatingall
possible combination sets, selection methods are applied,
and only polynomial basis functions are not recommend-
ed for modelling [1]. Hence, we investigate how our idea
works in practical cases. For this purpose, we build models
using radial basis functions and apply a selection method,
the up-and-down method using marginal error [1]. For ap-
plying the proposed idea, we use the following idea. We
first build models using a selection method and a training
data as usual. When we apply the proposed idea for the
least squares method, we do not build models again using
the noise added data. We keep using the original models
obtained using the original training data, but we calculate
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the description length using Eq. (4), that is, the original
training data and noise added data. Then we find the best
model at each noise level added. The reason why we apply
the above idea is that selecting basis functions is much in-
fluenced by noise. Hence, we do not want to use very noisy
data as the training data.

5.1. The model of the differential equation of the dou-
ble scroll circuit equations

The model we use is a electronic circuit proposed by
Chuaet al [2]. We contaminate the data by 60dB noise and
use the data as observational data. For building a model
5,000 data points are used as the training data, and the data
is embedded using uniform embedding (t − 1, t − 5, t − 9)
with the aim of predicting a value at timet.

The size of the model obtained as the best model is 67.
We apply the idea used to avoid degeneracy and find the
best model again at the each noise level added, where we
use 5 different Gaussian noise realizations in the AGLS
method. Table 2 shows the mode of the model size. From
60dB to 50dB, the model size is almost the same, size 63.
Hence, we regard the model as the global best model.

To investigate the quality and performance of the mod-
els obatined, we use long-term free-run data of the models,
because one needs to get the dynamics right to obtain good
long-term free-run data. Figure 3 shows the reconstructed
attractors of the training data and those of the ubiquitous
behaviours of the free-run data of the models. Panel (a)
shows that there are empty spaces around the centres in the
left and right sides. Panel (b) shows that the empty spaces
are not clear. However, the behaviour on other areas are
very similar to panel (a). Panel (c) shows that the empty
space in the right side is very clear and that in the left side
is more clear than that using the model of the size 67. Also,
the behaviour on other areas are similar to panel (a) as well
as the model of size 67. Panel (d) shows that although the
empty spaces in both the sides are clear, the behaviour on
other areas is getting periodic. Also, panel (d) shows that
the behaviour in the middle section (between the two unsta-
ble focii) is much simpler than others. This result indicates
that the model of the size 63 shows the best behaviour. Al-
so, it indicates that the model of size 67 is over-fitted.

6. Summary and Conclusion

We have described that in unexpected situations, some
models tend to over-fit; degeneracy is one example of this
significant problem. To overcome these problem, we pro-
posed an idea to use the least squares method more ap-
propriately without using the true state, the AGLS method.
The results indicate that applying the proposed method can
take advantage of information criteria more effectively and
generally avoid over-fitting.

Table 2: The mode of the best model size obtained at dif-
ferent noise level added for the models of the double scroll
circuit equations

Noise level Model size Noise level Model size

20dB 4 50dB 63
25dB 6 55dB 63
30dB 14 60dB 64
35dB 20 65dB 67
40dB 39 70dB 67
45dB 53 Original model 67
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Figure 3: The reconstructed attractors of time series. 5000
data points are plotted. Panel (a) training data, (b) model
size 67, (c) model size 63, and (d) model size 53.
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