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Abstract—We consider the problem of using the least | "= [~ ™ [,
squares method for building models which have large num- “?:\;\ )
bers of parameters. When using the least squares method~ | A0 7]
for parameter estimation in practice, although we wantto + _=~ S
use the true state (noise free data), we usually use noisy c@) T (b) T () —
ta as a proxy of the true state in the formula, because we
do not know the true state. When the noise level is |OV\Figure 1: The Henon map attractors reconstructed with d-

although this gives good estimates for the parameters, thferent observational noise levels. (a) noise free, (b) 40dB
models selected as the best model by information criterignd (c) 20dB.

tend to over-fit because of the proxy. We show a signifi-
cant example that the correct model is not selected as the
best model, propose an idea to overcome the problem awdiere only the noisy observations s; are used for the fit-
demonstrate the ability to find better models. ting. This is a maximum likelihood method that makes
the assumption that the noise is Gaussian and independent.
When the noise level is low this gives good estimates for
the parameters. However, when not so, it is well known
In this paper we consider the problem of using the leadfat even when these assumptions hold, least squares does
squares method for building pseudo-linear models [1] of BOt provide good estimates for the parameters, because the
nonlinear dynamical system. The models have large nurfistimates show significant bias. The parameter estimates
bers of parameters and information criteria are applied #gould be much less biased if we could solve the optimiza-
find the best (optimal) model. For parameter estimatiorion problem
the least squares method is usually applied, where although
we want to use the true state (noise free data), we usually
use noisy data as a proxy of the true state as the common
usage, because we do not know the true state. Even when
the noise level is low, although this gives good estimateshere x; is the true state (noise free data) at time t, but of
for the parameters, because of the proxy, the models smurse we cannot know x;, so in Eq. (1) noisy data & is
lected as the best model by information criteria tend to besed as a proxy for the noise free data x;. Thisis clearly
over-fitted, that is, the model size becomes unnecessaritpt a good thing to do because s; is corrupted by noise. We
larger. However, it should be noted that the usage of thensider that the usage of Eq. (1) is “inappropriate” and
least squares method is not particular but rather ordinarythat of Eq. (2) is“appropriate” asthe least squares method.
We compare parameter estimations and fitting errors
2. Theleast squares method and parameter estimation  When using both the equations. We use the Henon map [1]
as one example of nonlinear models. The Henon map,
We now consider the problem of estimating the paramavhen formulated as a second order difference equation, is
tersd € R“of amodelx1 = f(x, 1), x e RYofanonlinear givenby x. = Ag + AiXi_2 + Axx2 |, where (Ag, Ar, Ay) =
deterministic dynamical system given only a finite time sef1.0, 0.3, -1.4). Figure 1 shows the reconstructed attrac-
ries of observations contaminated by observational noise tors of noise free, 40dB and 20dB noisy data. Panel (b) is
where the data comprises a setnogcalar measurements. very similar to panel (a) where the noise free data are plot-
We will assume that the model clabéx, A) is perfect, that ted. However, panel (c) shows that the shape of the recon-
is, there is a correct value af where the model is identical structed attractor is very fuzzy. When the number of data
to the system. A commonly used method to estimate points used is 1,000, the parameters estimated (Ao, A1, A2)
by least squares, that is, to solve the optimization problerare (0.9646, 0.3038, -1.3316) using Eq. (1) and (0.9966,
1 0.3044, -1.3968) using Eq. (2) at the noise level 20dB, and
; _ 2 the parameters estimated are (0.9991, 0.3008, -1.3990) us-
”}'”;”S‘” F (&I @D ing Eq. (1) and (0.9997, 0.3004, -1.3997) using Eq, (2) at

1. Introduction
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s are selected from the dictionary by a selection method,
. and models are obtained by taking a linear combination of
i1 — | these toform the model. Itis considered that the minimum
| ”ﬂ H value of the information criterion yields the best (optiinal
(@ T e © U (b) TEELEE T (¢) Teaduus s model. Hence, selection algorithms usually employ some

information criteria to find a model that balances the mod-
Figure 2: The fitting error for the Henon map when theel error against model size so as to prevent over-fitting and
noise level is 40dB and the number of data points used imder-fitting data.
1,000, where Eq. (1) is used for (a) and (b), and Eq. (2) is Another important reason for using information crite-
used for (c). (a): The distribution of the fitting error. (b)ria is to avoid unnecessary increase in the model size,
and (c): The fitting errors and observational noise added.which occurs when a model is build that models a nested,

that is, self-iterated form of the original system. A sim-

ple example is the following. Let the original model be
the noise level 40dB. When the noise level is 20dB, thgt = a1X%_1 + asX.3, Which has model size 2. This model
parameters estimated using Eq. (2) are good estimates, Bk pbe rewritten a%_1 = a;X._» + azX%_a4, Which is essen-
those using Eq. (1) are not, and thdelience between both g|ly the same as the original model. Using the latter ex-
the pgrameters are very large. However, _when the_noi§¢essiOn to replace the basis funct%nq_l in the original
level is 40dB, althoggh the parameters gstlmated using '|_En'odel givesx = %a1Xt-1 " %afxt-z + asX 3 + %alasxt_4_
9. (2) are better estimates than those using Eq. (1), the di{jinough the model is identical to the original model, its
ference between both the parame_ters are not significant agjde s 4, which is larger than that of the original model.
both the parameters are good estimates. We refer to this kind of model adegenerate If such an

However, there is a problem to use Eq. (1), even whegheration is done continuously, the model size increases

the noise level is low. We show it in Figure 2. Panel (a)nfinjtely. Hence, it is important to remove the above men-
shows the distribution of the fitting error (prediction &0 tioned nesting fect and determine the smallest model size
where the histogram is obtained from the fitting errors angjnich can model the system.
the solid line is a theoretical Gaussian with the same stan- g, me information criteria have already been proposed
dard deviation as the fitting errors. As the figure Showg,, these purposes. The criterion we use is the Rissanen’s

clearly, the distribution of the fitting error is not norma"Description Length modified by Judd and Me&4 [1].
We also investigate the relationship of the fitting errord an

Gaussian observational noise added. Panel (b) shows that
the fitting errors obtained using Eq. (1) and the observatior-1-
al noise added are uncorrelated: the correlatiorfcnent We consider the Henon map using multivariate polyno-

is 0.42889. We expect that the fitting error is the same 38i5| models. and choosing lag and degree3 gives 20

the observational noise included in the data. However, this, hqiqate basis functions in the dictionary. From the dic-
seems to indicate that there is no connection between the{?@mary we can build a modet_1 = Ag + AyXe_3 + ApX2
— - — _21

Also, although the standard deviation of the 40dB observa:;m which we can build the degenerate models. The lev-

tional noise added is 0.00724, that of the fitting errors i§|S of observational noise added are 20dB, 40dB, 60dB and
0.01678, which is much larger than that of the observatiogyyg the number of data points used are 1,000 and 10,000
al noise added. Panel (c) shows that the fitting errors oy, £ (1) is used. We calculate all possible combination-
tained using Eg. (2) and the observational noise added &I,y exhaustive search) to obtain the truly best model.

almost identical. These results show adverecés due Table 1 shows the model size of the best model select-

:_c: using Eq. (1) and tkhat it i;’ very us;aful ;0 use Eﬂ' (Z)ed at diferent noise levels. In all caseBL (description
owever, we cannot know the noise free data in the re ngth) is not the smallest when the model size is 3 (the

world. Wef SEOW a problem d#elto that noisy data E ‘f?d Rdrrect model size). However, it should be noted that the
a proxy of the true state in the least squares method in tIa‘tajrrect model is selected at the correct model size. That is,

next section. the correct model is not the best model. It should be noted
that this is not particular phenomenon usb. Although
3. Degeneracy of time series models we show the results using onBL, we have confirmed that
the results using other information criteria, for example t
In this section we will observe a significant example adlormalized Maximum Likelihood criterion [1], are essen-
the correct model is not selected as the best model whéally the same.
using Eq. (1). It is usually considered that larger incorrect models may
When building pseudo-linear models, many candidateredict a given noisy time series moregtively than the
basis functions are first prepared in the form of a dictioeorrect model. If this is correct, the reason that the size of
nary, which one hopes will be able to describe any likelyhe best models was larger than that of the correct model
nonlinearity and feature of the data. Then, basis functiorwas expected that this would be due to the high noise level.

Degenerate models
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more appropriately without using the true state. The only

Table 1: The size of the best model for the Henon map %tssumption we use is that the observational noise is Gaus-

different noise levels.

sian.
Number of data points As Figure 1 (b) shows, the reconstructed attractor with
Noise level 1,000 [ 10,000 40dB noise is very similar to that with noise free, and the
20dB 3 10 parameters estimated are almost the same as the correct val-
400dB 38 8 ues. These facts indicate that the noisy data can be regard-
60dB 6 8 ed as a good proxy for the true state when the noise level is
80dB 6 8 low. Hence, to achieve a proxy of Eq. (2) using only noisy

data, we propose the addition of larger Gaussian noise to
the part ofs,1 in Eq. (2).

_ Let the added Gaussian noised@nds,; = S1+¢/, ;.
However, even when the noise levels are lower, the correghen, we obtain new optimization problem

model is not selected as the best model in all cases. The

size of the best model selected is larger than that of the n-1 )

correct model. These results imply that this phenomenon ”}'nz 182 = f (5. (4)
is more complicated than the above mentioned reason. t=1

We investigate this phenomenon. The formula obtaineﬁi| Eq. (2), thes.1 term has more noise thaq. Hence
. . . ’ + . !
as the best model when the noise level is 40dB and thg, . e |evel of the added noise is large enough relative

nhumber of data points is 10,000 is to the noise included in the original noisy datawve expect
that the Eq. (4) can be good approximation to the Eq. (2).

% = 0778l 0'2453%‘1 * 0'2300%‘2 ~00863¢-3  \\o refer to the method as the “additional Gaussian noise
—0.7235¢_; + 0.3097¢_; - 0.2032¢1%-3 least squares (AGLS)” method.
+0.9460¢_1X2 ,. 3) We apply the idea to the same example used in sec-

tion 3.1. We again calculate all possible combinations to

This is, in fact, a very good butegenerateapproximation obtain the truly best model. We add the noise level up to
to the correct model. That is, the model can be reduceshiB from 80dB every 10dB, and see what happen. The se-
to the essentially correct model. We can find such goodcted basis functions does not change when the noise level
but degenerate approximations of sizes 6, 8 and 11 in magdded is lower than that included in the original noisy data.
cases. Furthermore, these degenerate models are selegigglever, as the noise level added becomes larger, only the
as the best models in most cases. basis functions in the correct model are selected. That is,

The results show that we cannot avoid unnecessary ithe correct model is selected as the best model. This result
crease in the model size and we cannot select the corrg@edlicates that applying the idea can avoid over-fitting and
model as the best model, even when the noise level is loagegeneracy.
and truly the best model is obtained by calculating all pos-
sible combinations. This is a very significant problem for5
building models.

Here, we use the previous true state (noise free data) anqp, the earlier examples, we always could obtain clear re-
the current noisy datum to investigate the performance @{;jts in any noise level even when the noise level was 20dB,
the optimization problem, Eq. (2), under the same condjyhich is relative large noise level. This would be possible,
tion. We again calculate all possible combinations to obsecause there were the correct basis functions in the dic-
tain the truly best model. In all cases the correct model igonary and all possible combination sets were calculated.
selected as the best model. This indicates that it is VeRowever, it is very unrealistic, because in practical cases
useful to use the noise free data for not only parameter esfiiere is no correct basis functions, instead of calculalhg
matio_n and but also take advantage of informati_on C”teriﬁossible combination sets, selection methods are applied,
effectively. However, we usually must use the noisy data gg,q only polynomial basis functions are not recommend-
proxy for the noise free data, because we cannot know thg for modelling [1]. Hence, we investigate how our idea
noise free data. works in practical cases. For this purpose, we build models

using radial basis functions and apply a selection method,

4. Anideatousetheleast squaresmethod moreappro-  the up-and-down method using marginal error [1]. For ap-
priately plying the proposed idea, we use the following idea. We
first build models using a selection method and a training

As shown in previous section, it is very useful to use thelata as usual. When we apply the proposed idea for the
true state (noise free data). However, very large problemisast squares method, we do not build models again using
that it is dificult work to obtain true state from noisy state.the noise added data. We keep using the original models
Hence, we propose an idea to use the lease squares metbbthined using the original training data, but we calculate

. Application
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the description length using Eq. (4), that is, the origin ) . . :
training data and noise added data. Then we find the baéll'&ble 2: The mode of the best model size obtained at dif-

model at each noise level added. The reason why we ap $;en.t noise ]evel added for the models of the double scroll
the above idea is that selecting basis functions is much iﬁ_rcwt equations

fluenced by noise. Hence, we do not want to use very nois
data as the training data.

¥ Noise level | Model size|| Noise level | Model size |

20dB 4 50dB 63

25dB 6 55dB 63

. . . 30dB 14 60dB 64

5.1. 'tl)'lhe moﬁeliof t'rt1e dlff(;:.rentlal equation of the dou- 3548 0 6508 &7
e scroll circuit equations 2008 29 Z0dB 67

45dB 53 Original model 67

The model we use is a electronic circuit proposed by!
Chuaet al[2]. We contaminate the data by 60dB noise and
use the data as observational data. For building a model Trainng dota Motel sige 67
5,000 data points are used as the training data, and the data
is embedded using uniform embedding-(1,t — 5,t — 9)
with the aim of predicting a value at tirme

The size of the model obtained as the best model is 67.
We apply the idea used to avoid degeneracy and find the 7
best model again at the each noise level added, where we | (&#
use 5 diferent Gaussian noise realizations in the AGLS ]
method. Table 2 shows the mode of the model size. From(® o (b)
60dB to 50dB, the model size is almost the same, size 63. .
Hence, we regard the model as the global best model.

To investigate the quality and performance of the mod-
els obatined, we use long-term free-run data of the models,
because one needs to get the dynamics right to obtain good .,
long-term free-run data. Figure 3 shows the reconstructed
attractors of the training data and those of the ubiquitous S
behaviours of the free-run data of the models. Panel (a)(c) X (d)
shows that there are empty spaces around the centres in the
left and right sides. Panel (b) shows that the empty Spacgi_.gure 3: The reconstructed attractors of time series. 5000
are not clear. However, the behaviour on other areas dfata points are plotted. Panel (a) training data, (b) model
very similar to panel (a). Panel (c) shows that the empt§ize 67, (c) model size 63, and (d) model size 53.
space in the right side is very clear and that in the left side
is more clear than that using the model of the size 67. Als
the behaviour on other areas are similar to panel (a) as wi

as the model of size 67. Panel (d) shows that although theTomo Nakamura would like to acknowledge valuable

empty spaces in both the sides are clear, the behaviour gcussions with Associate Professor Kevin Judd (The Uni-
other areas is getting periodic. Also, panel (d) shows thggrsity of Western Australia) concerning degenerate mod-
the behaviour in the middle section (between the two Unstéfs_ This research is Supported by a Hong Kong Uni-
ble focii) is much simpler than others. This result indisateyersity Grants Council Competitive Earmarked Research
that the model of the size 63 shows the best behaviour. Arant (CERG) number PolyU 528%3.

so, it indicates that the model of size 67 is over-fitted.
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