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Abstract—We try to show that the dynamics of surface
wind is nonlinear. The dynamics of wind is nonstationary.
Therefore, from a time series, we extract stationary seg-
ments and apply surrogate data analysis. While the result
suggests that the dynamics is a linear Gaussian stochastic
process, there might be still the possibility that the wind is
a nonlinear process because we may have a problem in the
sampling frequency.

1. Introduction

The dynamics of wind is believed to be chaotic or it has
a low-dimensional attractor as air is a turbulent fluid. There
is a lot of work [1, 2, 3, 4, 5, 6] trying to show that weather
and climate systems have low-dimensional attractors using
the Grassberger-Procaccia algorithm [7], while they may
just be spurious results because of short data sets [8].

Nonlinear deterministic models are sometimes used for
predicting time series of a turbulent fluid. Casdagli [9]
showed that for weak turbulent data, the prediction error
of a nonlinear deterministic model is smaller than that of
a stochastic model, while they do not make any difference
for fully developed turbulence. On the other hand, Ragwitz
and Kantz [10] showed the wind velocity can be predicted
well using nonlinear deterministic models when it changes
fast, while a linear stochastic model predicts better when
the variation is small.

In this communication, we attempt to show that the dy-
namics of wind is nonlinear using surrogate data analysis.

2. Data

The data set we used was obtained at Tomamae Winvilla
Wind Farm at Tomamae, Hokkaido, Japan. The wind ve-
locity was observed with 1/45 Hz on 1 November 2002
from 0:00 am for 8 hours. (Therefore the time series has
640 points.) Let{ut}

640
t=1 be the time series. The time series

is shown in Fig. 1.

0 0.5 1 1.5 2 2.5
x 104

4

6

8

10

12

14

16

18

time (seconds)

w
in

d 
ve

lo
ci

ty
 (m

/s
)

Figure 1: Time series of wind used in the analysis.

3. Stationarity test

Before applying surrogate data analysis, we need to
check the stationarity of the data. Timmer [11] warned
that a nonstationary data can be spuriously identified as a
nonlinear deterministic system using surrogate data analy-
sis even if it is not.

We employed the method of Kennel [12] for testing the
stationarity of the data. If a data set is stationary, we expect
that the nearest neighbors in a state space appear randomly
in time except for the temporal neighbors. In Ref. [12], this
property was implemented as a statistical hypothesis test.

First we applied the method to whole the set of the time
series. Using Refs. [13, 14], we decided an embedding
space as (ut,ut+2,ut+4,ut+6). After applying the method of
Ref. [12], we obtain the statisticz = 13.9528. As it is big-
ger than 2.326, we rejected at 99% confidence level the null
hypothesis that the data set is stationary.

To move on to the further studies, we looked the time
series closely and decided to split it manually into the fol-
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Figure 2: The result of surrogate data analysis for the seg-
ment {ut}

280
t=1. The method of Ref. [16] was used to cal-

culate the statistic. For each embedding dimension, solid
lines show the minimum and the maximum of the statistics
obtained from the surrogate data, and+ shows the statistic
obtained from the original segment.

lowing three segments:{ut}
280
t=1, {ut}

420
t=281, and{ut}

640
t=421. For

each segment, the methods of Refs. [13, 14] were applied
and we obtained embedding spaces (ut,ut+2,ut+4,ut+6),
(ut,ut+2,ut+4,ut+6), and (ut,ut+1,ut+2,ut+3), respectively.
Then we used the method of Ref. [12] and obtained the
statisticsz = 1.2210, 1.9727, and−0.9454, respectively.
As all of them are less than 2.326, each segment can be
regarded as stationary.

4. Surrogate data analysis

For each segment, we generated surrogate data using
Ref. [15]. Using the method of Ref. [15], we can gener-
ate surrogate data that preserve the distribution perfectly
and the power spectrum approximately. Therefore, using
the surrogate data we can test a hypothesis whether a data
set is generated from a linear Gaussian stochastic process.

For the segment of{ut}
280
t=1, we generated 199 sets of sur-

rogate data. For each set of surrogate data and the origi-
nal segment, we calculated the statistic of Ref. [16], which
shows how deterministic the system could be. The result is
shown in Fig. 2.

As in the Fig. 2 the statistics of the original segment are
always between the minimum and the maximum of those
of the surrogate data, the hypothesis cannot be rejected,
i.e., the data set was possibly generated by a linear Gaus-
sian stochastic process. (For the combined test, the p-value
needs to be adjusted.)

We also applied the same test for the segments{ut}
420
t=281

and{ut}
640
t=421 and we obtained the similar results.
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Figure 3: The result of surrogate data analysis for the
Lorenz 63 model. The method of Ref. [16] was used to cal-
culate test statistics. For each embedding dimension, solid
lines show the minimum and the maximum of the statistics
obtained for the surrogate data, and+ shows the statistic
obtained from the original time series.

5. Is there still a possibility for nonlinearity?

The result of the surrogate data analysis suggested that
the dynamics of wind is a linear Gaussian process. But,
should we accept the result obediently? For example, there
is a possibility that the test statistic of Ref. [16] is not sensi-
tive to the form of nonlinearity present in the data. There is
also a possibility that the data sets are too short. In this sec-
tion, however, we look for another possibility: we observed
the wind with a wrong sampling frequency.

We observed the wind with 1/45 Hz, which could be too
long as Ragwitz and Kantz [10] observed the wind velocity
with 8 Hz. Using two models, we will see how the result
would change if we used a different sampling frequency.

For the first model, we use the Lorenz 63 model [17],
which is defined as follows:

dx
dt = −σx+ σy
dy
dt = −xz+ rx − y
dz
dt = xy− bz,

(1)

where (σ,r,b) = (10,28,8/3). We observed the variablex
every 0.16 second in the time of the equation and obtained
a scalar time series of 2 000 points.

First we tested the nonlinearity of the model using the
observed data. We generated 199 sets of surrogate data
using the method of Ref. [15]. We calculated the statistic
of Ref. [16]. The result is shown in Fig. 3. As the statistic
of the original data is below the minimum for the statistic
of surrogate data for all the dimensions, the hypothesis is
rejected.

Next we tested the nonlinearity of the model using a
wrong time scale. We obtained another scalar time series
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Figure 4: The result of surrogate data analysis for the time
series of length 200 created by taking every 10 points of
the scalar time series generated from the Lorenz 63 model.
The statistic of Ref. [16] was calculated as a test statistic.
For each embedding dimension, solid lines show the min-
imum and the maximum of the statistics obtained for the
surrogate data, and+ shows the statistic obtained from the
original time series of length 200.

of 200 points by taking every 10 points from the original
scalar time series. Using the method of Ref. [15], we gen-
erated 199 sets of surrogate data. Using the statistic of
Ref. [16], we obtained Fig. 4. As, for each embedding di-
mension, the statistic obtained for the data of length 200
is always between the minimum and the maximum for the
surrogate data, the hypothesis cannot be rejected. It means
that the dynamics of the Lorenz 63 model was identified as
a linear Gaussian process, while it is not correct.

The second example is the Lorenz two-scale system [18,
19], a model of the atmosphere. The Lorenz two-scale sys-
tem containsmslow large-scale variablesxi andm× n fast
small-scale variablesy j,i . The equations are defined as fol-
lows:

dxi

dt
= xi−1(xi+1 − xi−2) − xi + F −

hxc
b

J∑
j=1

y j,i (2)

dyj,i

dt
= cbyj+1,i(y j−1,i − y j+2,i) − cyj,i +

hyc

b
xi , (3)

where we enforced the following cyclic boundary condi-
tions

xm+i = xi , y j+n,i = y j,i+1, y j−n,i = y j,i−1. (4)

We setm = 40, n = 5, F = 8, b = 10, c = 10, hx = 1,
andhy = 1. In this 240 dimensional model, we observed a
fast small-scale variabley1,1 every 0.05 second in the time
of the equations, and obtained a scalar time series of length
2000. First we used the observed 2000 points data and did
the surrogate data analysis. We generated 199 sets of surro-
gate data using the method of Ref. [15]. For each surrogate
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Figure 5: The result of surrogate data analysis for the time
series generated from the Lorenz two-scale system. The
statistic of Ref. [16] was calculated as a test statistic. For
each embedding dimension, solid lines show the minimum
and the maximum of the statistics obtained from the sur-
rogate data, and+ shows the statistic obtained from the
original data.

data and the original time series, the statistic of Ref. [16]
was calculated. The result is shown in Fig. 5. In 33 em-
bedding dimensions, the statistic of the original time series
is smaller than the minimum of those of the surrogate data,
and in the embedding dimension 5, it is bigger than the
maximum. As 34 individual tests out of 50 are rejected,
the hypothesis should be rejected in the combined test: the
time series was identified as nonlinear.

Next we took every 10 points from the original time se-
ries and generated another time series of length 200. Using
the method of Ref. [15], we generated 199 sets of its surro-
gate data. The statistic of Ref. [16] was calculated as shown
in Fig. 6. As no individual test rejects the hypothesis, nei-
ther does the combined test.

These two examples show that even if a system is non-
linear, if it is observed with too low a frequency, it can be
misclassified as a linear system.

6. Conclusion

We tested whether the dynamics of wind is nonlinear or
not. The surrogate data analysis did not show evidence
of deterministic nonlinearity. The argument using the two
Lorenz models suggested that if we observe the wind with
a higher sampling rate, we may find nonlinearity in its dy-
namics.
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Figure 6: The result of surrogate data analysis for the time
series of 200 points generated by taking every 10 points
from the scalar time series generated from the Lorenz two-
scale system. The statistic of Ref. [16] was calculated as
a test statistic. For each embedding dimension, solid lines
show the minimum and the maximum of the statistics ob-
tained from the surrogate data, and+ shows the statistic
obtained from the original data of 200 points.
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