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Abstract—This paper describes a method to detect peri-
odic oscillations in a circuit parameter space. It is a difficult
problem to seek the region of the target oscillation in a pa-
rameter space, especially if the region is very small. To
overcome the difficulty, we obtain complex periodic solu-
tions by extending the state variables of the circuit equa-
tion in real number field. The extension makes it possible
to find the solutions easily. After finding the complex solu-
tions numerically, we detect the real solutions, by a general
homotopy. In this stage, we use the fact that the complex
general homotopy is monotonic in the parameter space.

1. Introduction

When we analyze nonlinear circuits, it is important to
find circuit parameters on which the target oscillations are
generated. Once a solution of the determining equation of
the target oscillations is detected, we can apply general ho-
motopy to trace the solutions. Many researchers have been
studied about finding all solutions on a fixed circuit param-
eters, e.g., homotopy method[1], interval method[2, 3, 4],
and so on. However, in order to detect the any solutions, we
have to solve the equation a number of times in the param-
eter space through a trial and error process. To overcome
the difficulty of the detection, we propose to extend the real
state variables to complex numbers on circuit equations.
Although it is difficult to seek the region of real solutions,
it is easier to find complex solutions on a fixed parameter
since there exist complex solutions in the region where the
real solution does not exist.

Complex function which is continuously differentiable
has many fascinating properties. Based on the Cauchy-
Riemann equations, the homotopy path of the complex
function becomes monotonic in homotopy parameters[1].
Using the property, we propose a method to find the tar-
get periodic oscillation in the parameter space. That is, we
first find all or almost all complex solutions of a determin-
ing equation on a fixed circuit parameter. In this stage, we
use Newton homotopy. Then, using the general homotopy
from the obtained solutions in the parameter space, we can
seek the region of real periodic solutions. The monotoneity
of the Newton homotopy and the general homotopy makes

it possible to detect real solutions efficiently.
In section 2, we define the extension to complex state

variables. In section 3, we show the monotoneity of the
homotopy path. In section 4, we describe the algorithm for
detecting real periodic solutions. We confirm the efficiency
of the proposed method by applying it to a RLC-resonance
circuit in section 5.

2. Definition of Complex Determining Equation

We consider a scaled circuit equation

dx
dt
= f (x) + e(t) (1)

wherex = (x1, . . . , xn)′ ∈ Rn is a vector of state variables
and the prime means transpose. We assume thatf (x) :
Rn �→ Rn is represented by polynomials ofx1, . . . , xn. The
vectore(t) ∈ Rn corresponds to AC sources of period 2π:

e(t + 2π) = e(t). (2)

By extending the real state variables to complex number
field, we obtain the following equation:

dz
dt
= f (z) + e(t). (3)

wherez ∈ Cn and f (z) : Cn �→ Cn is represented by poly-
nomials ofz1, . . . , zn. The timet, the sourcee(t) and the
coefficients of the polynomials are still in real number field.

We consider a periodic solution of Eq.(3). The integra-
tion of Eq.(3) from an initial valuez(0) = z0 gives

z(t) = z0 +

∫ t

0
f (z, s)ds. (4)

A problem of finding a periodic solution of periodT ∈ R
is a two-point boundary value problem in which the solu-
tion of Eq.(3) in the interval [0, T ] must satisfy the bound-
ary conditionz(0) = z(T ). Assuming that we can integrate
Eq.(3) fromt = 0 to t = T , we express the above problem
using a mappingT : Cn �→ Cn,

z0 = T(z0), T(z0) ≡
∫ T

0
f (z, s)ds + z0. (5)
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To solve the two-point boundary value problem with a
shooting method, we define a complex nonlinear equation

F(z0) ≡ z0 − T(z0) = 0. (6)

The solution of Eq.(6), that is, the fixed pint of the mapping
T determines a periodic solution of Eq.(3) [5].

In order to clarify the complex analyticity of the function
F(z0), we consider the Jacobi matrix of the functionF(z0):

∂F
∂z0
= 1 − ∂T

∂z0
. (7)

The Jacobi matrix is calculated by integrating a linear equa-
tion

d
dt
∂z(t)
∂z0

=
∂ f (z(t))
∂z

· ∂z(t)
∂z0

(8)

from an initial value

∂z(0)
∂z0

= 1 (9)

where1 is a unit matrix ofn×n. The existence of the Jacobi
matrix indicates that the functionF(z0) is continuously dif-
ferentiable if the integral in Eq.(5) is calculated.

3. Monotoneity of Homotopy Path

3.1. Expression with real numbers

We assume that the integral in Eq.(5) can be calculated.
In order to clarify the property of the complex function
F(z), we express the function with a pair of real numbers:

Fk(z) = Fr
k(zr, zi) + iFi

k(zr, zi) (10)

k = 1, · · · , n, z = zr + i zi

whereFr
k, F

i
k ∈ R andzr, zi ∈ Rn. This permits us to define

a new functionF̂( ẑ) : R2n �→ R2n where{
F̂1 = Fr

1
F̂2 = Fi

1
, · · · ,

{
F̂2n−1 = Fr

n

F̂2n = Fi
n
, (11)

{
ẑ1 = zr

1
ẑ2 = zi

1
, · · · ,

{
ẑ2n−1 = zr

n
ẑ2n = zi

n
. (12)

Using Cauchy-Riemann equations, we can prove that the
determinant of the Jacobi matrix of the functionF̂ satisfies
the following inequality [1]:

det

[
∂F̂
∂ ẑ

]
≥ 0. (13)

3.2. Newton homotopy

In order to solve the equation̂F( ẑ) = 0 instead of Eq.(6),
we use Newton homotopy method. We define the Newton
homotopy functionĤ : R2n �→ R2n+1 by

Ĥ( ẑ, α) ≡ αF̂( ẑ) + (1− α)
[
F̂( ẑ) − F̂(â)

]
(14)

whereα ∈ R is a homotopy parameter and ˆa ∈ R2n is a
given vector. This function satisfies equations

Ĥ(â, 0) = 0, Ĥ( ẑ, 1) = F̂( ẑ). (15)

We define Newton homotoy equation by

Ĥ( ẑ, α) = 0 (16)

and we define a homotopy path by

Ĥ
−1

(0) ≡
{
( ẑ, α) | Ĥ( ẑ, α) = 0

}
. (17)

We trace the homotopy path from the given initial point
[ â, 0] and if we arrive atα = 1, then we have a solutionz0

of Eq.(6).

3.3. Monotoneity of homotopy path

We define a vector ˆy ≡ [ ẑ, α] ∈ R2n+1. Assuming that
the homotopy path is represented by ˆy(θ) whereθ ∈ R rep-
resents the arclength of the homotopy path, the following
equation

Ĥ(ŷ(θ)) = 0 (18)

is satisfied. The homotopy path ˆy(θ) satisfies the basic dif-
ferential equations[1]

dŷk

dθ
= (−1)k+1det

[
∂Ĥ
∂ŷ

]
−k

, k = 1, · · · , 2n + 1 (19)

where [·]−k means that thekth column of the matrix [·] is
removed.

Using Eq.(19) and Eq.(13), we obtain the following in-
equality:

dα
dθ
= det

[
∂Ĥ
∂ŷ

]
−(2n+1)

(20)

= det

[
∂F̂
∂ ẑ

]
(21)

≥ 0. (22)

This inequality shows that the homotopy path cannot re-
verse itself inα. That is, the homotopy path is monotonic
in α. As a result, if the integral in Eq.(5) is calculated on
the homotopy path and the homotopy path is bounded, we
always arrive atα = 1 and obtain the solution of Eq.(6).

3.4. General homotopy

After we obtain a sufficient number of the complex pe-
riodic solutions by the Newton homotopy, we detect real
periodic solutions using a general homotopy. We consider
a circuit parameterµ and redefine the determining equation
by

F̂( ẑ | µ) ≡ F̂( ẑ) = 0 (23)
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When the circuit parameterµ is increased or decreased, the
solution curve is followed by the general homotopy func-
tion Ĝ : R2n+1 �→ R2n defined by

Ĝ( ẑ, µ) ≡ F̂( ẑ | µ). (24)

The general homotopy equation is defined by

Ĝ( ẑ, µ) = 0 (25)

and the solution path is defined by

Ĝ
−1

(0) ≡
{
( ẑ, µ) | Ĝ( ẑ, µ) = 0

}
. (26)

In the same way as Eq.(20), we obtain

dµ
dθ
= det

[
∂Ĝ
∂ŷ

]
−(2n+1)

(27)

= det

[
∂F̂
∂ ẑ

]
(28)

≥ 0. (29)

This inequality shows that the general homotopy path is
also monotonic inµ. As a result, if the integral in Eq.(5) is
calculated on the general homotopy path, we can trace the
path without reverse itself inµ and we can detect the real
periodic solutions throughout the parameter space.

4. Algorithm for Finding Real Periodic Solutions

4.1. Procedure

Based on the property of the Newton homotopy and the
general homotopy, we detect the real periodic solutions in
the circuit parameter space, using the following procedure:

Step 1: We give a set of circuit parameters.

Step 2: We give enough initial vectors ˆa and find all or al-
most all complex periodic solutions using the Newton
homotopy. Based on the monotoneity of the path, we
can find solutions if the integral of Eq.(5) is calculated
and the path is bounded.

Step 3: We detect real periodic solutions using the gen-
eral homotopy. Based on the monotoneity of the gen-
eral homotopy, we can detect the real solutions in the
parameter space.

If we obtain enough solutions in Step 2, we need not ex-
ecute the Newton homotopy for other values of the circuit
parameter.

4.2. Branch switching on turning point

We trace the homotopy path using a predictor-corrector
method [6]. However, the trace method on the turning point
(saddle-node bifurcation point) is different from the usual

method. Because the homotopy path is monotonic, the ho-
motopy path has other branches besides the usual return
path. That is, if we find turning point on the homotopy path
of real solutions, we have to trace new branches of complex
solutions and if we find turning point on the homotopy path
of complex solutions, we have to trace new branches of real
solutions[7].

In order to trace the new branch, we set the predictor ˆy∗

on the turning point of the real solution curve as

ŷ∗ = ŷ + δ l̂ (30)

l̂ =
1√
n

(0, 1, 0, 1 . . . , 0, 1︸��������������︷︷��������������︸
2n

, 0) (31)

where ŷ is the turning point andδ is a step length. Us-
ing the predictor, we can trace the complex branch. In the
same way, we set the predictor on the turning point of the
complex path as

ŷ∗ = ŷ + δ l̂ (32)

l̂ =
1√
n

(1, 0, 1, 0, . . . , 1, 0︸���������������︷︷���������������︸
2n

, 0). (33)

Using the predictor, we can switch the path to the real
branch.

5. Application to Simple Example

We apply the proposed method to a RLC-resonance cir-
cuit shown in Fig.1. The scaled circuit equation is

dΨ
dt
= −U − ζI(Ψ) + E sin(t) (34)

dU
dt
= ηI(Ψ). (35)

whereζ andη corresponds to resistance and capacitive sus-
ceptance, respectively. The magnetizing characteristics of
nonlinear inductor is approximated byI(Ψ) = Ψ5. We de-
tect 1/5-subharmonic solutions of the equation. That is, we
set the periodT = 10π.

E

R C

Figure 1: RLC resonance circuit with nonlinear inductor.

First, we fixed the circuit parametersζ = 0.15, η = 0.4
and E = 0.5. We give randomly generated 10000 initial
vectors to the Newton homotopy. Because the integral of
Eq.(5) is not always calculated in the interval [0, 10π] on
the homotopy path, we obtain 4792 solutions. The increase
of solutions obtained by the Newton homotopy is shown in
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Figure 2: The number of solutions and independent solu-
tions obtained by the Newton homotopy.
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Figure 3: Real solutions calculated by the general homo-
topy from the real solutions obtained by the Newton ho-
motopy. Because the solutions are real, the imaginary part
Im(Ψ) is equal to 0.

Fig.2. After we remove equivalent solutions, we obtain 193
independent solutions shown in Fig.2.

We find only 4 real solutions in 193 solutions. Apply-
ing the general homotopy of the parameterE to the real
solutions, we trace the real solutions. Figure 3 shows the
maximal values of the real part and imaginary part of the
solutionsΨ. The imaginary part is equal to 0. The 4 so-
lutions consists of two pairs and the pair solutions become
multiple root on the turning points. Although we traced
complex solutions from the turning points, we cannot find
other real solutions.

Applying the general homotopy to the other 189 com-
plex solutions, we can find real solutions. Two examples
are shown in Fig. 4. We can confirm that the real solutions
are detected by the proposed method.
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Figure 4: Examples of real solutions obtained by the gen-
eral homotopy inE. The region where the maximal values
of the imaginary part Im(Ψ) is equal to 0 has real solutions.

6. Conclusion

We proposed a complex homotopy method for finding
periodic solutions of circuit equations. By extending the
state variables to complex numbers, we have complex solu-
tions and the monotoneity of the homotopy path. Based on
the monotoneity, we can trace the homotopy path to com-
plex periodic solutions by Newton homotopy, if the integral
of Eq.(5) is calculated and the path is bounded. In general
homotopy, we can trace the homotopy path to any circuit
parameters if the integral is calculated. We confirmed the
efficiency of the proposed method by the RLC-resonance
circuit. However, the analysis of the failure in the integral
of Eq.(5) is a future problem.
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