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Abstract—The SARS outbreak in Hong Kong dur-
ing 2003 exhibited several “super-spreader events” (SSEs)
which cannot be modeled well with standard homogeneous
SIR or SEIR type models. We propose an alternative model
structure using either small-world or scale-free structure
of inter-node connections and disease transmission only
along the network links. Such structure naturally models
the SSEs and provides simulations quantitatively similar to
the true dynamics.

1. Introduction

Two characteristic features have been observed during
the SARS outbreak in Hong Kong in2003 [1, 2]: (i) so-
called super-spread events (SSEs), in which a single indi-
vidual initiates a large number of cases; (ii) persistent trans-
mission within the community. Two widely cited SSEs
were observed early in the epidemic and have been the sub-
ject of much attention: at the Amoy Gardens housing estate
and at the Prince of Wales hospital. Moreover, epidemio-
logical studies [3, 4] have found that in Hong Kong, (i) the
mean incubation period was 6.4 days (range 2 to 10) [5];
(ii) the duration between onset of symptoms and hospital-
ization was 3 to 5 days; (iii) the mean number of individ-
uals infected by each case during the initial phase of the
epidemic (excluding SSEs) was 2.7 [2].

Standard deterministic SIR (susceptible-infected-
removed) models of the spread of infectious diseases
[6] make several serious assumptions. Recently, both
small-world (SW) and scale-free (SF) networks have been
observed in many areas of natural and physical science,
including social relationships [7, 8]. In such areas, this
new model structure has unveiled a rich range of behaviors.
We apply these methods to the modeling of the spread
of SARS in Hong Kong [9, 10], transmission is only
allowed to occur along a limited number of direct links
between individuals. By doing this, we will avoid one
of the most flawed assumptions of standard Susceptible-
Infected-Removed (SIR) models: a homogeneous fully
connected populous. The SIR model assumes that all
individuals are susceptible to the disease and all suffer
an equal, small positive probability of contracting the
virus. This homogeneous model leads to a continuous and
smooth inter-day distribution of infections. Irregularities
about this are usually attributed to random variation and

non-stationarity in the model parameters.
In the next section we describe our model and study its

behavior. In the subsequent section we provide some nu-
merical simulations and summarize our results.

2. The Model

In the following subsections we define our model struc-
ture (Section 2.1) and derive some analytic results concern-
ing the likelihood of a widespread outbreak (Section 2.2).

2.1. Model Topology

Our aim is to accurately mimic the qualitative features of
the SARS epidemic with the simplest (fewest parameters)
model. As in [10], we propose four distinct states. Indi-
viduals can be susceptible (S), prone (P), infected (I), or
removed (R).Susceptible individuals are those that are ca-
pable of being infected,prone individuals are infected but
not infectious,infected individuals are infected and infec-
tious and, finally,removed individuals are those that are no
longer either infected or capable of being infected.

Infected individuals can cause susceptible individuals, to
whom they are linked, to become prone with some proba-
bility (p1 or p2). By infection we mean the transition from
the susceptible to prone state. Infected individuals can
cause their immediate neighbors to become infected with
probabilityp1, long range links cause infection with prob-
ability p2. Prone individuals become infected with proba-
bility r0 and finally, infected individuals become removed
with probabilityr1.

Just as in the SIR model we do not distinguish fatalities
from recoveries: in either case the individuals are assumed
to have acquired immunity.

In our model we explicitly model the geographical struc-
ture of the population. We include both “local” and “non-
local” links. Because of common transmission of SARS
within specific housing estates and districts in Hong Kong,
and the (both real and perceived) risk of transmission at
places of employment (primarily hospitals and schools) or
other public areas, we model these two types of transmis-
sion separately. The geographical arrangement of nodes
represents the residence of each individual. So, by “local”
transmission, we mean only transmission within a family
unit (i.e. residents of a single flat), or between adjacent
flats.
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Hence “non-local” transmission refers to transmission
between non-family members due to the mixing of individ-
uals in public spaces. In the context of the SARS outbreak
in Hong Kong, this would include transmission within hos-
pitals, schools and public spaces. Under our model, we ex-
pect SSE to occur through a single node with a large num-
ber of non-local connections.

The population ofN nodes are arranged in a regular grid,
of side lengthL (L2 = N ) and each node is connected
directly ton1 immediate neighbors. An infected individual
will infect each of itsn1 neighbors (provided they are still
susceptible) with probabilityp1. Furthermore, each node
hasn2 non-local (i.e. long distance) links. These are links
to nodes that are geographically remote from one another,
infection occurs along these pathways with probabilityp2.
For each nodei the numbern(i)

2 is fixed and so are the links

to it’s n
(i)
2 remote neighbors.

To achieve a small-world model structure, the number
n

(i)
2 is chosen to be proportional to a decaying exponen-

tial fX(x) ∝ e−
x

µ with parameterµ proportional to the
expected (average) number of links to remote nodes. For
scale free structure the distribution of links is required to
follow the fatter-tailed, power law distribution.

It is the inclusion of non-local links with a random num-
ber of links that can give rise to the network’s SW (and,
in other cases, not considered here, SF) structure. In this
paper we assign an exponentially decaying probability dis-
tribution to any number of links, and (for uni-directional
links) this is sufficient to generate the necessary SW prop-
erties. A SF network requires a power law distribution of
the number of links, which can consequently lead to more
nodes with many more links.

It is worth considering that for the model we present
here, the links between nodes areuni-directional. That
is, infection only spreads in one direction. Clearly, the
true network of social interaction consists ofbi-directional
links. But for the purposes of simulating disease transmis-
sion, unidirectional links are sufficient. The consequence
of this is that it becomes easier to generate the small-world
(and elsewhere the scale-free) network.

Finally, for each simulation we seed the model with one
initial infection.

2.2. Behavior

The epidemic will be contained if the rate of infection
is lower than the rate of removal. Intuitively, provided
(n1p1+µp2) ≫ r1 one would expect the disease to become
endemic, conversely, if(n1p1 +µp2) ≪ r1 the disease will
be contained. In what follows we study this condition more
precisely.

Moreover, with this model we can analytically compute
the probability of an outbreak being self-terminating. For
a single infectious node the probability of no further infec-

tions ona given day is given by

Pno1 =
(1 − p1)

n1(e
1

µ − 1)

e
1

µ − 1 + p2

. (1)

Hence the probability ofno further infections from this
node is given by

Pnone =
Pno1r1

1 − Pno1(1 − r1)
(2)

provided|Pno1(1−r1)| < 1. Upon substitution of equation
(1) into (2) we find that

Pnone =
r1(1 − p1)

n1

1 − (1 − r1)(1 − p1)n1 + p2/
[

e
1

µ − 1
] . (3)

Equation (3) is the probability of no infections from a given
individual and is therefore a weak lower bound on the prob-
ability of no general outbreak.

Now, let us denote the probability of no further infec-
tions occurring given that there arek infectious nodes by

P k = P k
none

where for notational convenience we will drop the subscript
on Pnone. Treating infections as discrete events (i.e. they
occur one at a time), we have that(1−P k) is the probability
of at least one further infection fromk infectious nodes.
The probability that the epidemic will terminate is

Psafe =
∞
∑

m=0

Pm+1
m
∏

n=1

(1 − Pn), (4)

whereP = Pnone is given by equation (3) [11].
Because of the assumption that infections occur individ-

ually, and sequentially, the derivation leading to equation
(4) is only an approximation. The exact probability of no
general outbreak can be obtained from using a branching
process method [12]. However, the numerical distinction
does not appear to be very large [11].

Although equation (4) can be easily computed, it is
not in a form which is immediately amenable for further
analysis. However, sincePsafe ≥ Pnone it is clear that

µ
[

1 − (1 − p2)e
− 1

µ

]

≫ 1 will make Psafe ≈ 0. Hence,

eitherµ ≫ 1 or p2 ≈ 1 will lead to widespread infection
(as expected). Differentiating (4) with respect to(1−p1)

n1

it is easy to verify thatPsafe is a monotonic function of both
p1 andn1. One can therefore observe thatPsafe ≈ 0 if
p1 ≈ 1 or n1 ≫ 1.

To take this analysis further, we now consider the rate
of transmission. LetP (t), I(t), andR(t) be the number
of prone, infected and removed individuals at timet (in
days). Suppose that the number of susceptible individuals
S(t) ≫ R(t) + I(t) + P (t) ∀t. Then, assuming that the
population is seeded with a single infectious individual, the
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Figure 1: Unconstrained growth of the infectious population. The upper panels show the number of individuals infected
after50 days; the lower plots show the number of distinct clusters detected after the same time, with parameters set at
p1 = 0.135 − 7

4p2, r0 = 0.1, n1 = 4 andµ = 7. The left hand plots are forr1 = 0.25 (i.e. no nosocomial transmission)
and the right panels are forr1 = 0.165 (a mean infection period of6 days). The results are median,70% and90%
confidence intervals from1000 simulations.

state of the epidemic aftert days is given by





R(t)
I(t)
P (t)



 =





1 r1 0
0 (1 − r1) r0

0 nk (1 − r0)





t 



0
1
0





= PDtP−1[0 1 0]T . (5)

The corresponding eigenvalues are given by

λ1 = 1,

λ2,3 = 1 −
r0 + r1

2
±

√

1

4
(r0 − r1)2 + nkr0,

and it follows that the system has a marginally stable focus
(i.e. the epidemic will terminate) if|λ2,3| < 1, i.e.

nk < r1, (6)

nkr0 < (2 − r0)(2 − r1). (7)

Therefore the epidemic is controllable providednk =
n1p1k + µp2 < r1. The left hand side of this inequality
is the rate of infection and the left hand side is the rate of
removal, as expected. In fact, this results is exactly analo-
gous to the equivalent result for the continuous SIR model.
Moreover,

max
i=1,2,3

|λi| = 1 −
r0 + r1

2
−

√

1

4
(r0 − r1)2 + nkr0. (8)

Computationally, we can see that asr0 or nk increases,
the rate of growth of the epidemic also increases. Con-
versely, asr1 increases the rate of growth decreases. This
is as one would expect as increasingr1 will decrease the
number of infectious individuals while increasing eitherr0

andnk increases this quantity.

3. Computation

In the following subsections we confirm the preceding
relationships and numerically explore the behavior of our
models under a variety of conditions. Following [9, 10],
we take:L = 2700; r0 = 1

7.4 ; r1 = 1
4 ; n1 = 4; µ = 7;

and,p1 = 0.135 − 7
4p2. Note that because we have the

possibility of P to I transition after zero daysr0 = 1
7.4

rather than 1
6.4 . This does not have a significant effect on

our results, and is merely a computational convenience.

3.1. Epidemic Growth

Now from equation (8) we can deduce that the rate of
growth is significantly less than exhibited in the data, or
rates of infection significantly greater [11]. Even for rea-
sonable variation ofd and the average number of secondary
infections, we obtain similar results. Hence, we conclude
that the assumption of no nosocomial transmission is in-
consistent with the observed data. Increasing the average
infectious time to6 days gives a substantially higher rate
of infection: consistent with the observed data. Moreover
this observation is confirmed computationally in Fig. 1

From Fig. 1, we see that only withr1 ≥ 0.165 do we ob-
tain results for which the true data is not statistically atypi-
cal. Moreover, this result is robust to moderate changes of
the other relevant parameters.

3.2. Simulations

Finally, we provide simulations of the Hong Kong epi-
demic and demonstrate results consistent with the observed
data. We initiate the model with a single infected individ-
ual and a relatively low removal rater1. Figure 2 depicts
our results.
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Figure 2: Model simulations. The top panel shows the
change in parametersr1 and p2 with time (all other pa-
rameters are constant:p1 = 0.08, n1 = 4 andµ = 7).
The bottom plot shows five model simulations and the true
SARS data for Hong Kong. The five model simulations
were selected to ensure that a “full” outbreak occurred (a
total number of infections greater than1000). The true data
is plotted as a heavy solid line.

We can see from Fig. 2 that many of the features of the
true data are reproduced well in the simulations. However,
two important aspects of the simulations are not sufficiently
similar to the simulations. Firstly, the initial spreadingof
the disease is exponential rather than the single SSE ob-
served in the real data. This can be overcome by sim-
ply altering the distribution of non-local links. Secondly,
the magnitude of the SSEs in the simulations is somewhat
smaller than the largest SSEs in the data. The initial SSE
in the data cannot be modeled well by our simulations, ex-
cept, by chance. Therefore, to achieve similar initial events
we would expect that we would have to execute many sim-
ulations (and choose only those which suit our purpose), or
simply build the SSE into the model. Neither of these ap-
proaches are desirable. We prefer the simpler model struc-
ture shown in Fig. 2.

Figure 3 shows the probability distribution for the daily
number of infections. We found that the probability of in-
fecting fewer than20 people was approximately0.18 while
the probability of infecting more than1000 was0.27. One
can see that, with respect to these gross statistics, the true
situation for Hong Kong (1755 casualties) is quite typical.

From these simulations we cane therefore conclude that
with effective control measures in place the likelihood of a
significant outbreak is low.
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Figure 3: Probability distribution of infection dynamics.
The probability distribution of the daily number of in-
fections for1000 simulations of the model in Fig. 2 are
shown on logarithmic scale. Blue represents low proba-
bility, while red represents high probability of a particular
infection tally for any number of days after onset.
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