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Abstract—The firing squad synchronization prob-
lem in cellular automata has been studied extensively
for more that forty years, and a rich variety of syn-
chronization algorithms have been proposed [1-14]. In
the present paper, we introduce a new notion of one-
and two-sided recursive properties to classify those
synchronization algorithms proposed so far. We pro-
pose a new scheme for designing synchronization algo-
rithms with the one-sided recursive property operat-
ing in optimum- and linear-time, respectively. We also
give their implementations on a computer.

1. Introduction

In recent years cellular automata (CA) have been
establishing increasing interests in the study of model-
ing non-linear phenomena occurring in biology, chem-
istry, ecology, economy, geology, mechanical engineer-
ing, medicine, physics, sociology, public traffic, etc.
Cellular automata are considered to be a nice model of
complex systems in which an infinite one-dimensional
array of finite state machines (cells) updates itself in
synchronous manner according to a uniform local rule.
We study a synchronization problem which gives a
finite-state protocol for synchronizing a large scale of
cellular automata. The synchronization in cellular au-
tomata has been known as firing squad synchroniza-
tion problem since its development, in which it was
originally proposed by J. Myhill to synchronize all
parts of self-reproducing cellular automata [8]. The
firing squad synchronization problem has been stud-
ied extensively for more than forty years [1-14].

In this paper, we introduce a new notion of one- and
two-sided recursive properties to classify those syn-
chronization algorithms proposed so far. It is shown
that optimum-time synchronization algorithms devel-
oped by Balzer [1], Gerken [3], and Waksman [13] are
two-sided ones and an algorithm proposed by Mazoyer
[6] is an only synchronization algorithm with the one-
sided recursive property. We propose a new scheme
for designing synchronization algorithms with the one-
sided recursive property operating in optimum- and
linear-time, respectively. We also give their implemen-
tations on a computer. Due to the space available, we
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Figure 1: A one-dimensional cellular automaton.

omit the proofs of the theorems presented.

2. Firing Squad Synchronization Problem for
One-Dimensional Cellular Automata

The firing squad synchronization problem is formal-
ized in terms of the model of cellular automata. Figure
1 shows a finite one-dimensional cellular array consist-
ing of n cells, denoted by Ci, where 1 ≤ i ≤ n. All
cells (except the end cells) are identical finite state au-
tomata. The array operates in lock-step mode such
that the next state of each cell (except the end cells)
is determined by both its own present state and the
present states of its right and left neighbors. All cells
(soldiers), except the left end cell, are initially in the
quiescent state at time t = 0 and have the property
whereby the next state of a quiescent cell having quies-
cent neighbors is the quiescent state. At time t = 0 the
left end cell (general) is in the fire-when-ready state,
which is an initiation signal to the array. The firing
squad synchronization problem is stated as follows.
Given an array of n identical cellular automata, in-
cluding a general on the left end which is activated at
time t = 0, we want to give the description (state set
and next-state function) of the automata so that, at
some future time, all of the cells will simultaneously
and, for the first time, enter a special firing state. The
set of states must be independent of n. Without loss
of generality, we assume n ≥ 2. The tricky part of the
problem is that the same kind of soldier having a fixed
number of states must be synchronized, regardless of
the length n of the array.

3. One-Sided vs. Two-Sided Recursive Syn-
chronization Algorithms

Firing squad synchronization algorithms have been
designed on the basis of parallel divide-and-conquer
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Figure 2: One-sided recursive synchronization scheme (left) and
two-sided recursive synchronization scheme (right).
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Figure 3: Time-space diagram for optimum-time one-sided recur-
sive synchronization algorithm.

strategy that calls itself recursively in parallel. Those
recursive calls are implemented by generating many
Generals that are responsible for synchronizing di-
vided small areas in the cellular space. Initially a Gen-
eral located at the left end is responsible for synchro-
nizing the whole cellular space consisting of n cells. In
Fig. 2 (left), the General Gi, i = 2, 3, ..., is respon-
sible for synchronizing the cellular space between Gi

and Gi−1, respectively. G1 synchronizes the subspace
between G1 and the right end of the array. Thus, all
of the Generals generated by G0 are located at the
left end of the divided cellular spaces to be synchro-
nized by them independently. On the other hand, in
Fig. 2 (right), the General G0 generates General Gi,
i = 1, 2, 3, ...,. Each Gi, i = 1, 2, 3, ..., synchronizes
the divided space between Gi and Gi+1, respectively.
In addition, Gi, i = 2, 3, ..., does the same operations
as G0. Thus, in Fig. 2 (right) we find Generals lo-
cated at either end of the subspace for which they are
responsible.

If all of the recursive calls are issued by Gener-

als located at one (two) end(s) of partitioned cellu-
lar spaces for which the General is responsible, the
algorithm is said to have one-sided (two-sided) recur-
sive property. We call synchronization algorithm with
one-sided (two-sided) recursive property as one-sided
(two-sided) recursive synchronization algorithm. Fig-
ure 2 illustrates a time-space diagram for one-sided
(Fig. 2 (left)) and two-sided (Fig. 2 (right)) recur-
sive synchronization algorithms operating in optimum
2n − 2 steps.

It is noted that optimum-time synchronization algo-
rithms developed by Balzer [1], Gerken [3], and Waks-
man [13] are two-sided ones and an algorithm proposed
by Mazoyer [6] is an only synchronization algorithm
with the one-sided recursive property. In addition, it
is also observed that all of the 3n-step synchroniza-
tion algorithms developed so far are in the class of
two-sided algorithms.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 G - - - - - - - - - - - - - - -

1 G A2 - - - - - - - - - - - - - -

2 G A2 A3 - - - - - - - - - - - - -

3 G A2 B A4 - - - - - - - - - - - -

4 G A2 A3 B A1 - - - - - - - - - - -

5 G A2 B A4 C A2 - - - - - - - - - -

6 G A2 A3 A4 C B A3 - - - - - - - - -

7 G A2 A3 A4 B C B A4 - - - - - - - -

8 G A2 A3 B A1 B C B A1 - - - - - - -

9 G A2 B A4 C A2 B C C A2 - - - - - -

10 G A2 A3 A4 C B A3 C C B A3 - - - - -

11 G A2 A3 A4 B C A3 C B C B A4 - - - -

12 G A2 A3 B A1 C A3 B C B C B A1 - - -

13 G A2 B A4 A1 C B A4 B C B C C A2 - -

14 G A2 A3 A4 A1 B C B A1 B C C C B A3 -

15 G A2 A3 A4 C A2 B C C A2 C C B C B D40

16 G A2 A3 A4 C B A3 C C A2 C B C B D40D41

17 G A2 A3 A4 B C A3 C C A2 B C B D40D40 -

18 G A2 A3 B A1 C A3 C C B A3 B D40D40D41 -

19 G A2 B A4 A1 C A3 C B C B G4 D40D40 - -

20 G A2 A3 A4 A1 C A3 B C B D40 G4 D40D41 - -

21 G A2 A3 A4 A1 C B A4 B D40D40 G4 D40 - - -

22 G A2 A3 A4 A1 B C B G1 D40D41 G4 D41 - - -

23 G A2 A3 A4 C A2 B D10 G1 D40 - G A2 - - -

24 G A2 A3 A4 C B G3 D10 G1 D41 - G A2 A3 - -

25 G A2 A3 A4 B D30 G3 D11 G A2 - G A2 B A4 -

26 G A2 A3 B G1 D31 G - G A2 A3 G A2 A3 B D10

27 G A2 B G4 G1 A2 G A2 G A2 B D40 A2 B G4 D11

28 G A2 G3 G G A2 D31 A2 D31 A2 G3 D41 A2 G3 G4 -

29 G G G G G G G G G G G G G G G G

30 F F F F F F F F F F F F F F F F

Figure 4: Configurations of a 22-state 498-rule imple-
mentation of one-sided recursive optimum-time syn-
chronization algorithm on 16 cells.

[Observation 1] Optimum-time synchronization al-
gorithms developed by Balzer [1], Gerken [3], and
Waksman [13] are two-sided ones. The algorithm pro-
posed by Mazoyer [6] is one-sided one.
[Observation 2] Synchronization algorithms operat-
ing in 3n±O(log n)+O(1) steps developed by Minsky
and MacCarthy [7], Fischer [4], and Yunès [14] are
two-sided ones.

4. Design of Time-Optimum One-Sided Recur-
sive Synchronization Algorithms

In this section we propose a design scheme for one-
sided recursive optimum-time synchronization algo-
rithms that can synchronize any n cells in 2n−2 steps.
Figure 3 is a time-space diagram for an optimum-time
one-sided recursive synchronization algorithm. The
General G0 generates an infinite number of signals
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w0, w1, w2, .., to generate Generals G1, G2, .., by di-
viding the array recursively with the ratio x/y, where
x, y is any positive integer such that 2x ≤ y. Propa-
gation speed of the i-th signal wi, i ≥ 1 is as follows:

yi/(x + y)i(1 +
i∑

l=1

xyl−1/(x + y)l)).

When the first signal w0 hits the right end of the
array, an r-signal is generated that propagates at speed
1/1 in the left direction. At the same time, a d-signal
propagating at speed x/(y − x) in the left direction is
generated. The w1- and r-signals meets on cell Cm,
m = �ny/(x + y)�, and a special mark is printed as a
potential General. When the d-signal arrives at the
cell Cm, a new General G1 is generated. Its generation
is delayed for �n(y − 2x)/(x + y)� steps. The G1 does
the same procedures as G0 to the subspace between
Cm and Cn.

When x = 1, y = 2, the scheme given above co-
incides with the Mazoyer’s algorithm [6]. It is noted
that, in this case, we need no delay for the generation
of Generals. We have implemented the scheme in the
case where x = 1, y = 3 on a computer and got a
22-state 498-rule cellular automaton that realizes the
one-sided recursive synchronization. Figure 4 is con-
figurations of the 22-state implementation of one-sided
recursive optimum-time synchronization algorithm on
16 cells.
[Theorem 3] There exists a one-sided 22-state 498-
rule cellular automaton that can synchronize any n
cells in 2n − 2 optimum steps.
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Figure 5: Time-space diagram for kn+O(1)-step one-
sided recursive synchronization algorithm.

5. Design of Linear-Time One-Sided Recursive
Synchronization Algorithms

In this section we study a class of synchronization
algorithms operating in linear-time, that can synchro-
nize any n cells in kn+O(1) steps, where k is any pos-
itive integer such that k ≥ 3. The first synchroniza-
tion algorithm developed by Minsky and MacCarthy
[7] operates in 3n+O(1) steps. Yunès [14] gave its 14-
and 15-state implementations. Fischer [4] also pre-
sented a solution with 15 states that synchronizes n
cells in 3n − 4 steps. In 1994 Yunès [14] proposed a
seven-state solution operating in 3n ± 2θn log n+O(1)
steps, where 0 ≤ θn ≤ 1. In addition, the 3n-step syn-
chronization algorithm is often used as a subroutine
in the design of other optimum-time synchronization
algorithms. Thus, a class of linear-time synchroniza-
tion algorithms is interesting and important in its own
right.

We propose an efficient way to cause a General cell
to generate infinite signals w0, w1, w2, ..., w� propagat-
ing at speeds of 1/1, 1/k, 1/(3k− 2), .., 1/((k− 1)2� −
k + 2), where � = �log2 n�. These signals play an im-
portant role in dividing the array into two, four, eight,
. . . , equal parts synchronously. The end cell in each
partition takes a special prefiring state so that when
the last partition occurs, where all cells have a left and
right neighbor in this state.

Figure 5 is a time-space diagram for kn+O(1)-step
one-sided recursive synchronization algorithm. At
time t = 0, the initial General G0 generates an in-
finite right-going signals mentioned above. The first
w0-signal arrives at the right end of the array at time
t = n − 1. Then, the right end cell sends out an
reflected r-signal that proceeds towards the left end
at speed 1/(k − 2). The r-signal meets with the sec-
ond w1-signal at the center point of the array at time
t = n + �(k − 2)n/2� − 2 + 2(n + 1 mod 2), and the
second General G1 is generated there. The General
G1 does the same operations as G0 to the right half
of the array. Simultaneously, G1 generates a left-going
s-signal that continues to propagates towards the left
end of the array at speed 1/k. The w2- and r-signals
meet at the quarter point of the array and a special
mark, being kept until the s-signal arrives at the cell,
is given as a potential General. The s-signal acts as a
delay for the generation of General G21 so that both
G21 and G22 can be generated simultaneously to syn-
chronize three quarters of the array. The G21 is de-
layed for ∆t = n/2 steps. The readers can see how
these signals work and all of the Generals generated
are located at the left end of the divided subspaces.
Let T (n) be time complexity for synchronizing n cells.
Then, T (n) = kn/2 + T (n/2) = kn+O(1).

Thus, we have:
[Theorem 4] Let k be any positive integer such
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that k ≥ 3. The one-sided recursive synchroniza-
tion scheme given above can synchronize any n cells
in kn + O(1) steps.

Figure 6 is a time-space diagram in the case of k =
3. We have implemented the scheme on a 12-state
236-rule cellular automaton. Configurations of a 12-
state implementation of one-sided recursive (3n − 3)-
step synchronization algorithm on 21 cells are shown
in Fig. 7.
[Theorem 5] There exists a one-sided recursive 12-
state 236-rule cellular automaton that can synchronize
any n cells in 3n − 3 steps.
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Figure 6: Time-space
diagram for (3n − 3)-
step one-sided recur-
sive synchronization
algorithm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 G - - - - - - - - - - - - - - - - - - - -

1 G A - - - - - - - - - - - - - - - - - - -

2 G C A - - - - - - - - - - - - - - - - - -

3 G A B A - - - - - - - - - - - - - - - - -

4 G A B C A - - - - - - - - - - - - - - - -

5 G A A C B A - - - - - - - - - - - - - - -

6 G A A B B C A - - - - - - - - - - - - - -

7 G A A B C C B A - - - - - - - - - - - - -

8 G A A A C B B C A - - - - - - - - - - - -

9 G A B A B B C C B A - - - - - - - - - - -

10 G A B A B C C B B C A - - - - - - - - - -

11 G A B A A C B B C C B A - - - - - - - - -

12 G A B C A B B C C B B C A - - - - - - - -

13 G A A C A B C C B B C C B A - - - - - - -

14 G A A C A A C B B C C B B C A - - - - - -

15 G A A C B A B B C C B B C C B A - - - - -

16 G A A B B A B C C B B C C B B C A - - - -

17 G A A B B A A C B B C C B B C C B A - - -

18 G A A B B C A B B C C B B C C B B C A - -

19 G A A B C C A B C C B B C C B B C C B A -

20 G A A A C C A A C B B C C B B C C B B C D

21 G A B A C C B A B B C C B B C C B B C DE -

22 G A B A C B B A B C C B B C C B B C DE - -

23 G A B A B B B A A C B B C C B B C DE - - -

24 G A B A B B B C A B B C C B B C DE - - - -

25 G A B A B B C C A B C C B B C DE - - - - -

26 G A B A B C C C A A C B B C DE - - - - - -

27 G A B A A C C C B A B B C DE - - - - - - -

28 G A B C A C C B B A B C DE - - - - - - - -

29 G A A C A C B B B A A DE - - - - - - - - -

30 G A A C A B B B B C G - - - - - - - - - -

31 G A A C A B B B C C H1 A - - - - - - - - -

32 G A A C A B B C C C DE C A - - - - - - - -

33 G A A C A B C C C C G- A B A - - - - - - -

34 G A A C A A C C C H1 G- A B C A - - - - - -

35 G A A C B A C C C DE G- A A C B A - - - - -

36 G A A B B A C C C - G- A A B B C A - - - -

37 G A A B B A C C H1 - G- A A B C C B A - - -

38 G A A B B A C C DE - G- A A A C B B C A - -

39 G A A B B A C C - - G- A B A B B C C B A -

40 G A A B B A C H1 - - G- A B A B C C B B C D

41 G A A B B A C DE - - G- A B A A C B B C DE -

42 G A A B B A C - - - G- A B C A B B C DE - -

43 G A A B B A H1 - - - G- A A C A B C DE - - -

44 G A A B B A DE - - - G- A A C A A DE - - - -

45 G A A B B G - - - - G- A A C B G - - - - -

46 G A A B B H1 A - - - G- A A B B H1 A - - - -

47 G A A B B DE C A - - G- A A B B DE C A - - -

48 G A A B B G- A B A - G- A A B B G- A B A - -

49 G A A B H2 G- A B C A G- A A B H2 G- A B C A -

50 G A A B E G- A A C B D A A B E G- A A C B D

51 G A A B - G- A A B D E A A B - G- A A B D E

52 G A A H2 - G- A A D E G- A A H2 - G- A A D E -

53 G A A E - G- A A E - G- A A E - G- A A E - -

54 G A G G - G- A G G - G- A G G - G- A G G - -

55 G A H1 G A G- A H1 G A G- A H1 G A G- A H1 G A -

56 G A DE G C D A DE G C D A DE G C D A DE G C D

57 G G- - G G- G- G- - G G- G- G- - G G- G- G- - G G- -

58 G H1 D G D G- H1 D G D G- H1 D G D G- H1 D G H1 D

59 G G G G G G G G G G G G G G G G G G G G G

60 F F F F F F F F F F F F F F F F F F F F F

Figure 7: Configu-
rations of a 12-state
236-rule implementa-
tion of one-sided re-
cursive (3n − 3)-step
synchronization algo-
rithm on 21 cells.

6. Conclusions

We have introduced a new notion of one- and two-
sided recursive properties in the synchronization al-
gorithms for one-dimensional cellular automata and
proposed a new scheme for designing synchronization
algorithms with the one-sided recursive property op-
erating in optimum- and linear-time, respectively. We
have also given their 22- and 12-state implementations
that realize those algorithms on a computer. We omit-
ted the complete lists of transitions rules designed due
to the space available. We have checked their valid-
ity for cellular spaces of size n = 2 to 10000 through

our computer simulation. All of the synchronization
algorithms proposed so far for two-dimensional arrays
are designed based on two-sided recursive synchroniza-
tion algorithms for one-dimensional arrays. It is an
interesting question whether we can design a real two-
dimensional synchronization algorithm with one-sided
recursive properties.
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