2004 International Symposium on Nonlinear
Theory and its Applications (NOLTA2004)
Fukuoka, Japan, Nov. 29 - Dec. 3, 2004

A Novel Design of One-Sided Recursive Firing Squad
Synchronization Algorithms for One-Dimensional Cellular Arrays

Hayato YANASE', Masaya HISAOKAT and Hiroshi UMEO!

1Univ. of Osaka Electro-Communication,
Faculty of Information Science and Technology,
Neyagawa-shi, Hatsu-cho, 18-8, Osaka, Japan

Abstract—The firing squad synchronization prob-
lem in cellular automata has been studied extensively
for more that forty years, and a rich variety of syn-
chronization algorithms have been proposed [1-14]. In
the present paper, we introduce a new notion of one-
and two-sided recursive properties to classify those
synchronization algorithms proposed so far. We pro-
pose a new scheme for designing synchronization algo-
rithms with the one-sided recursive property operat-
ing in optimum- and linear-time, respectively. We also
give their implementations on a computer.

1. Introduction

In recent years cellular automata (CA) have been
establishing increasing interests in the study of model-
ing non-linear phenomena occurring in biology, chem-
istry, ecology, economy, geology, mechanical engineer-
ing, medicine, physics, sociology, public traffic, etc.
Cellular automata are considered to be a nice model of
complex systems in which an infinite one-dimensional
array of finite state machines (cells) updates itself in
synchronous manner according to a uniform local rule.
We study a synchronization problem which gives a
finite-state protocol for synchronizing a large scale of
cellular automata. The synchronization in cellular au-
tomata has been known as firing squad synchroniza-
tion problem since its development, in which it was
originally proposed by J. Myhill to synchronize all
parts of self-reproducing cellular automata [8]. The
firing squad synchronization problem has been stud-
ied extensively for more than forty years [1-14].

In this paper, we introduce a new notion of one- and
two-sided recursive properties to classify those syn-
chronization algorithms proposed so far. It is shown
that optimum-time synchronization algorithms devel-
oped by Balzer [1], Gerken [3], and Waksman [13] are
two-sided ones and an algorithm proposed by Mazoyer
[6] is an only synchronization algorithm with the one-
sided recursive property. We propose a new scheme
for designing synchronization algorithms with the one-
sided recursive property operating in optimum- and
linear-time, respectively. We also give their implemen-
tations on a computer. Due to the space available, we

Figure 1: A one-dimensional cellular automaton.

omit the proofs of the theorems presented.

2. Firing Squad Synchronization Problem for
One-Dimensional Cellular Automata

The firing squad synchronization problem is formal-
ized in terms of the model of cellular automata. Figure
1 shows a finite one-dimensional cellular array consist-
ing of n cells, denoted by C;, where 1 < i < n. All
cells (except the end cells) are identical finite state au-
tomata. The array operates in lock-step mode such
that the next state of each cell (except the end cells)
is determined by both its own present state and the
present states of its right and left neighbors. All cells
(soldiers), except the left end cell, are initially in the
quiescent state at time ¢ = 0 and have the property
whereby the next state of a quiescent cell having quies-
cent neighbors is the quiescent state. At time ¢ = 0 the
left end cell (general) is in the fire-when-ready state,
which is an initiation signal to the array. The firing
squad synchronization problem is stated as follows.
Given an array of n identical cellular automata, in-
cluding a general on the left end which is activated at
time ¢t = 0, we want to give the description (state set
and next-state function) of the automata so that, at
some future time, all of the cells will simultaneously
and, for the first time, enter a special firing state. The
set of states must be independent of n. Without loss
of generality, we assume n > 2. The tricky part of the
problem is that the same kind of soldier having a fixed
number of states must be synchronized, regardless of
the length n of the array.

3. One-Sided vs. Two-Sided Recursive Syn-
chronization Algorithms

Firing squad synchronization algorithms have been
designed on the basis of parallel divide-and-conquer

669

ALALAL 1=2m2

t=2n-2

Figure 2: One-sided recursive synchronization scheme (left) and
two-sided recursive synchronization scheme (right).

Speed of signals

| 1
woi r:

1
¥ X
w4y

»
W2 2y

N
wa z:%fﬁm&y'

(xﬂ)(Hz o)

A’

4(‘“

4“44“444 ’4(“ ’(ﬂ

4

t=2n-2

Figure 3: Time-space diagram for optimum-time one-sided recur-
sive synchronization algorithm.

strategy that calls itself recursively in parallel. Those
recursive calls are implemented by generating many
Generals that are responsible for synchronizing di-
vided small areas in the cellular space. Initially a Gen-
eral located at the left end is responsible for synchro-
nizing the whole cellular space consisting of n cells. In
Fig. 2 (left), the General G;, i = 2,3, ..., is respon-
sible for synchronizing the cellular space between G;
and G;_1, respectively. G synchronizes the subspace
between G; and the right end of the array. Thus, all
of the Generals generated by Go are located at the
left end of the divided cellular spaces to be synchro-
nized by them independently. On the other hand, in
Fig. 2 (right), the General Go generates General G;,
i = 1,2,3,...,. Each G;, ¢ = 1,2,3, ..., synchronizes
the divided space between G; and G;1, respectively.
In addition, G;, i = 2,3, ..., does the same operations
as Go. Thus, in Fig. 2 (right) we find Generals lo-
cated at either end of the subspace for which they are
responsible.

If all of the recursive calls are issued by Gener-

als located at one (two) end(s) of partitioned cellu-
lar spaces for which the General is responsible, the
algorithm is said to have one-sided (two-sided) recur-
sive property. We call synchronization algorithm with
one-sided (two-sided) recursive property as one-sided
(two-sided) recursive synchronization algorithm. Fig-
ure 2 illustrates a time-space diagram for one-sided
(Fig. 2 (left)) and two-sided (Fig. 2 (right)) recur-
sive synchronization algorithms operating in optimum
2n — 2 steps.

It is noted that optimum-time synchronization algo-
rithms developed by Balzer [1], Gerken [3], and Waks-
man [13] are two-sided ones and an algorithm proposed
by Mazoyer [6] is an only synchronization algorithm
with the one-sided recursive property. In addition, it
is also observed that all of the 3n-step synchroniza-
tion algorithms developed so far are in the class of
two-sided algorithms.

Figure 4: Configurations of a 22-state 498-rule imple-
mentation of one-sided recursive optimum-time syn-
chronization algorithm on 16 cells.

[Observation 1] Optimum-time synchronization al-
gorithms developed by Balzer [1], Gerken [3], and
Waksman [13] are two-sided ones. The algorithm pro-
posed by Mazoyer [6] is one-sided one.

[Observation 2] Synchronization algorithms operat-
ing in 3n+O(logn)+ O(1) steps developed by Minsky
and MacCarthy [7], Fischer [4], and Yunes [14] are
two-sided ones.

4. Design of Time-Optimum One-Sided Recur-
sive Synchronization Algorithms

In this section we propose a design scheme for one-
sided recursive optimum-time synchronization algo-
rithms that can synchronize any n cells in 2n —2 steps.
Figure 3 is a time-space diagram for an optimum-time
one-sided recursive synchronization algorithm. The
General Go generates an infinite number of signals

670

wo, W1, Wa, .., to generate Generals Gy, Ga, .., by di-
viding the array recursively with the ratio z/y, where
x,y is any positive integer such that 2z < y. Propa-
gation speed of the i-th signal w;, ¢ > 1 is as follows:

v /(@ +y) i+ ey (@ +y)h).

=1

When the first signal wp hits the right end of the
array, an r-signal is generated that propagates at speed
1/1 in the left direction. At the same time, a d-signal
propagating at speed x/(y —) in the left direction is
generated. The wi- and r-signals meets on cell C,,,
m = [ny/(x +1y)], and a special mark is printed as a
potential General. When the d-signal arrives at the
cell C,,, anew General Gy is generated. Its generation
is delayed for [n(y —2x)/(x +y)] steps. The Gy does
the same procedures as Gg to the subspace between
C,, and C,,.

When z = 1,y = 2, the scheme given above co-
incides with the Mazoyer’s algorithm [6]. It is noted
that, in this case, we need no delay for the generation
of Generals. We have implemented the scheme in the
case where x = 1,y = 3 on a computer and got a
22-state 498-rule cellular automaton that realizes the
one-sided recursive synchronization. Figure 4 is con-
figurations of the 22-state implementation of one-sided
recursive optimum-time synchronization algorithm on
16 cells.

[Theorem 3] There exists a one-sided 22-state 498-
rule cellular automaton that can synchronize any n
cells in 2n — 2 optimum steps.

Speed of signals

t=0G

time.

1
ENTE))

(= nt {% 21 2(non(n+1,2))

2
| o

3
1 1:; ({ ;'l_l—‘{(l"zizi)”—‘,zgwm{ ;H—‘ﬂ ,z))

%)

= kn+0(1)

Figure 5: Time-space diagram for kn+O(1)-step one-
sided recursive synchronization algorithm.

5. Design of Linear-Time One-Sided Recursive
Synchronization Algorithms

In this section we study a class of synchronization
algorithms operating in linear-time, that can synchro-
nize any n cells in kn+O(1) steps, where k is any pos-
itive integer such that k& > 3. The first synchroniza-
tion algorithm developed by Minsky and MacCarthy
[7] operates in 3n4+0O(1) steps. Yunes [14] gave its 14-
and 15-state implementations. Fischer [4] also pre-
sented a solution with 15 states that synchronizes n
cells in 3n — 4 steps. In 1994 Yunes [14] proposed a
seven-state solution operating in 3n %+ 26,, log n+0O(1)
steps, where 0 < 6,, < 1. In addition, the 3n-step syn-
chronization algorithm is often used as a subroutine
in the design of other optimum-time synchronization
algorithms. Thus, a class of linear-time synchroniza-
tion algorithms is interesting and important in its own
right.

We propose an efficient way to cause a General cell
to generate infinite signals wg, w1, wa, ..., wy propagat-
ing at speeds of 1/1,1/k,1/(3k —2), .., 1/((k—1)2° —
k + 2), where ¢ = [log,n]. These signals play an im-
portant role in dividing the array into two, four, eight,

.., equal parts synchronously. The end cell in each
partition takes a special prefiring state so that when
the last partition occurs, where all cells have a left and
right neighbor in this state.

Figure 5 is a time-space diagram for kn+O(1)-step
one-sided recursive synchronization algorithm. At
time ¢t = 0, the initial General Go generates an in-
finite right-going signals mentioned above. The first
wo-signal arrives at the right end of the array at time
t = n — 1. Then, the right end cell sends out an
reflected r-signal that proceeds towards the left end
at speed 1/(k — 2). The r-signal meets with the sec-
ond wi-signal at the center point of the array at time
t=n+[(k—2)n/2] —2+2(n+ 1 mod 2), and the
second General Gi is generated there. The General
G1 does the same operations as Gg to the right half
of the array. Simultaneously, G; generates a left-going
s-signal that continues to propagates towards the left
end of the array at speed 1/k. The wy- and r-signals
meet at the quarter point of the array and a special
mark, being kept until the s-signal arrives at the cell,
is given as a potential General. The s-signal acts as a
delay for the generation of General Goi so that both
Go1 and Gog can be generated simultaneously to syn-
chronize three quarters of the array. The Ggp is de-
layed for At = n/2 steps. The readers can see how
these signals work and all of the Generals generated
are located at the left end of the divided subspaces.
Let T'(n) be time complexity for synchronizing n cells.
Then, T'(n) = kn/2 + T(n/2) = kn+O(1).

Thus, we have:

[Theorem 4] Let k be any positive integer such

671

that & > 3. The one-sided recursive synchroniza-
tion scheme given above can synchronize any n cells
in kn + O(1) steps.

Figure 6 is a time-space diagram in the case of k =
3. We have implemented the scheme on a 12-state
236-rule cellular automaton. Configurations of a 12-
state implementation of one-sided recursive (3n — 3)-
step synchronization algorithm on 21 cells are shown
in Fig. 7.

[Theorem 5] There exists a one-sided recursive 12-
state 236-rule cellular automaton that can synchronize
any n cells in 3n — 3 steps.

7 % 9 1010245 615 16 17 s 19 0 20

cellular space

12 e n

,,,,,,,, 1= nt {%“.2-2(“‘”»1»1“,2))

1=2n-2

{ LEmEr
% %,,zm.,wzwmm»

Figure 6: Time-space
diagram for (3n — 3)-
step one-sided recur-
sive synchronization
algorithm.

o | o
lalalalalelalalalalalalalal

Figure 7: Configu-
rations of a 12-state
236-rule implementa-
tion of one-sided re-
cursive (3n — 3)-step
synchronization algo-
rithm on 21 cells.

6. Conclusions

We have introduced a new notion of one- and two-
sided recursive properties in the synchronization al-
gorithms for one-dimensional cellular automata and
proposed a new scheme for designing synchronization
algorithms with the one-sided recursive property op-
erating in optimum- and linear-time, respectively. We
have also given their 22- and 12-state implementations
that realize those algorithms on a computer. We omit-
ted the complete lists of transitions rules designed due
to the space available. We have checked their valid-
ity for cellular spaces of size n = 2 to 10000 through

our computer simulation. All of the synchronization
algorithms proposed so far for two-dimensional arrays
are designed based on two-sided recursive synchroniza-
tion algorithms for one-dimensional arrays. It is an
interesting question whether we can design a real two-
dimensional synchronization algorithm with one-sided
recursive properties.

References

[1] R. Balzer: An 8-state minimal time solution to the firing squad
synchronization problem. Information and Control, vol. 10
(1967), pp. 22-42.

[2] W. T. Beyer: Recognition of topological invariants by iterative
arrays. Ph.D. Thesis, MIT, pp. 144 (1969).

[3] Hans-D., Gerken: Uber Synchronisations - Probleme bei Zel-
lularautomaten. Diplomarbeit, Institut fiir Theoretische Infor-
matik, Technische Universitat Braunschweig, (1987), pp. 50.

[4] P. C. Fischer: Generation of primes by a one-dimensional real-
time iterative array. J. of ACM, vol. 12, No. 3, pp. 388-394,
(1965).

[5] A. Grasselli: Synchronization of cellular arrays: The firing
squad problem in two dimensions. Information and Control,
28, pp. 113-124 (1975).

[6] J. Mazoyer: A six-state minimal time solution to the fir-
ing squad synchronization problem. Theoretical Computer Sci-
ence, vol. 50 (1987), pp. 183-238.

[7) M. Minsky: Computation: Finite and infinite machines. Pren-
tice Hall, (1967), pp. 28-29.

[8] E. F. Moore: The firing squad synchronization problem. in
Sequential Machines, Selected Papers (E. F. Moore, ed.),
Addison-Wesley, Reading MA.,(1964), pp. 213-214.

[9] I. Shinahr: Two- and three-dimensional firing squad synchro-
nization problems. Information and Control, 24, pp. 163-180
(1974).

H. Umeo, M. Maeda and N. Fujiwara: An efficient mapping
scheme for embedding any one-dimensional firing squad syn-
chronization algorithm onto two-dimensional arrays. Proc. of
the 5th International Conference on Cellular Automata for
Research and Industry, LNCS 2493, pp.69-81, (2002).

[11] H. Umeo, M. Hisaoka, and T. Sogabe: An investigation into
transition rule sets for optimum-time firing squad synchroniza-
tion algorithms on one-dimensional cellular automata. Inter-
disciplinary Information Sciences, Vol.8, No.2, pp.207-217,
(2002).

[12] H. Umeo: A simple design of time-optimum firing squad syn-
chronization algorithms with fault-tolerance. IEICE Trans. on
Information and Systems, Vol.E87-D, No.3, (2004), pp.733-
739.

[13] A. Waksman: An optimum solution to the firing squad syn-
chronization problem. Information and Control, vol. 9 (1966),
pp. 66-78.

[14] J. B. Yunes: Seven-state solution to the firing squad synchro-
nization problem. Theoretical Computer Science, 127, pp.313-
332, (1994).

672

