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Abstract—Effects of the correlation among stored pat-
terns on the associative dynamics in a chaos neural net-
work model and their parameter dependences are numer-
ically investigated. The model includes two kinds of pa-
rameters: One is a measure of the Hopfield like behavior
in the retrieval process and another controls the chaotic
behavior. The following results are obtained: i) Two di-
mensional parameter space is divided into two kinds of as-
sociative states by a distinct boundary, one is the Hopfield
like retrieval state and another is the wandering state. As
the degree of the correlation becomes larger, the area of
the wandering state on two dimensional space becomes
larger. ii) The recall ratio of correlated stored patterns
is larger than that of uncorrelated stored patterns. iii)
Whole region of the wandering state is not necessarily
chaotic, but most of the wandering state is chaotic.

1. Introduction

Recently, complex phenomena have been studied in var-
ious fields. The brain nervous system is a typical exam-
ple of complex system with large degree of freedom where
chaotic responses are observed from EEG experiment and
computational researches on the olfactory bulb by Skarda
and Freemann[l]. The results suggest that chaos would
play important roles in a recall process and a learning pro-
cess. In the recall process, chaos could ensure rapid access
to previously trained patterns. In the learning process,
chaos could provide driving activity essential for memo-
rizing novel inputs.

From the theoretical aspects, several workers have in-
vestigated functional possibilities of chaos related with
information processing in biological systems including
brain[2]-[9]. Tsuda et al[6, 7] have shown that asyn-
chronous neural networks give chaotic wandering in mem-
ory space related with chaotic itinerancy. Nara et al[4, 5]
have shown that the network consisting of simple binary
neurons can give chaotic wandering in cycle memories,
which is due to emergence of the complex dynamics oc-
curring in systems with a finite but large degrees of free-
dom. Aihara et al[3] have shown that a single neuron
can give chaotic activity introducing effects of a relative
refractoriness. Adachi and Aihara[2] have investigated
the chaotic dynamics in the network composed of neu-

rons which can give chaotic activity as a single neuron.
Kuroiwa et al.[8, 9] have shown the common function-
ality in the chaotic wandering dynamics, which emerges
from different mechanism of Aihara’s model and Nara’s
model.

Based on the results[4, 8, 9], in neural network mod-
els, the wandering dynamics among memories is strongly
intermittent, and there is a dynamical structure with a hi-
erarchical linking and merging of memories. The results
suggest that the wandering dynamics would depend on
the correlation among memory inputs.

Our purposes of this work are to investigate effects of
the correlation among stored patterns on the associative
dynamics of a chaotic neural network.

2. Model

Aihara and co-workers proposed an associative chaotic
neural network model based on the chaotic neuron[3]. The
dynamics of the associative chaotic neural network model
is described by the following equations|[2],

zi(t+1) = fm(t +1) + G(t+ 1)), (1)
N

W) = ko) £ 0 Y w0, (@)

Gi(t+1) = kp(i(t) — 0x(t) + a, (3)

where z;(t) denotes output from i-th neuron at time t.
n:(t) is a part of an internal potential which represents
feedback inputs from other neurons through synaptic cou-
plings, w;;. ¢;(t) is another part of an internal potential
which represents the relative refractoriness of the i-th neu-
ron. Parameters k; and k, are decay constants. 6 is a
scaling parameter of the refractoriness. A parameter a is
a constant external input to each neuron. N is a number
of neurons in the network. We choose N = 32. Output
function of the neuron is defined by

f(@) = 1/{1 + exp(-26z)}, (4)

with the steepness parameter 3. As shown in Eqgs.(1) and
(4), the value of z;(t) takes continuous value between 0
and 1. When k, = ky = 0 =0, the network corresponds

649



to the conventional discrete-time Hopfield network. Thus,
the parameter «a scales the degree of the Hopfield like be-
havior of the network. The Hopfield like behavior is called
“retrieval state” in this paper. On the other hand, the re-
fractoriness brings the chaotic behavior to the dynamics
of the network, in other words, parameters k., 6 and a,
are control parameters of the chaotic behavior. In order
to investigate the parameter dependence of the associa-
tive dynamics, control parameters a and a take various
values. Values of other parameters are chosen as k,. = 0.9,
ky = 0.2, 8 =1 and 8 = 20. Synaptic couplings are de-
fined as the following form:

Wij =

P
Z 5(# _ (H) _ 1), (5)

where fg”) takes 0 or 1 and is the i-th element of p-th
stored pattern vector, £). P is the number of stored
patterns. In numerical experiments, we choose P = 4.

Our purpose of this work is to analyse effects of the
correlation among stored patterns on the associative dy-
namics. We used five sets of stored patterns with differ-
ent degree of the correlation. In this paper, we present
results from three sets. In each set, three stored patterns,
{6 ¢B) ¢(©)1 ] are mutually orthogonal and another
pattern, €W correlates with € (u = 0,1,2). Stored
pattern vectors in three sets are defined below.

W =(1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0), (6)
B =1,1,1,1, 1,1,1,1, 0,0,0,0, 0,0,0,0,

1,1,1,1, 1,1,1,1, 0,0,0,0, 0,0,0,0), (7)
“ =(1,1,1,1, 0,0,0,0, 1,1,1,1, 0,0,0,0,
1,1,1,1, 0,0,0,0, 1,1,1,1, 0,0,0,0), (8)
¢© =(1,1,0,0, 1,1,0,0, 1,1,0,0, 1,1,0,0,
1,1,0,0, 1,1,0,0, 1,1,0,0, 1,1,0,0), (9)
W =(1,1,1,0, 1,1,0,0, 1,1,0,0, 1,1,1,0,
1,0,0,0, 1,1,0,0, 1,1,0,0, 1,0,0,0),  (10)
¢® =,1,1,1, 1,1,0,0, 1,1,0,0, 1,1,1,1,
0,0,0,0, 1,1,0,0, 1,1,0,0, 0,0,0,0).  (11)
In this paper, the inner product is defined by
N
a-b=>Y (2a; —1)(2b; - 1), (12)
i=1

where a and b are pattern vectors. The first set is re-
ferred as “orthogonal pattern set”, {£(4) ¢(B) ¢(C) ¢(0)}
The stored patterns in the set are mutually orthogonal
under the above definition of the inner product. The sec-
ond set, of stored patterns is called “correlation pattern
set 7, {&() ¢(B) ¢(©) ¢} Tnner products between the
pattern vector £ and others are as follows:

€0 g = 8 ?n the case of p = A, (13)
0 in the case of p = B, C.

There is a correlation in only a pair of pattern vectors,
€M) and €4 in the set. The third set is called “correla-
tion pattern set 117, {£(A), ¢(B) ¢(©) ¢} Inner products
between the pattern vector £*) and others are as follows:

£2) . ¢ = {16 in the case of u = A, (14)
0 in the case of y = B, C.

In the correlation pattern set II, there is also a correlation

in only a pair of pattern vectors, £ and €(4). The degree

of the correlation between £2) and £(4) is larger than that

between £ and ¢4,

3. Measured Quantities and Method of Numerical
Experiments

In this section, quantities which characterize the as-
sociative dynamics and the method of numerical exper-
iments are explained. At first, we define a recall of a
stored pattern in the network during the numerical ex-
periments. When a pattern vector constituted of outputs
of all neuron at ¢ step closely resembles a stored pattern
or its reversed pattern, it is assumed that the network
successfully recalls the stored pattern at ¢ step. Thus, the
recall of pu-th stored pattern is defined by the following
inequality in this work.

|D,(t) —0.5] > 0.45,

D,(t) = Y lmi(t)(1

where D, (t) is the normalized Hamming distance between
a pattern vector constituted of outputs of neuron at ¢
step, x(t), and p-th stored pattern vector, £&#). By use
of above definition, we calculate the successful recall ratio
of u-th pattern vector within a certain time duration of
measurements, 7', given by the following equation.

(15)

— &) + (1= zi(8)eM]/N, (16)

R, =TT, (17)
Both the time duration, 7', and the transient time steps
are chosen 5.0 x 10° in numerical experiments.

Secondly, both the Lyapnov dimension and the informa-
tion dimension are evaluated to analyze the orbital insta-
bility of the network dynamics. The information dimen-
sion in this work is derived from calculating two kinds of
return plots on two dimensional phase space, (1;,7;) and
(¢i,¢j). i and j are chosen 1 and 2, respectively. The
result does not statistically depend on the choice of the
pair of internal potential, because all neurons are con-
nected each other. The two dimensional phase space is
divided into a large number of square regions to calculate
the information dimension. The information dimension is
defined in the zero limit of the size of the square region. In
numerical experiments, we chose the size, Ay, as 5 x 1073,
2.5 x 1072 and 1.25 x 10~? for the orthogonal pattern set
and the correlation pattern set I. Although it seems that
the numerical calculated information dimension does not,
converge at the true value as Ay becomes smallest in three
cases, the qualitative feature of the parameter dependence
of the information dimension is found.
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In numerical experiments, a randomly selected neuron
is asynchronously updated. As one numerical step, we
refer to the duration while N neurons have been updated.
It notes that N neurons do not necessarily correspond to
all neurons in the network. The initial value of z;(0) is
£§A) for all numerical experiments. Those of {7;(0), (;(0)}
are fixed to zero.

Fig.1: Bird’s-eye view of rate of recall of &) on (a,a)
space for the correlation pattern set II.

4. Results

The dependence of parameters a and « on the associa-
tive dynamics are illustrated in Fig. 1. Figure 1 shows a
bird’s-eye view of the recall ratio of a pattern £4) on a
parameter space (a,a) for the correlation pattern set II.
€M) is the initial output vector x(0). A distinct line on
the space (a,a) can be seen in the figure which divides
the space into two kinds of associative states. When «
is smaller than that on the boundary, the recall ratio is
smaller than one. On the other hand, when a becomes
larger than that on the boundary, it is exactly one. This
means that only the initially presented pattern is recalled
in this region. In this paper, the former and the latter re-
gions are called “wandering state” and “retrieval state”,
respectively. The same tendency is found for both the
orthogonal pattern set and the correlation pattern set I.
It is found that the boundary is shifted to the region for
larger a as the correlation among stored patterns larger.
Furthermore, the region of the wandering state is divided
into two areas by a boundary which is a small singular
jump of the recall ratio in Fig. 1. Such a singular jump
of the recall ratio is not seen for the orthogonal pattern
set, but seen for the correlation pattern set I.

In order to investigate the wandering state in detail, the
a dependence of recall ratios of all stored patterns in the
orthogonal pattern set at a = 0.5 is illustrated in Fig. 2.
Figures 3 and 4 show the same as in Fig. 2 for the corre-
lation pattern set I and II, respectively. In these figures,
symbols of ‘plus’, ‘circle’ and ‘cross’ represent recall ratios
of £, ¢(B) and ¢(©)| respectively. Symbols of ‘triangle’
in Figs. 2 - 4 represent recall ratios of £©, ¢1) and ¢
respectively. In each figure, a jump in ‘pluses’ is observed
which corresponds to the boundary between two associa-
tive states as seen in Fig. 1. In Figs. 2-4, it is found
that the value of a at the boundary becomes larger as the
degree of the correlation larger. In Fig.4, a small singular
jump in the wandering state is seen at a ~ 1 which is
also observed in Fig. 1. Figure 2 shows that recall ratios
of all stored pattern take same value in the wandering

state. On the other hand, Fig. 3 shows that recall ra-
tios of correlated patterns, which marked by ‘plus’ and
‘triangle’, take large value, when « is smaller than 0.7.
For 0.7 < a < 1.4, those for uncorrelated patterns in-
crease and reaches to the value of one intermittently. For
a > 1.4, the retrieval state emerges. Figure 4 shows that
recall ratios of correlated patterns take non-zero value in
the wandering state and ratios for uncorrelated patterns,
£€B) and €©)] take nearly equal to zero. Thus, as the
degree of the correlation among stored patterns becomes
larger, recalls of correlated patterns dominate those of
uncorrelated patterns.
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Fig.2: Recall ratios of stored patterns versus o at a = 0.5
for the orthogonal pattern set.
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Fig.3: Recall ratios of stored patterns versus a at a = 0.5
for the correlation pattern set I.
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Fig.4: Recall ratios of stored patterns versus a at a = 0.5
for the correlation pattern set II.

We also calculate the Lyapnov dimension and the in-
formation dimension to examine the relation between the
wandering state and chaos. Figure 5 shows the « depen-
dence of the Lyapnov dimension at a = 0.5 for three sets
of stored patterns. In the figure, ‘plus’, ‘triangle’ and
‘square’ represent the Lyapnov dimension for the orthog-
onal pattern set, that for the correlation pattern set I
and II, respectively. We find no qualitative dependencies
of the Lyapnov dimension on the degree of the correla-
tion. The figure shows that the dynamics of the network
is chaotic in a roughly smaller than 0.7 for all sets. On the
other hand, as shown in Figs. 2-4, the boundary between
the wandering state and the retrieval state depends on the
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degree of the correlation. Positions of the boundary be-
tween two associative states for three sets are larger than
a = 1. Thus, the whole region in the wandering state
is not necessarily chaotic, but most of the region in the
wandering state is chaotic.

0 02 04 06 08 1

Fig.5: The a dependence of Lyapnov dimension of net-
work dynamics at a = 0.5 for three pattern sets.

2.5

2 -

Fig.6: Information dimensions derived from return plots
(A) on (m,n2) for the correlation pattern set I and (B)
on ((1,(2) for the same pattern set.

The a dependence of the information dimension at
a = 0.5 derived from return plots on (71, 12) for the cor-
relation pattern set I is shown in Fig. 6(A). The «a de-
pendence of the information dimension from return plots
on ((1,(2) for the correlation set I is shown in Fig. 6(B).
In these figures, ‘cross’; ‘circle’ and ‘plus’ show the infor-
mation dimension with the size of mesh Ay = 5 x 1073,
2.5 x 1073 and 1.25 x 1073, respectively. The information
dimension measures the orbital instability on the phase
space. By comparing Fig. 3 and Figs. 6, it is shown that
the information dimension is zero when the recall ratio
of only a stored pattern is equal to one. In the region of
chaotic state as shown in Fig. 5, both the information di-
mension for (11,72) and that for (¢1, (2) take large value.
The information dimension for (1, () is larger than that
for (m, n2) for all @, because internal potentials for the re-
fractoriness, {(;}, bring chaotic behavior to the network.
Thus, even in non-chaotic wandering state as shown in
Fig. 5, the information dimension for ({1, (2) takes large
value. In order to investigate the orbital instability in
detail we calculate the local largest Lyapnov exponent at
(a,a) = (0.5,0.8) where the non-chaotic wandering state
is observed in three sets. Although the time average of
local largest Lyapnov exponents for three sets seems to
take negative value, the sign of the local largest Lyapnov
exponent takes occasionally positive. This means the dy-
namics of network is locally chaotic. Moreover, a singular
jump for a ~ 1.35 is observed which corresponds to the
intermittency of the recall ratio in Fig. 3.

5. Conclusions and Discussions

Effects of the correlation among stored patterns on the
dynamics of the chaotic neural network are numerically
investigated. It is found that properties of the dynamics
depend on the degree of the correlation, that is, the recall
ratio of correlated patterns becomes larger as the degree
of the correlation larger. Investigating closely the behav-
ior of the racall ratios, we observe the various dynamical
behavior depending on the degree of correlation. Thus,
one future problem is to investigate relation between the
degree of correlation and dynamical states in detail. The
Lyapnov dimension does not qualitatively depend on the
degree of the correlation. To investigate the orbital insta-
bility in wandering state in detail, we have to evaluate the
parameter dependences of local largest Lyapnov exponent
in detail. This is another future problem.
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