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Abstract— This paper proposes the extended RLS
Wiener fixed-point smoother and filter. It is assumed that
the signal is observed with the nonlinear mechanism and
with the additive white observation noise.

1. Introduction

The extended RLS (recursive least-squares)
fixed-point smoother [1], filter [1], [2] and
predictor [3] have been designed for the signal
observed with the nonlinear mechanism and with
additional observation noise by assuming that the
autocovariance function of the signal is expressed
in the semi-degenerate kernel form. The semi-
degenerate kernel expressing the autocovariance
function of the signal as finite sum of non-random
functions seems to be appropriate for the
estimation of the stochastic signal generally.
However, this kind of semi-degenerate kernel
expression has the limitation in representing the
autocovariance function of the stochastic signal
generally, for example, for the signal generated by
the AR (autoregressive) model. From this reason,
this paper examines to design the extended RLS
Wiener fixed-point smoother and filter by
considering the expression method of ®, C and
K(s,s) from the autocovariance function of the

signal.

2. Least-Squares Smoothing Problem for Linear
M odulation

Let ascalar observation equation be given by
y(k) = H (k) z(k) + v(k) , z(k) = Cx(k), (1)

in linear discrete-time stochastic systems, where z(K) isa
scalar signal, H (K) isascalar observation function, X(K)
isan Nx1 state variable, C isa 1x N avector generating
z(k) from x(k) and v(K) iswhite observation noise. It

is assumed that the signal and the observation noise are
mutually independent and that z(K) and Vv(K) are zero

mean. Let the autocovariance function of V(K) be given by

E[v(k)v(s)] = RS, (k—s), R>0.

Here, 5, () denotesthe Kronecker & function.

@)

Let K(K,S) denote the autocovariance function of the
state variable X(K) and let K(K,S) be expressed in the
semi-degenerate kernel form as

Ak)B"(s), 0<s<k,

PR CLIC

B(k)A (s), 0<k<s,
A(K) = ®*, B"(s) = @ °K(s,S), where ® represents
the system matrix in the state equations for X(K) .

Let afixed-point smoothing estimate X(K, L) of x(k)

be given by

X(k,L) = ih(k,i, L) y(i)

as alinear transformation of the observed values
{y(i), 1<i<L},where h(k,i,L) and k arereferred

to be an impulse response function and the fixed point
respectively.

The impul se response function which minimizes the
mean-square value of the fixed-point smoothing error,

J = E[lIx(k) - %(k, L) IF], ®)
satisfies

L

E[x(K)y" ()] =D h(k,i, E[YH)Y (9] ()
i=1

by an orthogonal projection lemma[4]:

L
x(K)—= > h(k,i,L)y(i) L y(s), 0<sk<L. (7)
i=1
Here, * | * denotes the notation of the orthogonality. From
(5) and (7), the impul se response function satisfies the
Wiener-Hopf equation

E[x(K)Y' (s)] = ZL: h(k,i, E[Y()yY" (9. (®

Substituting (1) and (2) into (8), we obtain
h(k,s, L)R(S) = K (k,S)CTH (s) -

©)

(4)

ih(kJ, LYH (i)CK(i,s)C"H (s) ©

i=1

3. RLS Wiener Fixed-Point Smoothing and Filtering
Algorithms
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In [Theorem 1], the RLS Wiener fixed-point smoothing
and filtering algorithms, using the covariance information
of the signal and observation noise, for the observation
equation (1) with the linear modulation, are shown.
[Theorem 1]

Let the linear observation equation for the signal (k)
be given by (1). Let the autocovariance function of the state
variable X(K) be expressed by (3) and let the variance of

white observation noise be R. Then, the RLS algorithms
for the fixed-point smoothing and filtering estimates consist
of the following equations.

Fixed-point smoothing estimate of z(K) at the fixed point

k: 2(k, L) =CX(k, L)

Fixed-point smoothing estimate of X(K) at the fixed point

k: X(k, L)

x(k,L) = x(k,L-1)+h(k,L,L)(y(L)-H(L)Z(L,L-1))

Smoother gain: h(k, L, L)

h(k, L, L) = (K (k, K)(®")" *CTHT (L) —q(k, L—)®"C"H (L)) /

(R+H(L)CK (L, L)CTHT (L) - H(L)C®S(L-)D'CTHT (L))

a(k,L) = q(k, L—D)®" + h(k, L, L)H (L)C(K(L,L) - ®S(L-1)®")

. d(k, k) = S(k)

Filtering estimate of z(K): Z(k, k) = H (k)Cx(k, k)

Filtering estimate of X(K) : X(k, k)

K(k, k) = dK(k -1,k —1) + G(K)(y(k) — H (K)CdX(k -1 k- 1)) ,

X(0,00=0

One-step ahead prediction estimate of the signal z(K) :

7(k, k—1)

7(k,k —1) = Cx(k,k—1)

One-step ahead prediction estimate of the state variable

X(k) : x(k,k-1)

X(k,k—1) = dR(k—1, k1)

S(k) = S(k-1)®" +G(K)H (K)C(K (k, k) - ®S(k-1)D"),

S(0)=0

Filter gain: G(K)

G(K) = (K(k,K)C"HT (K) - ®S(k-1)Dd'C"H" (k))/

(R+H (K)CK (k,K)CTHT (k) — H () CPS(k-1)D"C"H (K))
Proof. The fixed-point smoothing and filtering

equations in [Theorem 1] are immediately derived by

applying the estimation technique in [5], using covariance

information for the conventional observation equation

with additive white noise, to the case of the observation
equation (1) with the linear modulation.

4, Extended RLS Wiener Fixed-Point Smoother and
Filter for Nonlinear Modulation

L et ascalar observation equation with the nonlinear
mechanism be given by

y(K) = f(z(k),k) +v(k), (k) =Cx(k), (10

where the scalar signal Z(K) and the observation noise

V(K) have the same stochastic properties as those in

section 2.

In the design of the extended estimators using the
covariance information, as in the extended Kalman filter,
we use the observation function

H(k) = a(z(k). k) in replacement of
ﬁz(k) 2(k)=2(k,k-1)

H (K) in[Theorem 1]. Here,

Z(k,k—1) = CPX(k -1,k —1) representsthe one-step
ahead prediction estimate of the signal z(K) . Also, we
replace H(L)Z(L,L—-1) and H (k)CX(k,k—1) in
[Theorem 1] with f(Z(L,L-1),L) and

f (2(k,k —1),K) respectively.

Accordingly, the RLS Wiener fixed-point smoothing and
filtering algorithms with the nonlinear observation
mechanism are summarized in [Theorem 2].

[Theorem 2]

L et the observation equation with the nonlinear
observation mechanism be given by (10). Let the

autocovariance function of the state variable X(K) be
expressed by (3) and let the variance of white observation

noise be R. Then, the extended RL S Wiener fixed-point
smoothing and filtering algorithms using the covariance
information of the signal and observation noise consist of
the following equations.

Fixed-point smoothing estimate of the signal (k) at the

fixed point k: Z(k, L)

Z(k,L) =Cx(k,L)

Fixed-point smoothing estimate of the state variable X(k)

at the fixed point K : X(k, L)

(K, L) = X(k, L - 1) + h(k, L, L)(y(L) - f (3(L,L-1), L))

Smoother gain: h(k, L, L)

h(k, L, L) = (K (k, K)(®")-*CTHT —q(k, L)' C"H™ (L)) /
(R+H (L)CK (L, L)CTHT (L) — H (L)C®S(L —1)®"CTH (L))
q(k, L) = q(k, L—1)®" +

h(k, L, L)H (L)C(K (L, L) - ®S(L - 1)d"),
q(L,L)=S(L)

Filtering estimate of the signal (k) :

Z(k, k) = Cx(k, k)

Filtering estimate of the state variable X(K) : X(k, k)
(K, K) = DR(K—L k —1) + G(K)(y(K) - f (2(k, k-1),K)),
X(0,0)=0

One-step ahead prediction estimate of the signal z(K) :
Z(k,k-1)

Z(k,k—1) = Cx(k,k -1)
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One-step ahead prediction estimate of the state variable
x(K) : %(k,k—1)
Kk, k—1) = dR(k -1k -1)
S(k) = dS(k-1)®" +G(k)H (K)C(K (k,k) - PS(k-1)d "),
S(0)=0
Filter gain: G(K)
G(K) = (K(k,K)CTHT (k) - ®S(k—1)®'C"HT (K))
I(R+H (K)CK (k,K)CTHT (k) = H (K)CDPS(k—)D'C"HT (k))
Here, the observation function is given by

HK) = of (z(K),K)

oz(K)

2(k)=2(k k-1)

5. Expression of Autocovariance function of Stochastic
Signal

For the AR mode! of order M , the system matrix @,
the observation vector C and the autovariance function

K(s,S) of the state variable X(K) are expressed as

follows[5].
[0 1 0 e 0 0]
0 0 1 e 0 0
0 0 0 e 0 0
®= : : : . . .
0 0 0 e 0 1
|78 ~8va T8y —-a, —a |
C=[t 0 - 0],
K.(0) K.® K2 - K,(M-2 K,(M-1)
K,@ K,(0) K,(1) S K,M-3) K,M-2)]
K(s,9) = K.(2 KZ.(l) sz(o) . KZ(M—Z) KZ(N.I -3

KZ(M -1 KZ(M—Z) KZ(M—S) - th(l)

K.(0)
KM) KM-) KM-2) - KO KO
(11)

6. A Numerical Simulation Example
L et ascalar observation equation with the nonlinear

mechanism be given by

y(k) = f(z(k),k)+v(k), z(k) = Cx(k),

f (z(k), k) = cos(27 f_kA +m,z(K)),
f.=1,000(Hz), A=0.0001, m, =1.2.
The nonlinear function in (12) appearsin the phase
modulation of analogue communication systems. Here, fC ,

(12)

A and m, represent the carrier frequency, the sampling

period of the signal Z(K) and the phase sensitivity
respectively. The observation function is given by
of (z(k),k)

HI0 =500

=—m, sin(27 f kA +m,2(k, k—1)).

2(K)=2(k k-1)

Let the observation noise V(K) be the zero-mean white
Gaussian process with the variance R, N(O,R).

Let the autocovariance function of the signal z(k) be
given by (3), where

cb{ o 1 ]C:[l 0],

—-a, -4
7K, K,
K(S’S){Kza) KZ(O)]

a=-01, a,=-0.8, (13)

If we substitute (13) into the extended estimation algorithms
of [Theorem 2], we can calculate the fixed-point smoothing
estimate Z(K, L) at the fixed point K and the filtering

estimate Z(K, k) of the signal recursively.
Fig.1lillustratesthe signal z(K) , the filtering estimate

Z(k,k) and the fixed-point smoothing estimate

Z(k,k+5) vs. k for the white Gaussian observation

noise N(0,0.5%) when the expression isused. In Fig.1,
the fixed-point smoothing estimate is superior in
estimation accuracy to the filtering estimate. Fig.2
illustrates the mean-square values (MSVs) of the fixed-
point smoothing error z(K) — z(k,k + Lag),

L =k+ Lag, and thefiltering error z(k) — Z(k,k) by
the extended RL S Wiener fixed-point smoother in
[Theorem 2] for the observation noises N (0,0.3?) ,

N(0,0.5%), N(0,0.7%) and N(0,1) vs. Lag,
0<Lag <10, when the expression method for the

parameters @, C and K(S,S) isused. For Lag=0,

the MSV of thefiltering error is evaluated. The MSVs of

the fixed-point smoothing and filtering errors are
250 Lag
evaluated by Y > (z(K) - 2(k, k+i)? /(250- Lag)
k=1 i=1
250 ~
and Z (z(k) — z(k,Kk))?/ 250 . Fig.2 shows that the
k=1
estimation accuracy of the fixed-point smoother is
improved in comparison with thefilter. In Fig.2, asthe
noise variance becomes large, the estimation accuracies of
the smoother and the filter are degraded.
For references, the AR model, which generates the signal
process, is given by

z(k+1) =-az(k)-a,z(k-1) + w(k +1),

E[w(k)w(s)] = 525, (K—). (14)

7. Conclusions
In this paper, the extended RLS Wiener fixed-point
smoother and filter have been designed in discrete-time
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