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Abstract– This paper proposes the extended RLS 

Wiener fixed-point smoother and filter. It is assumed that 
the signal is observed with the nonlinear mechanism and 
with the additive white observation noise. 
 
1. Introduction 

The extended RLS (recursive least-squares) 
fixed-point smoother [1], filter [1], [2] and 
predictor [3] have been designed for the signal 
observed with the nonlinear mechanism and with 
additional observation noise by assuming that the 
autocovariance function of the signal is expressed 
in the semi-degenerate kernel form. The semi-
degenerate kernel expressing the autocovariance 
function of the signal as finite sum of non-random 
functions seems to be appropriate for the 
estimation of the stochastic signal generally. 
However, this kind of semi-degenerate kernel 
expression has the limitation in representing the 
autocovariance function of the stochastic signal 
generally, for example, for the signal generated by 
the AR (autoregressive) model. From this reason, 
this paper examines to design the extended RLS 
Wiener fixed-point smoother and filter by 
considering the expression method of Φ ,  and 

 from the autocovariance function of the 
signal.  
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2. Least-Squares Smoothing Problem for Linear 
Modulation  

Let a scalar observation equation be given by 
( ) ( ) ( ) ( )y k H k z k v k= + , ,             (1) ( ) ( )z k Cx k=

in linear discrete-time stochastic systems, where  is a 
scalar signal,  is a scalar observation function,  
is an  state variable, C  is a 1  a vector generating 

 from  and  is white observation noise. It 
is assumed that the signal and the observation noise are 
mutually independent and that  and  are zero 
mean. Let the autocovariance function of v k  be given by 
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[ ( ) ( )] ( )KE v k v s R k sδ= − , .                   (2) 0R >
Here,  denotes the Kronecker  function.  )(K ⋅δ δ

Let  denote the autocovariance function of the 
state variable  and let  be expressed in the 
semi-degenerate kernel form as 
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( ) kA k = Φ , , where  represents 
the system matrix in the state equations for . 

( ) ( , )T sB s K s s−= Φ Φ
(x k)

     Let a fixed-point smoothing estimate  of  
be given by 

ˆ( , )x k L ( )x k
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as a linear transformation of the observed values 
, where  and  are referred 

to be an impulse response function and the fixed point 
respectively.  

{ ( ), 1 }y i i L≤ ≤ ( , , )h k i L k

     The impulse response function which minimizes the 
mean-square value of the fixed-point smoothing error, 

2ˆ[|| ( ) ( , ) || ]J E x k x k L= − ,                                   (5) 
satisfies 
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by an orthogonal projection lemma [4]: 

1
( ) ( , , ) ( ) ( )

L

i
x k h k i L y i y s

=
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Here, ‘ ’ denotes the notation of the orthogonality. From 
(5) and (7), the impulse response function satisfies the 
Wiener-Hopf equation 
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Substituting (1) and (2) into (8), we obtain 
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3. RLS Wiener Fixed-Point Smoothing and Filtering 
Algorithms 
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In [Theorem 1], the RLS Wiener fixed-point smoothing 
and filtering algorithms, using the covariance information 
of the signal and observation noise, for the observation 
equation (1) with the linear modulation, are shown. 

v k

[Theorem 1] 
Let the linear observation equation for the signal  

be given by (1). Let the autocovariance function of the state 
variable  be expressed by (3) and let the variance of 
white observation noise be . Then, the RLS algorithms 
for the fixed-point smoothing and filtering estimates consist 
of the following equations. 
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:                 
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One-step ahead prediction estimate of the signal : 
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Proof. The fixed-point smoothing and filtering 
equations in [Theorem 1] are immediately derived by 
applying the estimation technique in [5], using covariance 
information for the conventional observation equation 
with additive white noise, to the case of the observation 
equation (1) with the linear modulation.  

 
4. Extended RLS Wiener Fixed-Point Smoother and 
Filter for Nonlinear Modulation 

Let a scalar observation equation with the nonlinear 
mechanism be given by 

( ) ( ( ), ) ( )y k f z k k v k= + , ,         (10) ( ) ( )z k Cx k=

where the scalar signal  and the observation noise 
 have the same stochastic properties as those in 

section 2. 

( )z k
( )

     In the design of the extended estimators using the 
covariance information, as in the extended Kalman filter, 
we use the observation function 
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in replacement of 

 in [Theorem 1]. Here, 
 represents the one-step 

ahead prediction estimate of the signal . Also, we 
replace  and  in 
[Theorem 1] with  and  

 respectively. 

( )z k
ˆ(Cx k( ) , 1)H k k −

)L

Accordingly, the RLS Wiener fixed-point smoothing and 
filtering algorithms with the nonlinear observation 
mechanism are summarized in [Theorem 2]. 
[Theorem 2] 

Let the observation equation with the nonlinear 
observation mechanism be given by (10). Let the 
autocovariance function of the state variable  be 
expressed by (3) and let the variance of white observation 
noise be . Then, the extended RLS Wiener fixed-point 
smoothing and filtering algorithms using the covariance 
information of the signal and observation noise consist of 
the following equations. 
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 q L                                                     ( , ) ( )L S L=
Filtering estimate of the signal :  ( )z k

ˆˆ( , ) ( , )z k k Cx k k=                                      
Filtering estimate of the state variable :  ( )x k ˆ( , )x k k
ˆ ˆ ˆ( , ) ( 1, 1) ( )( ( ) ( ( , 1), ))x k k x k k G k y k f z k k k= Φ − − + − −
ˆ(0,0) 0x =

, 
                                                      

One-step ahead prediction estimate of the signal : 
 

( )z k
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ˆˆ( , 1) ( , 1)z k k Cx k k− = −                                    
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One-step ahead prediction estimate of the state variable 
:  ( )x k ˆ( , 1)x k k −

ˆ ˆ( , 1) ( 1, 1)x k k x k k− = Φ − −                              
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Here, the observation function is given by 

ˆ( ) ( , 1)

( ( ), )( )
( ) z k z k k

f z k kH k
z k = −

∂
=

∂
.  

 
5. Expression of Autocovariance function of Stochastic 
Signal  
     For the AR model of order , the system matrix , 
the observation vector C  and the autovariance function 

 of the state variable  are expressed as 
follows [5]. 

M
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Fig.1 illustrates the signal , the filtering estimate 
 and the fixed-point smoothing estimate 

 vs. k  for the white Gaussian observation 

noise  when the expression  is used. In Fig.1, 
the fixed-point smoothing estimate is superior in 
estimation accuracy to the filtering estimate. Fig.2 
illustrates the mean-square values (MSVs) of the fixed-
point smoothing error , 

, and the filtering error  by 
the extended RLS Wiener fixed-point smoother in 
[Theorem 2] for the observation noises , 

,  and  vs. , 
, when the expression method for the 

parameters Φ , C  and  is used. For , 
the MSV of the filtering error is evaluated. The MSVs of 
the fixed-point smoothing and filtering errors are 

evaluated by ∑∑  

and . Fig.2 shows that the 

estimation accuracy of the fixed-point smoother is 
improved in comparison with the filter. In Fig.2, as the 
noise variance becomes large, the estimation accuracies of 
the smoother and the filter are degraded. 
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6. A Numerical Simulation Example  
Let a scalar observation equation with the nonlinear 

mechanism be given by 
( ) ( ( ), ) ( )y k f z k k v k= + , , ( ) ( )z k Cx k=
( ( ), ) cos(2 ( ))c Af z k k f k m z kπ= ∆ +

1,000( )cf Hz= 0.0001∆ = Am =
, 

, , .         (12) 1.2
The nonlinear function in (12) appears in the phase 
modulation of analogue communication systems. Here, , 

 and  represent the carrier frequency, the sampling 

period of the signal  and the phase sensitivity 
respectively. The observation function is given by 

cf
∆ Am

( )z k

ˆ( ) ( , 1)

( ( ), ) ˆ( ) sin(2 ( , 1)).
( ) A c A

z k z k k

f z k kH k m f k m z k k
z k

π
= −

∂
= = − ∆ +

∂
−

)
−

 

Let the observation noise v k  be the zero-mean white 
Gaussian process with the variance , .  

( )
R (0, )N R

Let the autocovariance function of the signal  be 
given by (3), where 

( )z k

2 1

0 1
a a

 
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(0)
( , )
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[ ]1 0C =

(1)
(0)

z z

z z

K K
K K
 
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1 0.1a = − , ,                                            (13) 2 0.8a = −
If we substitute (13) into the extended estimation algorithms 
of [Theorem 2], we can calculate the fixed-point smoothing 
estimate  at the fixed point  and the filtering 
estimate  of the signal recursively.  

ˆ( , )z k L
ˆ( , )z k k

k

For references, the AR model, which generates the signal 
process, is given by 

1 2( 1) ( ) ( 1) ( 1z k a z k a z k w k+ = − − − + +
2

,  

[ ( ) ( )] ( )KE w k w s k sσ δ= .                       (14)
     
7. Conclusions 

In this paper, the extended RLS Wiener fixed-point 
smoother and filter have been designed in discrete-time 
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stochastic systems. The expression methods for Φ ,  
and  from the autocovariance function of the 
signal have been used. The expression is suitable for 
representing the parameters Φ ,  and  of 
general stationary stochastic signal. 

C
( , )K s s

C ( , s)K s
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Fig.1 Filtering and fixed-point smoothing estimates vs. k. 

 
Fig.2 MSV of the estimation errors vs. Lag. 
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