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Abstract– This paper is to continue our previous
investigations for beam-beam interaction models in
particle accelerators by considering these models under
narrow-band random excitation. In this investigation the
method of multiple scales and the moment methods are 
used to derive the equations of modulation of the
amplitude and the phase, and the perturbation technique is
used to seek the approximate steady state solutions. A
special case is considered to illustrate this study and
excellent agreement is found between analytical and 
numerical results. Other cases can be similarly studied.
The effect of noise and detuning parameters are examined
numerically and theoretically and we find that, the system 
demonstrates a diffused limit cycle as the intensity of noise
increases. The numerical results show that multiple scale 
method is effective for the stochastic system.

1. Introduction

The beam-beam interaction models in particle
accelerators have gained more and more attention both
from a practical and a theoretical point of view [1-6]. The
presence of narrow-band random process in nonlinear
differential equations, which may be used to model the
beam-beam interaction in physics can play an important
role in nonlinear dynamical systems.

In this paper we continue our previous investigations
for beam-beam interaction in particle accelerators [1-4] by 
considering these models under narrow-band random
excitation, which may not be studied in the literature as 
far as we know. Some other physical and engineering
models with narrow-band random excitation (or wide-
band excitation), for example, Duffing oscillators, hard-
spring oscillators and elastic systems, are studied in
previous years [7-22].  There are many methods for
studying these models, e. g., stochastic averaging method
[16], multiple scale method [20,23-25], the method of 
equivalent linearization [6-14], quasi-static method
[15,16], path integral method [17], and digital simulation
[18,19,26,27].

In this study, we consider the beam-beam interaction
model in particle accelerators under random narrow-band 
excitation of the form:

2
0 1 2( ) ( ) ( ) 0x x g x f x t ,        (1) 

where x is the displacement transverse to the ideal orbit 

of the particle, 0  and 1 are natural frequency and 

small damping coefficients respectively, is a small

parameter, 2 denotes the intensity of nonlinear terms,

 and are generally nonlinear functions,( )f x ( )g x
( )t is a narrow-band random process and dots represent

as usual differentiation with respect to time .t
Equation (1) with ( )t )(tp  is a deterministic

periodic function in t has been proposed to describe the
interaction between colliding “flat” beam (one-
dimensional) in intersecting storage rings [1, and
references therein]. The narrow-band random process can 
be described as many models for instance, the stationary
Gaussian random process can be represented as the
stationary response of the linear filter to Gaussian white
noise [28]. Here we consider the random narrow-band
excitation as [29]

( ) cos( ( ))t h t W t  ,                  (2) 

where is deterministic amplitude of random
excitation , 

0h
is the center frequency, is a standard

Wiener process, and

)(tW

0 is the bandwidth of the

random excitation.
This paper is organized as follows: In Section 2, the

multiple scale method is applied to derive equations of
modulation of the amplitude and the phase of equation (1). 
As an example we consider 5 3( ) , ( )g x x f x x  , 

04 in sections 3. The 6th Runge-Kutta routine with

IMSL is used to integrate equation (1) numerically. The
numerical simulations are compared with the analytical 
results for the amplitude and excellent agreement is found.
Other cases of  and fg, can be similarly studied.

Analytical and numerical results show that the nontrivial
steady state solution may change from a limit cycle to a
diffused cycle as the intensity of the random excitation
increases. Finally, Section 5 contains our concluding
remarks.

2. The Multiple Scale Method for Equation (1) 

The method of multiple scales [24] has been widely
used in the analysis of deterministic systems. Rajan & 
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Davies [25], Nayfeh & Serhan [23] extended this method
to the analysis of nonlinear systems under random
external excitations. Rong et al [20] extended this method
to the nonlinear systems under random parametric
excitations. In this paper, the multiple scale method is
used to investigate the response of system (1). Then, a
uniformly approximate solution of equation (1) is sought
in the form

0 0 1 1 0 1( , ) ( , ) ( , )x t x T T x T T ,          (4) 

where tTtT 10 , are fast and slow scale 

respectively.
Throughout this paper we only discuss the first-order

uniform expansion of the solution
0 0 1( , )x T T  of equations

(1). By denoting
0 1

0 1

,D D
T T

, the ordinary-time

derivatives can be transformed into partial derivatives as
2

2
0 1 0 0 12

, 2
d d

D D D D D
dt dt

 .    (5) 

Substituting equations (2), (4) and (5) into equations (1)
and comparing coefficients of of equal powers, one
obtains the following equations

2 2
0 0 0 0 0D x x ,                               (6) 

2 2
0 1 0 1 0 1 0 1 0 0

2 0 0 1

2 2 ( )

( ) cos( ( )).

D x x D D x g D x

hf x T W T
     (7) 

The general solution of equation (6) can be written as 

0 0 1 1 0 0( , ) ( ) exp( )x T T a T i T cc ,                 (8) 

where represents the complex conjugate of its 
preceding terms, and is the slowly varying

amplitude of the response. Substituting (8) into equations
(7), one obtains

cc
1( )a T

0 0 0 0

0 0

2 2
0 1 0 1 0 1 0

2 0

1

2 (

) ( )cos(

( )),

i T i T

i T

D x x i a e cc g i ae

cc hf ae cc T

W T (9)

where the prime stands for the derivative with respect to

 and represents the complex conjugate of its 

preceding terms. We can easily find that any particular
solution of equation (9) contains secular terms generated
by the first term in the right-hand side of equation (9), and,
when the small-divisor terms appear depends on the form
of

1T cc

( ), ( )f x g x  and the value of . So, in next sections

we will take different forms ( ), ( )f x g x  and  to

investigate the principle resonance of equation (1). 

3. Equation (1) with 3 5( ) , ( )f x x g x x  and 
04

3.1 Theoretical analysis
Let 3 5( ) , ( )f x x g x x  and 04  with

the detuning parameter and substituting them into Eq. (9),
one obtains,

0 0 0 0 0 0

0 0 0 0 1 1

0 0 1 1 0 0 1 1

0 0 1 1

5 32 2 5 5 4
0 1 0 1 0 1 0

( ( ))3 2 3
2

(3 ( )) (7 ( ))2 3

(5 ( ))2

2 ( 5

1
10 ) (

2
3

3 ) .

i T i T i T

i T i T T W T

i T T W T i T T W T

i T T W T

D x x i a e i a e a ae

a a e h a e

a ae a e

a ae cc

(10)

Eliminating the secular terms in Eq. (10) yields,

The polar form of  is introduced as following,a

1 1( ( ))5 3 2 3
0 1 0 2

1
2 10

2
i T W Ti a i a a ha e 0    (11)

1( )
1(1/ 2) ( ) i Ta T e .                        (12) 

Substituting (12) into (11) and separating the real and
imaginary parts yields, 

5 4 3
1 0 2

0

5 1
sin

16 16
h          (13a) 

3
2

0

1
cos

16
h

1)T

                     (13b) 

where 1 4 (T W . By solving the Eqs. (13), 

one can obtain the first-order uniform expansion of the
solution of system (1) as, 

0 0 1 1 0 0

1 0 0 1

1 0 0 1

( , ) ( ) exp( ) ( )

1
( ) exp[ ( ( ))] ( )

2
( )cos( ( )) ( )

x T T a T i T cc O

T i T T cc O

T T T O

    (14) 

However, Eqs. (13) are difficult to solve exactly and the
perturbation technique is carried out. Considering the
assumptions:  is sufficiently small and so  is assumed

to be zero. Now the Eqs.(13) can be written as,

5 4 3
1 0 2

0

5 1
sin

16 16
h  ,              (15a) 

3
2

0

4
cos

16
h  .                  (15b) 

Now assume 0  to obtain the steady state 

responses, then Eqs. (15) can be rewritten as, 

5 4 3
1 0 2

0

5 1
sin 0

16 16
h                   (16a) 

3
2

0

4
cos 0

16
h                       (16b) 

Obviously, the trivial solution of (16), 0 corresponds

to the trivial steady state response of system (1), and non-
trivial solutions of (16) correspond to steady state
responses of system (1). So next we consider the non-
trivial solutions of (16). By (16) one can reach, 

2 0Au Bu C                           (17) 

where
2 2

4 21 0 0

2 2

5 4
, , ,u A B h C .

If
2 2 12

4 1 0
4

2

1600
0h , then Eq. (34) has two

positive roots:
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1
42 2 122

2 4 1 02
1 2 10 4

1 0 2

1600

50
h h ,     (18a) 

and  is determined by , and 0 . When 0 , the 

variations of the steady state response and the theoretical
results given by equations (18) with h are shown in 
Figure 1(a). As shown in Figure 1(a), the deterministic
response predicted by the method of multiple scales is in
good agreement with that obtained by numerical result. In 
Fig. 1, the horizontal axis denotes the excitation frequency
h, and the vertical axis denotes the steady state responses.

As the steady state responses are always 
zero, otherwise the steady state responses increase with
the increasing value of the excitation amplitude h . Also,
one can see that, there are two steady state responses

* 0.566h h

theoretically, but by numerical simulation we find

only 1 can be realized, namely, only 1  is a stable

steady state response and 2  is an unstable one. 

1 2,

1
42 2 122

2 4 1 02
2 2 10 4

1 0 2

1600

50
h h .       (18b) 

Next, we determine the effect of the noise, i.e. 0 ,
on the deterministic steady state motion. To this end, we 
let the solution of equations (32) to be in the form

* *,l m ,                           (19) 

where * *, are given by equations (16)-(18), and

are perturbation terms. Substituting equations (19) into
equations (15) and neglecting the nonlinear terms of ,

one obtains the linearization of the modulation equations
(15) at

,l m

,l m

* *( , )  as, 

11 12 21 22' , 'l c l c m m c l c m W  ,          (20) 

where

4 2
11 1 0 2

0

25 3
sin

16 16
c h , ,

3
12 2

0

1
cos

16
c h ,

21 2
0

3
cos

4
c h

1

.

22 2
0

1
sin

4
c h

Eq. (20) can be written as the following Ito equations

1 ( )dX AXdT BdW T ,                    (21) 

where ,
2 2( ) ,ijA c ( , )TX l m (0,0,0, )TB .

By the method like 3.1 one obtains the first and second-
order steady state moment as, 

* 2 * 2, ( )E E 2El .             (22) 

3.2. Numerical analysis 

In this part we carry out the numerical analysis to verify
the theoretical results in 3.1. For the method of numerical
simulation, the reader is referred to Zhu [21] and
Shinozuka [22,27].
   By means of 6th Runge-Kutta routine (with IMSL) we
integrate Eq.(1) numerically and the parameters in (1) can
be selected as, 

1 2 02.0, 0.5, 0.001, 1.0, 1.0 ,

                (a) 0                              (b) 0.1

Figure 1  Curves of response; theoretical solution;
unstable solution ;  numerical solution.

( (0) 1.0, (0) 0.4x x )

In Figure 2-3, we present some figures to describe the
phase plot (where the horizontal axis denotes the
displacement x(t), the vertical axis denotes the velocity
dx(t)/dt) and time history  (where the horizontal axis
denotes the time t, the vertical axis denotes the
displacement x(t)) of ( )x t  with 0  and 0  with

2.0, (0) 1.0, (0) 0.4h x x . One can observe that, the

random noise )(tW will change the steady state

response of system (1) from a limit cycle to a diffused
limit cycle. Further numerical simulation shows that when
the intensity of the random excitation increases, the width
of the diffused limit cycle will increase.

When 0.1 , Figure 1(b) gives the variations of 

steady state response of system (1) numerically and 
analytically, and good agreement can be found
immediately.

                  (a) 0                      (b) 0.1

Figure 2  Phase Plot

                    (a) 0                          (b) 0.1
                Figure  3 Time history 

4. Concluding Remarks 
The approximate methods in deterministic systems such
as multiple scale method, equivalent linearization method
and averaging method can be extended to random systems
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[20,23,25,26]. However, exact solutions of nonlinear
system under random excitation are only available for a
very limited number of problems, even if for the single 
degree of freedom nonlinear deterministic system.

In the present paper, we investigate a beam-beam
interaction model under narrow-band random excitation
using the method of multiple time scale. This study is 
considered as a continuation of our previous
investigations for these models in particle accelerators.

In the theoretical analysis, one can find  there are two 
theoretical solutions of steady state responses, numerical
simulation shows that only

1
is stable and can be realized, 

that is to say,
2

is unstable and can not be realized (see

Fig. (1)). We also find that the proposed system changes
from a limit cycle to a diffused limit cycle as the intensity
of random noise increases. The numerical simulations

by 6th Runge-Kutta routine with IMSL is carried out to
verify the theoretical results and good agreement can be 
found.
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