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Abstract—This paper addresses the problem of design-
ing anH∞ filter for a class of nonlinear singularly per-
turbed systems described by a Takagi-Sugeno (TS) fuzzy
model. Based on a linear matrix inequality (LMI) ap-
proach, we develop a fuzzyH∞ filter that guarantees the
L2-gain from an exogenous input to a filter error to be less
than or equal to a prescribed value. In order to alleviate the
ill-conditioning resulting from the interaction of slow and
fast dynamic modes, solutions to the problem are given in
terms of linear matrix inequalities which are independent
of the singular perturbationε, whenε is sufficiently small.
The proposed approach does not involve the separation of
states into slow and fast ones and it can be applied not only
to standard, but also to nonstandard singularly perturbed
nonlinear systems.

1. Introduction

Over the past few decades, the problem ofH∞ filtering
design for singularly perturbed system has been intensively
studied by a number of researchers; see [1]-[13]. This is
due not only to theoretical interest but also to the relevance
of this topic in control engineering applications. Singularly
perturbed systems are dynamical systems with multiple
time-scales. Singularly perturbed systems often occur nat-
urally due to the presence of small “parasitic” parameter,
typically small time constants, masses, etc. Indeed multi-
ple time-scales phenomena are almost unavoidable in “real-
life” systems. Examples of such systems abound and in-
clude convection-diffusion systems, diffusion-drift motion
systems, power systems, scheduling systems, economic
models, telecommunication systems and bifurcations.

In the last few years, many researchers have studied the
H∞ filter design for a general class of linear singularly per-
turbed systems. In [6], the authors have investigated the de-
composition solution ofH∞ filter gain for singularly per-
turbed systems. The reduced-orderH∞ optimal filtering
for system with slow and fast modes has been considered
in [7]. Although many researchers have studied linear sin-
gularly perturbed systems for many years, theH∞ filtering

1Author to whom correspondence should be addressed.

design for nonlinear singularly perturbed systems remains
as an open research area. This is because, in general, non-
linear singularly perturbed systems can not be easily sepa-
rated into slow and fast subsystems.

Fuzzy system theory enables us to utilise qualitative,
linguistic information about a highly complex nonlinear
system to construct a mathematical model for it. Recent
studies show that a fuzzy linear model can be used to ap-
proximate global behaviours of a highly complex nonlin-
ear system; see for example, [14]-[19]. In this fuzzy lin-
ear model, local dynamics in different state space regions
are represented by local linear systems. The overall model
of the system is obtained by “blending” these linear mod-
els through nonlinear fuzzy membership functions. Unlike
conventional modelling where a single model is used to de-
scribe the global behaviour of a system, the fuzzy mod-
elling is essentially a multi-model approach in which sim-
ple sub-models (linear models) are combined to describe
the global behaviour of the system. However, employing
the existing fuzzy results [14]-[19] on the singularly per-
turbed system, one ends up with a family of ill-conditioned
linear matrix inequalities resulting from the interaction of
slow and fast dynamic modes. In general, ill-conditioned
linear matrix inequalities are very difficult to solve.

The aim of this paper is to design anH∞ fuzzy filter
for a class of nonlinear singularly perturbed systems. First,
we approximate this class of systems by a Takagi-Sugeno
fuzzy model. Then based on an LMI approach, we de-
velop theH∞ filter that guarantees theL2-gain of the map-
ping from the exogenous input noise to a filter error to be
less than or equal to a prescribed value for this class of
fuzzy singularly perturbed systems. In order to alleviate
the ill-conditioned linear matrix inequalities resulting from
the interaction of slow and fast dynamic modes, the ill-
conditioned LMIs are decomposed intoε-independent and
ε-dependent LMIs. Theε-independent LMIs are not ill-
conditioned and theε-dependent LMIs tend to zero when
ε > 0 is small enough. It can be shown that whenε is suffi-
ciently small, the original ill-conditioned LMIs are solvable
if and only if theε-independent LMIs are solvable.

This paper is organized as follows. In Section 2, system
description and problem formulation are presented. Based
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on an LMI approach, we develop a technique in Section 3
for designing a fuzzyH∞ filter that guarantees theL2-gain
of the mapping from the exogenous input noise to the filter
error to be less than or equal to a prescribed value. Finally,
in Section 4, the conclusion is given.

2. System Description and Problem Formulation

The nonlinear singularly perturbed system under consid-
eration is described by the following fuzzy system model:
Plant Rulei: IF ν1(t) is Mi1 and· · · andνϑ(t) is Miϑ THEN

E(ε)ẋ(t) = Ai x(t) + B1i w(t), x(0) = 0
z(t) = C1i x(t)
y(t) = C2i x(t) + D21i w(t)

(1)

where E(ε) =

[
I 0
0 εI

]
, i = 1,2, · · · , r, Mi j ( j =

1,2, · · · , ϑ) are the fuzzy sets,ν1(t), · · · , νϑ(t) are the
premise variables,ϑ is the number of premise variables.
x(t) ∈ <n is the state vector,u(t) ∈ <m is the input,
w(t) ∈ <p is the disturbance which belongs toL2[0,∞),
y(t) ∈ <` is the measurement,z(t) ∈ <s is the controlled

output, the matricesAi =

[
A11i A12i

A21i A22i

]
, B1i =

[
B11i

B12i

]
,

C1i =
[

C11i C12i

]
, C2i =

[
C21i C22i

]
, and D21i =[

D211i

D212i

]
are of appropriate dimensions,r is the number of

IF-THEN rules. Note that the system (1) is said to be in the
standard form if the matrixA22i is nonsingular. Otherwise,
it is called a nonstandard singularly perturbed system [3].

Let $i(ν(t)) =
∏ϑ

k=1 Mik(νk(t)) andµi(x(t)) =
$i (ν(t))∑r

i=1$i (ν(t))

whereMik(νk(t)) is the grade of membership ofνk(t) in Mik.
Without loss of generality, it is assumed in this paper that
$i(ν(t)) ≥ 0, i = 1,2, ..., r;

∑r
i=1$i(ν(t)) > 0 for all t.

Therefore,µi(ν(t)) ≥ 0, i = 1,2, ..., r;
∑r

i=1 µi(ν(t)) = 1 for
all t. For the convenience of notations, we let$i = $i(ν(t))
andµi = µi(ν(t)).

The resulting fuzzy system model is inferred as the
weighted average of the local models of the form:

E(ε)ẋ(t) = A(µ)x(t) + B1(µ)w(t), x(0) = 0
z(t) = C1(µ)x(t)
y(t) = C2(µ)x(t) + D21(µ)w(t)

(2)

where A(µ) =
∑r

i=1 µiAi , B1(µ) =
∑r

i=1 µi B1i , C1(µ) =∑r
i=1 µiC1i , C2(µ) =

∑r
i=1 µiC2i andD21(µ) =

∑r
i=1 µiD21i .

In this paper, we consider the following full orderH∞
fuzzy filter which is inferred as the weighted average of the
local models of the form:

E(ε) ˙̂x(t) = Â(µ)x̂(t) + B̂(µ)y(t)
ẑ(t) = Ĉ(µ)x̂(t).

(3)

Note thatÂ(µ) ∈ <n×n. Before ending this section, we
describe the problem under our study as follows.

Problem Formulation:Given a prescribedH∞ perfor-
manceγ > 0, design a fuzzy filter of the form (3) such that

theL2-gain from the exogenous input to the filter error is
less than or equal toγ, i.e.,

∫ T f

0
(z(t) − ẑ(t))T(z(t) − ẑ(t)) dt

≤ γ2

[∫ T f

0
wT(t)w(t) dt

]
. (4)

3. H∞ Fuzzy Filter Design

In this section, we will present the main results of this
paper. First, we select our filter as follows:

E(ε) ˙̂x(t) = Â(µ)x̂(t) + B̂(µ)y(t)
ẑ(t) = Ĉ(µ)x̂(t).

(5)

Define the filtering error as ˜z(t) = z(t) − ẑ(t). Then, the
filtering error of the fuzzy system model (2) are given by

Ee(ε) ˙̃x(t) = Ae(µ)x̃(t) + Be(µ)w(t)
z̃(t) = Ce(µ)x̃(t)

(6)

where x̃ =

[
x(t)
x̂(t)

]
, Ee(ε) =

[
E(ε) 0

0 E(ε)

]
, Ae(µ) =

[
A(µ) 0

B̂(µ)C2(µ) Â(µ)

]
, Be(µ) =

[
B1(µ)

B̂(µ)D21(µ)

]
and

Ce(µ) = [C1(µ) − Ĉ(µ)]. Now, we have our first result in
this paper.

Lemma 3.1 Given a prescribedH∞ performanceγ > 0, if
there exist matricesX(ε) = XT(ε), Y(ε) = YT(ε), A(µ, ε),
B(µ, ε) andC(µ, ε) satisfying the following nonlinear ma-
trix inequalities:

[
X(ε) I
I Y(ε)

]
> 0 (7)

X(ε) > 0 (8)

Y(ε) > 0 (9)[
Ψ11(µ, ε) Ψ12(µ, ε)
ΨT

12(µ, ε) Ψ22(µ, ε)

]
< 0 (10)

where

Ψ11(µ, ε) =



(
E−1(ε)A(µ)X(ε)

+X(ε)(E−1(ε)A(µ))T

)
(∗)T

(E−1(ε)B1(µ))T −γI

 (11)

Ψ12(µ, ε) =



( A(µ, ε)
+(E−1(ε)A(µ))T

)
β(µ, ε)

(
C1(µ)X(ε)
−C(µ, ε)

)
0



T

(12)

Ψ22(µ, ε) =





(E−1(ε)A(µ))TY(ε)
+Y(ε)E−1(ε)A(µ)

+B(µ, ε)C2(µ)
+CT

2 (µ)BT(µ, ε)


(∗)T

C1(µ) −γI


(13)

268



and β(µ, ε) = Y(ε)E−1(ε)B1(µ + B(µ, ε)D21(µ), then the
prescribedH∞ performanceγ > 0 is guaranteed. Fur-
thermore, a suitable filter(Â(µ, ε), B̂(µ, ε) and Ĉ(µ, ε)) is
given as follows:

B̂(µ, ε) = E(ε)N−1(ε)B(µ, ε)
Ĉ(µ, ε) = C(µ, ε)(MT(ε)E(ε))−1

Â(µ, ε) = E(ε)N−1(ε)[A(µ, ε)
−Y(ε)E−1(ε)A(µ)X(ε)E(ε)
−B(µ, ε)C2(µ)X(ε)E(ε)](MT(ε)E(ε))−1

(14)
whereN(ε)MT(ε) = I − Y(ε)X(ε), andM(ε) andN(ε) are
square and nonsingular matrices.

Proof: The desired result can be carried out by a similar
technique used in [20], which involves the changes of vari-
able. The detail of the proof is omitted for brevity due to
the page limited.

The linear matrix inequalities given in Lemma 3.1 be-
comes ill-conditioned whenε is sufficiently small, which
is always the case for the singularly perturbed system.
In general, these ill-conditioned linear matrix inequalities
are very difficult to solve. Thus, to alleviate these ill-
conditioned LMIs, we have the following theorem which
does not depend onε.

Theorem 3.1 Given a prescribedH∞ performanceγ > 0,
if there exist matricesX, Y, Ai j , Bi andCi satisfying the
following matrix inequalities:

[
XD + EX I

I YE + DY

]
> 0 (15)

XD = DXT , EX = XT E, EX + XD > 0 (16)

YE = EYT , DY = YT D, YE+ DY > 0 (17)[
Ψ11ii ΨT

21ii

Ψ21ii Ψ22ii

]
< 0, i = 1,2, · · · , r

(18)[
Ψ11i j ΨT

21i j

Ψ21i j Ψ22i j

]
+

[
Ψ11ji ΨT

21ji

Ψ21ji Ψ22ji

]
< 0, i < j ≤ r (19)

whereE =

(
I 0
0 0

)
, D =

(
0 0
0 I

)
,

Ψ11i j =

[
AiX + XT AT

i B1i

BT
1i

−γI

]

Ψ21i j =

[ Ai j + AT
i YT B1i + BiD21j

C1i X − C j 0

]

Ψ22i j =

[
AT

i Y + YT Ai + BiC2 j + CT
2i
BT

j CT
1i

C1i −γI

]
,

then there exists a sufficiently smallε̂ > 0 such that forε ∈
(0, ε̂], the prescribedH∞ performanceγ > 0 is guaranteed.
Furthermore, a suitable filter (̂Ai j , B̂i and Ĉi) is given as
follows:

Âi j = N−1[Ai j − YT AiX − BiC2 jX](MT)−1

B̂i = N−1Bi ,

Ĉi = Ci(MT)−1
(20)

whereS MT = I−YX, M andS are square and nonsingular
matrices. S is an upper triangular matrix, that is,S =(

S1 0
S2 S3

)
andN =

(
ST

1 0
ST

2 ST
3

)
.

Proof: Due to the page limited, the detail of the proof is
omitted.

4. Conclusion

This paper has investigated the problem of designing an
H∞ filter for a class of nonlinear singularly perturbed sys-
tems described by TS fuzzy model that guarantees theL2-
gain from an exogenous input to a filter error being less
than or equal to a prescribed value. An LMI approach has
been used to derive sufficient conditions for the existence
of anH∞ filter. The sufficient conditions are given in terms
of a family ofε-independent linear matrix inequalities. The
proposed approach does not involve the separation of states
into slow and fast ones and it can be applied not only to
standard, but also to nonstandard singularly perturbed non-
linear systems.
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