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Abstract—Cortical neurons in vivo generate highly ir- We attemped to determine whether the leaky integrate-
regular spike sequences. Recently, it was experimentabyd-fire model is satisfactory for reproducing the statistics
found that the local variation of interspike intervals,, of interspike interval(ISI). We focus on the spiking irregu-
is nearly the same for every spike sequence for any givéarity, Cy andLy in this study.

neuron[1]. To the contrary, the ciieient of variationCy, We first introduce the spiking statistic€y and Ly in
varys over diferent spike sequences. This suggests thagction 2.1. In section 2.2, we discuss the meaning of their
short-term statistical characteristics of spike sequences drehaviors. In section 3.1, we examine the leaky integrate-
almost constant under rate modulation. and-fire model and show that it does not fully account for
We show that the conventional leaky integrate-and-firthe behaviors o€y andLy. In section 3.2, we introduce a
model does not fully account for the behaviorsGaf and new model and show that it explains their behaviors. This
Lyv. Then, we introduce a new neuron model which genemodel can reproduce spike correlation by itself. In section
ates the spike correlation by itself. Thefdrence between 3.3, we consider the possibility offéiérent intrinsic prop-
the leaky integrate-and-fire model and the new model ®rties of neurons. In section 4, we discuss théedences
whether a neuron resets the voltage after firing or not. Asetween the leaky integrate-and-fire model and the new
for the voltage resetting mechanism, a neuron loses the pastdel, and conclude that the time correlation has much to
firing memory, and it makes no significantfidgirence be- do with neuron itself. This means that a neuron might have
tween the behaviors @@y andLy. Since the new model a memory of firing, and may be much cleverer than we have
possesses a memory of past firing and bursting property, #gpected.

short-term statistical properties are invariant for rate mod-

uIatpn. , . 2. ISI Statistics

This model suggests that a biological neuron may pos-

sess such a memory, and the temporal correlation can pe . C, and Ly

generated not only externally but also internally. o o
We first implement the measures of the spiking irregu-

larity, Cy and Ly. Codficient of variationCy is a very
. Introduction common measure which has been employed by many re-
searchers. Recently, a measure of local variation of ISls,
Cortical neurons are driven by thousands of synaptic irl-y, has been proposed and found to be experimentally use-
puts. They generate highly irregular spike sequences.  ful [1]. Cy andLy are defined as
Spike production can be considered as a two-step pro-
cess. First, synaptic inputs are integrated by an exten-

sive and complex dendric trees resulting in a total synap- Ly (T -T)2

. . . . n-14&i=1\"1

tic current. Second, the cell emits spikes in response to Cv = = 1)
this synaptic current. A numerous number of single neuron 1 T

models that can reproduce some aspects of spiking statis- Ly = 1 23(Ti - Tiv1)? )
tics of biological neurons have been produced, and most of VT ho1 - (T + Tiz1)?

them have largely focused on the latter.

The leaky integrate-and-fire model is one of the most whereT; is the duration of the ith ISh is the total num-
well known models. It is shown that the leaky integrateber of ISIs, andeﬁzi”:lTi is the mean ISICy and Ly
and-fire model with a balance of excitation and inhibitiortake 1 for purely Poisson process, and 0 for perfectly reg-
can reproduce spiking irregularity [2][3], and with tempo-ular sequenced.y indicates the local spiking irregularity,
rally correlated inputs, it can reproduce the spiking statisvhile Cy indicates the global spiking irregularity. For ex-
tics [4]. However, whether the leaky integrate-and-firample, for a spike sequence which is locally quasi-regular
model is good enough is yet to be examined [5]. but globally modulatedl., takes a small value, whil€y
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takes a large valueCy of typical cortical neurons is close  The mechanism of the leaky integrate-and-fire model

to 1. This means cortical neurons in vivo generates highlig as follows: incoming spiking signals to a neuron raise

irregular spike sequences. its membrane potential, and when the membrane poten-
The distribution ofCy from the same area exhibits strongtial exceeds a certain threshcidy), the neuron fires and

similarities. But theCy from a single neuron were observedemits a spike. The potential is then resets to a resting

to vary significantly with time. Therefore&gy is not use- potentialE&Vp).

ful for classification of indivisual neurons. Howevér,

is nearly the same for every spike sequence for any given

neuron [1]. We examine whether the neuron models ex- TdV(t)

press the behaviors @, andLy in section 3. S/t(t)

—V(t) + n(t) )
6 — firing > V(t+At)=Vo  (4)

2.2. What MakesL, Constant? . .
v For the inputy(t), we use the Ornstein-Uhlenbeck pro-

What maked.y almost constant compared witly? The cess(OUP), so the input is an exponentially correlated
difference ofCy andLy behaviors indicates that there exist(colored) Gaussian noise.n(t) is written as< n(t) -
the correlations which are valid only locally. n(t") s and < n(t) >= . It is shown that leaky
One possibility that makels, almost constant is, strong integrate-and-fire model given correlated inputs of order
correlation of neighboring spikes. For example, burstingoomsec can reproduce spiking statistics [4]. Therefore,
neurons exhibit strong correlation between spikes. Faje adopted 100msec as the time correlation pararseter
the bursting neuron, when input increases, the period of Now, we change the average ISI by modulating the aver-
bursting become longer ar@, fluctuates rapidly since it age inpufu. The result is given in figure 1.
measures global irregularity and reflects every bursting se-
guences. To the Contrarly, is a measure of local vari-

4 T T T
ation, and mainly reflects the boundaries of bursting and . Cv  +
. . . 35 #+ + T v X
non-bursting. When the input increases, although the pe- sl .7 -
riod of bursting becomes longer, the boundaries of bursting s | |
and non-bursting do not change greatly. Therefakejs '2 | |
much more constant thady, with respect to neurons that 15 L |
have strong correlations such as a bursting neuron. In this '1 | |
case, it is important not to burst too long. When the period «
. 4 05 | CXHX X 0K E
of bursting becomes too much longé&x, increases when 0 x X , ,
the input increases. However, experimental facts @at 0 50 100 150 200
changes rapidly andy is constant are feasible when there Average ISI (msec)

is a moderate correlation.

In order to make correlation between spikes, there are ~ Figure 1:Cy andLy obtained from LIF-OUP
two methods.

The first method is to give temporally correlated inputs .
to neurons. If the input is correlated, the output would Figure 1 shows th€y andLy obtained from the leaky
be naturally correlated. The leaky integrate-and-fire mod&ftégrate-and-fire model with the OUP input. If the aver-
with temporally correlated inputs uses this method. How29€ 15! is shortCy increases rapidly compared witly
ever, in this method, the output variability is fully depen-2S the ISI becoming longer. This accounts for their exper-
dent on input, and it seems changeable for the rate modfPental behaviors. On the other hand, if the average ISI
lation. is long, Cy decreases as the ISI becoming longer. This is

The other method is to make the correlation by the neLp_ecagse it has _too strong c_orrelation, _and it_doesn’t fire ex-
ron itself. For this way, output variability is not fully de- C€Pt in the period of bursting. If the input increases, the
pendent on input variability, and it seems much more rd?€riod of bursting becomes longer, add increases since
bust under the rate modulation. The leaky integrate-ang-‘e global irregularity increases. W_hen the input increases
fire model with a stochastic noise produces a renewal préi2 SOme rateCy turns to decrease since the period of each

cess, therefore it is impossible to apply this method. bursting gets close to the average ISI, so that global irreg-
ularity decreases. This fact in the high ISI contradicts with

the experimental fact that, is constant compared with,
[1]. This means that the leaky integrate-and-fire model with
correlated inputs does not explain behavior€gfandLy, .

We also applied those statistical measures to a leaky
We first examine whether the conventional leakyntegrate-and-fire model with uncorrelated inputs. In this
integrate-and-fire model expresses the behavio&,&nd case, behaviors of those two measures didn't have signif-
Ly. icant diference. This is because integrate-and-fire with

3. The Model and its Numerical Analysis

3.1. Leaky Integrate-and-Fire Model
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stochastic noise produce a renewal process so that theraVe examine th€y andL, behaviors for the new model.
has no correlation between spikes. Therefore, there is Mdhite Gaussian noisgt) is used for the uncorrelated in-

difference between local and global irregularity. put.

These facts indicates that leaky integrate-and-fire model We modulate the average input and change average
does not explain behaviors 6f, andLy. ISI. The result is given in figure 3.
3.2. New Model 2y 1 ' ' —

18 |y «x +

For the leaky integrate-and-fire model with uncorrelated 161 Lt .
inputs, the correlation cdigcient, which is a measure of 1‘21' : L :
mutual dependence of consecutive ISls, is 0. The corre- L + i
lation codficient is expected to vanish in the renewal pro- 08 L N o xx XX
cess, in which indivisual ISls are generated independently o6F .7 o« ° . ]
from each other. However, many biological data exhibit an 04F x* g
anomalously large value of positive correlation Eméent. 0.2 . . ! .

0 50 100 150 200 250

In order to solve this problem, correlated inputs are used.
Now we introduce the new model which exhibit positive
correlation co#ficient even with uncorrelated inputs. This Figure 3:Cy andLy obtained from new model
means that the new model is able to generate the spike cor-
relation by itself.
New model is defined as Figure 3 shows th€y and Ly obtained from the new
model. ThelLy value is constant compared wi@y value.
This fact indicates that the new model can explain the be-

Average ISI (msec)

Td\(ﬁt) _ V() + ) + £ (5) haviors ofCy andLy to some extent.
dn(t) _ _a (©) 3.3. Intrinsic Properties of Neurons
dt

It is shown that_y is one of the measure of the neuron’s
intrinsic properties [1]. There are two kinds of neurons,
V() =0 —firing — V(t+At) =V, (7) highLy values, and lonLy values. What causes this dif-

: ference?
if n(t) =0,n(t+At) = 8 - . ; .
- n() " ) =m0 (8) One possibility derived from our model is theférence
of inputs. We change the ratio of correlated inputs and un-

The mechanism of this model is very sim ure 2). : :

The leaky integrate-and-fire model )(i,an bp;f??l?er re'zed csorrelated inputs. Figure 4 shows the result. When the ra-
. grate . . P i0 of incoming correlated and uncorrelated inputs changes,

a motion of a particle in a potential. If it reaches the thresh-

old(=fire), it resets to a resting potenial. For the new modefc';uzzzr}?:; ;:ggg'?:nljlé' T-(E,-rr]r? ?;ﬁnf:?)rcr)gl_a\l/teg?g Stes can
n(t) becomes a positive ratg after spiking, so that a parti- PutS. P y P

. . . . ! interpr ransientl nchron in . There-
cle gets easily to climb the potential for a while. This non-be terpreted as a transiently synchronous inputs ere

resetting mechanism causes spike correlatigty, decays fore, neurons may be classified into two groups: those that
. 9 sP ' y mainly receive synchronous inputs and those that mainly
with a constant rat@, so that it prevents from too strong

. receive asynchronous inputs. We can interpret the former
correlation.

for the group using temporal coding, and the latter for that

The new model has a tendency to fire easily after firingOf using rate coding. Therefore, thefférence ofLy may

compared with leaky integrate-and-fire model. We can iNbe caused from their coding manners

terpretn(t) as internal dynamics, not external input since it Another possibility that our model suggest is, the po-

depends on the spike generation, which is not natural f%ntial shapes. We modulate the shape of potehtialy
the external phenomenon. modulating asymmetric parametir

1 .
» U= EVZ + Asin(@V) 9)

° , \ /
v e L The potential shape that we used in section 3.249 A
/75 v \Qy‘ therefore symmetric.

0 ¢ potential barrier falls down Figure 5 shows.y for potentials that changing the asym-
metric parameter. If the asymmetry of the potential in-
creases, théy decreases. This is because if we increase
Figure 2: new model the asymmetryic parameter, a particle tends to move for-
ward [6], and fires regularly. High and lol, may be
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age. Therefore, though influenced by a spike generation,

09 F v =] they vary almost independently. This may be the memory
0.8 i of a neuron. To understand cortical ISI variability, we must
o7k 4 focus on not only the inputs, but also the spike generation
06 F *, 4 mechanism, therefore, neuron itself.

05 o 4 Although it is not yet known what properties of neurons

0.4 R N 4 Ly measures, it is important to know what causes the dif-
03 A ferentLy values in models. We mentioned two possibility

in section 3.3. Both dierent potential shapes andfdi-
ent inputs can be interpreted affdient functional roles of
neurons.

We have introduced a new model instead of the leaky
integrate-and-fire model to explain behavior€gfandLy .
This model can reproduce spike correlation by itself.

The advantage of using this model is not just explaining

0.2 1 1 1 1 1 1
0 2 4 6 8 10

correlated inputs/uncorrelated inputs

Figure 4:Ly and correlateincorrelated inputs

18 ' " averagelSi=50 behaviors ofCy andLy. As mentioned earlier, it is easy to
1'2 : average SI21%0 : generate burstir_lg. It would be a fgture problgm to examine
‘ *x, plausibility of this model by experimental spiking data.
15 X " * * 4

2 14+t g " L
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