
A Simple Neuron Model with Memory of Firing

Kantaro Fujiwara† and Kazuyuki Aihara†‡

†Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo
5-1-5, Kashiwanoha, Kashiwa-shi, Chiba, 277-8562 Japan

‡Institute of Industrial Science, The University of Tokyo, and ERATO, JST, Japan
4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan.

Email: kantaro@sat.t.u-tokyo.ac.jp, aihara@sat.t.u-tokyo.ac.jp

Abstract—Cortical neurons in vivo generate highly ir-
regular spike sequences. Recently, it was experimentally
found that the local variation of interspike intervals,LV,
is nearly the same for every spike sequence for any given
neuron[1]. To the contrary, the coefficient of variation,CV,
varys over different spike sequences. This suggests that
short-term statistical characteristics of spike sequences are
almost constant under rate modulation.

We show that the conventional leaky integrate-and-fire
model does not fully account for the behaviors ofCV and
LV. Then, we introduce a new neuron model which gener-
ates the spike correlation by itself. The difference between
the leaky integrate-and-fire model and the new model is
whether a neuron resets the voltage after firing or not. As
for the voltage resetting mechanism, a neuron loses the past
firing memory, and it makes no significant difference be-
tween the behaviors ofCV andLV. Since the new model
possesses a memory of past firing and bursting property, its
short-term statistical properties are invariant for rate mod-
ulation.

This model suggests that a biological neuron may pos-
sess such a memory, and the temporal correlation can be
generated not only externally but also internally.

1. Introduction

Cortical neurons are driven by thousands of synaptic in-
puts. They generate highly irregular spike sequences.

Spike production can be considered as a two-step pro-
cess. First, synaptic inputs are integrated by an exten-
sive and complex dendric trees resulting in a total synap-
tic current. Second, the cell emits spikes in response to
this synaptic current. A numerous number of single neuron
models that can reproduce some aspects of spiking statis-
tics of biological neurons have been produced, and most of
them have largely focused on the latter.

The leaky integrate-and-fire model is one of the most
well known models. It is shown that the leaky integrate-
and-fire model with a balance of excitation and inhibition
can reproduce spiking irregularity [2][3], and with tempo-
rally correlated inputs, it can reproduce the spiking statis-
tics [4]. However, whether the leaky integrate-and-fire
model is good enough is yet to be examined [5].

We attemped to determine whether the leaky integrate-
and-fire model is satisfactory for reproducing the statistics
of interspike interval(ISI). We focus on the spiking irregu-
larity, CV andLV in this study.

We first introduce the spiking statistics,CV and LV in
section 2.1. In section 2.2, we discuss the meaning of their
behaviors. In section 3.1, we examine the leaky integrate-
and-fire model and show that it does not fully account for
the behaviors ofCV andLV. In section 3.2, we introduce a
new model and show that it explains their behaviors. This
model can reproduce spike correlation by itself. In section
3.3, we consider the possibility of different intrinsic prop-
erties of neurons. In section 4, we discuss the differences
between the leaky integrate-and-fire model and the new
model, and conclude that the time correlation has much to
do with neuron itself. This means that a neuron might have
a memory of firing, and may be much cleverer than we have
expected.

2. ISI Statistics

2.1. CV and LV

We first implement the measures of the spiking irregu-
larity, CV and LV. Coefficient of variationCV is a very
common measure which has been employed by many re-
searchers. Recently, a measure of local variation of ISIs,
LV, has been proposed and found to be experimentally use-
ful [1]. CV andLV are defined as

CV =

√
1

n−1
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i=1(Ti − T)2
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whereTi is the duration of the ith ISI,n is the total num-
ber of ISIs, andT= 1

n

∑n
i=1Ti is the mean ISI.CV and LV

take 1 for purely Poisson process, and 0 for perfectly reg-
ular sequences.LV indicates the local spiking irregularity,
while CV indicates the global spiking irregularity. For ex-
ample, for a spike sequence which is locally quasi-regular
but globally modulated,LV takes a small value, whileCV
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takes a large value.CV of typical cortical neurons is close
to 1. This means cortical neurons in vivo generates highly
irregular spike sequences.

The distribution ofCV from the same area exhibits strong
similarities. But theCV from a single neuron were observed
to vary significantly with time. Therefore,CV is not use-
ful for classification of indivisual neurons. However,LV

is nearly the same for every spike sequence for any given
neuron [1]. We examine whether the neuron models ex-
press the behaviors ofCV andLV in section 3.

2.2. What MakesLV Constant?

What makesLV almost constant compared withCV? The
difference ofCV andLV behaviors indicates that there exist
the correlations which are valid only locally.

One possibility that makesLV almost constant is, strong
correlation of neighboring spikes. For example, bursting
neurons exhibit strong correlation between spikes. For
the bursting neuron, when input increases, the period of
bursting become longer andCV fluctuates rapidly since it
measures global irregularity and reflects every bursting se-
quences. To the Contrary,LV is a measure of local vari-
ation, and mainly reflects the boundaries of bursting and
non-bursting. When the input increases, although the pe-
riod of bursting becomes longer, the boundaries of bursting
and non-bursting do not change greatly. Therefore,LV is
much more constant thanCV with respect to neurons that
have strong correlations such as a bursting neuron. In this
case, it is important not to burst too long. When the period
of bursting becomes too much longer,CV increases when
the input increases. However, experimental facts thatCV

changes rapidly andLV is constant are feasible when there
is a moderate correlation.

In order to make correlation between spikes, there are
two methods.

The first method is to give temporally correlated inputs
to neurons. If the input is correlated, the output would
be naturally correlated. The leaky integrate-and-fire model
with temporally correlated inputs uses this method. How-
ever, in this method, the output variability is fully depen-
dent on input, and it seems changeable for the rate modu-
lation.

The other method is to make the correlation by the neu-
ron itself. For this way, output variability is not fully de-
pendent on input variability, and it seems much more ro-
bust under the rate modulation. The leaky integrate-and-
fire model with a stochastic noise produces a renewal pro-
cess, therefore it is impossible to apply this method.

3. The Model and its Numerical Analysis

3.1. Leaky Integrate-and-Fire Model

We first examine whether the conventional leaky
integrate-and-fire model expresses the behaviors ofCV and
LV.

The mechanism of the leaky integrate-and-fire model
is as follows: incoming spiking signals to a neuron raise
its membrane potential, and when the membrane poten-
tial exceeds a certain threshold(=θ), the neuron fires and
emits a spike. The potential is then resets to a resting
potential(=V0).

τ
dV(t)

dt
= −V(t) + η(t) (3)

V(t) = θ→ f iring → V(t + ∆t) = V0 (4)

For the inputη(t), we use the Ornstein-Uhlenbeck pro-
cess(OUP), so the input is an exponentially correlated
(colored) Gaussian noise.η(t) is written as< η(t) ·
η(t′) >∝e−

|t−t′ |
s and< η(t) >= µ. It is shown that leaky

integrate-and-fire model given correlated inputs of order
100msec can reproduce spiking statistics [4]. Therefore,
we adopted 100msec as the time correlation parameters.

Now, we change the average ISI by modulating the aver-
age inputµ. The result is given in figure 1.
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Figure 1:CV andLV obtained from LIF+OUP

Figure 1 shows theCV andLV obtained from the leaky
integrate-and-fire model with the OUP input. If the aver-
age ISI is short,CV increases rapidly compared withLV

as the ISI becoming longer. This accounts for their exper-
imental behaviors. On the other hand, if the average ISI
is long,CV decreases as the ISI becoming longer. This is
because it has too strong correlation, and it doesn’t fire ex-
cept in the period of bursting. If the input increases, the
period of bursting becomes longer, andCV increases since
the global irregularity increases. When the input increases
to some rate,CV turns to decrease since the period of each
bursting gets close to the average ISI, so that global irreg-
ularity decreases. This fact in the high ISI contradicts with
the experimental fact thatLV is constant compared withCV

[1]. This means that the leaky integrate-and-fire model with
correlated inputs does not explain behaviors ofCV andLV.

We also applied those statistical measures to a leaky
integrate-and-fire model with uncorrelated inputs. In this
case, behaviors of those two measures didn’t have signif-
icant difference. This is because integrate-and-fire with
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stochastic noise produce a renewal process so that there
has no correlation between spikes. Therefore, there is no
difference between local and global irregularity.

These facts indicates that leaky integrate-and-fire model
does not explain behaviors ofCV andLV.

3.2. New Model

For the leaky integrate-and-fire model with uncorrelated
inputs, the correlation coefficient, which is a measure of
mutual dependence of consecutive ISIs, is 0. The corre-
lation coefficient is expected to vanish in the renewal pro-
cess, in which indivisual ISIs are generated independently
from each other. However, many biological data exhibit an
anomalously large value of positive correlation coefficient.
In order to solve this problem, correlated inputs are used.

Now we introduce the new model which exhibit positive
correlation coefficient even with uncorrelated inputs. This
means that the new model is able to generate the spike cor-
relation by itself.

New model is defined as

τ
dV(t)

dt
= −V(t) + η(t) + ξ(t) (5)

dη(t)
dt

= −a (6)

V(t) = θ→ f iring → V(t + ∆t) = V0 (7)

→ i f η(t) = 0 , η(t + ∆t) = η0 (8)

The mechanism of this model is very simple(cf.figure 2).
The leaky integrate-and-fire model can be interpreted as

a motion of a particle in a potential. If it reaches the thresh-
old(=fire), it resets to a resting potenial. For the new model,
η(t) becomes a positive rateη0 after spiking, so that a parti-
cle gets easily to climb the potential for a while. This non-
resetting mechanism causes spike correlation.η(t) decays
with a constant ratea, so that it prevents from too strong
correlation.

The new model has a tendency to fire easily after firing,
compared with leaky integrate-and-fire model. We can in-
terpretη(t) as internal dynamics, not external input since it
depends on the spike generation, which is not natural for
the external phenomenon.

Figure 2: new model

We examine theCV andLV behaviors for the new model.
White Gaussian noiseξ(t) is used for the uncorrelated in-
put.

We modulate the average inputµ, and change average
ISI. The result is given in figure 3.
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Figure 3:CV andLV obtained from new model

Figure 3 shows theCV and LV obtained from the new
model. TheLV value is constant compared withCV value.
This fact indicates that the new model can explain the be-
haviors ofCV andLV to some extent.

3.3. Intrinsic Properties of Neurons

It is shown thatLV is one of the measure of the neuron’s
intrinsic properties [1]. There are two kinds of neurons,
high LV values, and lowLV values. What causes this dif-
ference?

One possibility derived from our model is the difference
of inputs. We change the ratio of correlated inputs and un-
correlated inputs. Figure 4 shows the result. When the ra-
tio of incoming correlated and uncorrelated inputs changes,
LV changes significantly. The difference ofLV may be
caused from these inputs. Temporally correlated inputs can
be interpreted as a transiently synchronous inputs. There-
fore, neurons may be classified into two groups: those that
mainly receive synchronous inputs and those that mainly
receive asynchronous inputs. We can interpret the former
for the group using temporal coding, and the latter for that
of using rate coding. Therefore, the difference ofLV may
be caused from their coding manners.

Another possibility that our model suggest is, the po-
tential shapes. We modulate the shape of potentialU by
modulating asymmetric parameterA.

U =
1
2

V2 + Asin(πV) (9)

The potential shape that we used in section 3.2 is A=0,
therefore symmetric.

Figure 5 showsLV for potentials that changing the asym-
metric parameter. If the asymmetry of the potential in-
creases, theLV decreases. This is because if we increase
the asymmetryic parameter, a particle tends to move for-
ward [6], and fires regularly. High and lowLV may be
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Figure 4:LV and correlated/uncorrelated inputs
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Figure 5:LV and potential asymmetry

caused from the difference of the potential shapes, asym-
metry for example.

4. Discussion

In Section 3, we have shown that the leaky integrate-and-
fire model can not explain behaviors ofCV and LV, and
have introduced the new model to explain their behaviors.

The leaky integrate-and-fire model with a stochastic
noise produces a renewal process. It has no spike correla-
tion if the input is uncorrelated. This fact shows that there
is no difference between local and global spiking irregular-
ity.

On the other hand, the new model has a tendency to fire
easily after firing. Therefore, it is likely to burst even in
low input. As mentioned in section 2.2, bursting neurons
exhibit constantLV compared withCV.

The behaviors ofCV andLV indicates that a neuron may
have a memory of its firing. This fact is not unreasonable.
Slow synaptic processes which are related with metabolic
changes in ion channels have been reported, and it seems
possible to generate slow fluctuations inside the neuron, for
example, theCa2+ ion concentration and the dynamics of
ion permeation membrane which depends on it.Ca2+ ion
concentration varies slowly compared with the voltage in-
side the cell. Its variation is not fully dependent on the volt-

age. Therefore, though influenced by a spike generation,
they vary almost independently. This may be the memory
of a neuron. To understand cortical ISI variability, we must
focus on not only the inputs, but also the spike generation
mechanism, therefore, neuron itself.

Although it is not yet known what properties of neurons
LV measures, it is important to know what causes the dif-
ferentLV values in models. We mentioned two possibility
in section 3.3. Both different potential shapes and differ-
ent inputs can be interpreted as different functional roles of
neurons.

We have introduced a new model instead of the leaky
integrate-and-fire model to explain behaviors ofCV andLV.
This model can reproduce spike correlation by itself.

The advantage of using this model is not just explaining
behaviors ofCV andLV. As mentioned earlier, it is easy to
generate bursting. It would be a future problem to examine
plausibility of this model by experimental spiking data.
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