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Abstract—A code to integrate the three-dimensional
time-dependent Schrödinger equation of an atomic system
interacting nonlinearly with an intense laser pulse is de-
veloped based on the spectral method. The wave function
is represented in terms of Coulomb-Sturmian basis func-
tions. The simultaneous ordinary differential equations for
the expansion coefficients are integrated by an implicit in-
tegration method with an adaptive time step to time prop-
agate the atomic state. Numerical simulations of higher
harmonic generation spectra and the so-called ionization
stabilization for atomic hydrogen irradiated by a linearly
polarized intense laser  eld is presented to verify the code.

1. Introduction

During past decade, the interaction of intense ultrashort
laser pulses with atomic systems, which leads to highly
nonlinear phenomena such as the so-called above-threshold
ionization (ATI) and high harmonic generation (HHG), has
been an experimental and theoretical subject of interest.
In the ATI process, the energy spectrum of photoelectrons
have peaks which are separated by the photon energy of
the laser and correspond to the absorption of more photons
than is required to overcome the binding potential. The
HHG process is characterized by a spectrum of coherent
radiation emitted at frequencies of odd multiples of the in-
cident laser frequency. These phenomena have stimulated
great interest in the possibilities of developing a new highly
charged ion source, a new coherent source in the soft-x-ray
region, or attosecond pulses from intense laser-atom inter-
actions [1, 2].

However, these nonlinear interactions transcend the per-
turbative treatment. Since the interaction is so strong, i.e.
the potential of the laser  eld is comparable to the binding
energy of the atom, an ionizing atom does not immediately
become a well-separated electron and ion. Therefore, the
electron extracted from the atom returns and interacts in
the vicinity of the ion for one or more laser periods. Flo-
quet theory can be adopted in the analysis of atoms in pe-
riodic external  elds with constant amplitude, however in
reality intense  elds are only produced in the form of short
pulses. One nonperturbative approach has been formulated
by Keldysh [3]. In this theory, the effect of the nuclear po-
tential in the  nal state is assumed to be negligible after the
interaction with the strong laser  eld, and a free electron

state in the time-dependent radiation  eld is taken as the
 nal state. Keldysh’s method has been re ned by Faisal
[4] and Reiss [5] by adopting the formal time-dependent
scattering theory. On the other hand, Ammosov et. al. [6]
proposed a closed form formula for the ionization proba-
bility as a function of the laser electric  elds, based on the
assumption that the wave function is approximated via the
WKB method in the tunnel ionization regime. Although
these methods have been extensively applied in the analysis
of ATI and HHG process, there are still signi cant discrep-
ancies in the estimated ionization probability among them
[7].

Nowadays, it is widely recognized that simulations
based on the direct integration of the time-dependent
Schrödinger equation (TDSE) are extremely useful in elu-
cidating these complex physical processes and predict-
ing new effects. A large number of numerical meth-
ods have been developed, however most of them are one-
dimensional models or use a modi ed nuclear potential to
avoid numerical singularities. To the best of the authors’
knowledge, computations even for real three-dimensional
hydrogen have not been fully explored. We have devel-
oped a three-dimensional TDSE solver based on the spec-
trum method [8], and for the sake of illustration applied it
to the ionization of atomic hydrogen by a strong ultrashort
laser pulse.

2. Numercal Method

The Schrödinger equation which describes the time evo-
lution of the wave function ψ(x, t) of an hydrogenic atomic
system interacting with an electromagnetic  eld can be
written as (we use atomic units e = m = ~ = 1)

i
∂

∂t
ψ(x, t) = (Ha + HI )ψ(x, t), (1)

Ha =
p2

2
− Z

r
, (2)

where p is the canonical momentum operator for the elec-
tron, Z is the nuclear charge, Ha is the unperturbed atomic
Hamiltonian, and HI is the interaction Hamiltonian. The
interaction Hamiltonian using the dipole approximation
can be written in the velocity gauge form as

HI =
1
c

A(t)p, (3)
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where c is the speed of light, and A(t) is the (spatially inde-
pendent) vector potential; we have removed the A(t)2 term
by a simple gauge transformation. Here, we assume that
the laser pulse propagates in the z−direction. Then the vec-
tor potential is expressed as

A(t) = f (t)(A1 cos(ωt + φ1t)ex + A2 sin(ωt + φ2t)ey)
= Ax(t)ex + Ay(t)ey, (4)

where f (t), ω,A1,A2, φ1, φ2 are, respectively, the pulse en-
velope, the frequency, and the amplitude and the initial
phase of the x and y component. Since the electric  eld E(t)
is obtained from the relation E(t) = −(1/c)(d/dt)A(t), lin-
ear, circular, or elliptical polarization of the laser  eld can
be represented by properly setting the values A1,A2, φ1, φ2.

Since Ha is spherically symmetric, we expand the wave
function with the basis consisting of products of Coulomb-
Sturmian functions Sκ

nl and spherical harmonics Ylm as [8]

ψ(x, t) =
∑

nlm

anlm(t)
Sκ

nl(r)
r

Ylm(nx), (5)

where nx is a unit vector which points along the direction
x. The Sturmian functions are eigenfunctions of the differ-
ential equation

(−1
2

d2

dt2
+

l(l + 1)
2r2 +

κ2

2
)Sκ

nl(r) =
α

r
Sκ

nl(r), (6)

with the boundary condition

Sκ
nl(0) = Sκ

nl(∞) = 0. (7)

In this equation, κ is a constant real value to ensure the
discreteness of the eigenvalue spectrum. Therefore, the
eigenvalue is α = nκ, where n is a positive integer larger
than the angular momentum quantum numer l, and the
eigenfunctions are represented by using con uent hyper-
geometic functions as

Sκ
nl(r) = Nκ

nlr
l+1e−κr1 F1(−n + l + 1; 2l + 2; 2κr). (8)

The normalization constant Nκ
nl is determined from the con-

dition

< Sκ
nl|Sκ

nl >≡
∫ ∞

0
Sκ

nl(r)Sκ
nl(r)dr = 1, (9)

and the Sturmian functions satisfy the orthonormality con-
dition

< Sκ
nl|

1
r
|Sκ

n′ l >=
κ

n
δnn′ . (10)

With the above convention, the matrix elements of
Ha,HI may be expressed as follows:

< Sκ
nlYlm|Ha|Sκ

n′ l′Yl′m′ >= ((κ2− Zκ
n
δnn′ −

κ2

2
< Sκ

nl|Sκ

n′ l >)δll ′ δmm′

(11)

< Sκ
nlYlm|HI |Sκ

n′ l′Yl′m′ >= −i

√
2π
3
κ(n− n

′ ) < Sκ
nl|Sκ

n′ l′ >

×
[
A−

c
< lm|Y11l

′
m
′
> −A+

c
< lm|Y1−1l

′
m
′
>

]
, (12)

where

A+(t) = Ax(t) + iAy(t),
A−(t) = Ax(t) − iAy(t), (13)

< lm|Y11l
′
m
′
> is the Clebsh-Gordan coefficient, and the non-zero

matrix elements of < Sκ
nl|Sκ

n′ l′
> are

< Sκ
nl|Sκ

nl > = 1,

< Sκ
nl|Sκ

n+1l > = −1
2

√
(n + l + 1)(n− l)

n(n + 1)
,

< Sκ
nl|Sκ

n−1l > = −1
2

√
(n + l)(n− l − 1)

n(n− 1)
,

< Sκ
nl|Sκ

n+1l+1 > =
1
2

√
(n + l + 1)(n + l + 2)

n(n + 1)
,

< Sκ
nl|Sκ

nl+1 > = −
√

(n + l + 1)(n− l − 1)
n2 ,

< Sκ
nl|Sκ

n−1l+1 > =
1
2

√
(n− l − 1)(n− l − 2)

n(n− 1)
,

< Sκ
nl|Sκ

n+1l−1 > =
1
2

√
(n− l)(n− l + 1)

n(n + 1)
,

< Sκ
nl|Sκ

nl−1 > = −
√

(n + l)(n− l)
n2 ,

< Sκ
nl|Sκ

n−1l−1 > =
1
2

√
(n + l)(n + l − 1)

n(n− 1)
. (14)

Therefore, the time-dependent Schrödinger equation may be writ-
ten in the Sturmian basis as follows:

iS
d
dt

a(t) = H(t)a(t) (15)

where H is the total Hamiltonian H = Ha + HI , a(t) is a vector
which contains coefficients anlm(t), and S is the overlap matrix
whose elements are

< Sκ
nl|Sκ

n′ l > δll ′ δmm′ . (16)

Since the continuum sates expanded by the discrete Coulomb-
Starmian basis require those with large eigenvalues, the above
ordinary differential equation is stiff in many cases as seen from
Fig.1, i.e. the difference of the scale of eigenenergies amounts to
5. Therefore, we used the implicit solver (subroutine dlsodis) with
general sparse Jacobian matrices to time propagate the solution
developed by Hindmarsh and Balsdon [9], in which the step-size
is adaptively controlled.

3. Numerical Results

Figure 2 shows the ionization probability of a hydrogen atom
initially in its ground state as a function of the peak electric  eld
(upper) and time (lower), where the incident laser is linearly po-
larized with a photon energy of 1.5 a.u. and the time pro le of the
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Figure 1:
Positive eigenenergies of hydrogen atom calculated with a
Coulomb-Sturmian basis and κ = 0.5. N is the maximum
of the principal quantum number n.

electric  eld is a step function for 10 optical cycles. The ioniza-
tion probability is calculated as

(1 −
∑

nlm

∣∣∣< ψb,nlm|ψ(t) >
∣∣∣2), (17)

where ψb,nlm is the eigenfunction of Haψ = λψ with negative
eigenvalues λ < 0. In this calculation, we set the parameters
to be κ = 0.5,nmax = 150, and lmax = 30. The number of
state is 3825. The ionization probability at the end of the irra-
diation increases linearly, when the electric  eld is increased to 1
a.u.(3.5 × 1016W/cm2). In this regime, the ionization probability
also increases in time as seen in Fig. 2. However, we can ob-
serve that the ionization probability begins to decrease and wig-
gles when the electric  eld is increased beyond 1 a.u., i.e. the
so-called dynamic ionization stabilization.

In Fig. 3 we display the HHG power spectrum when the inten-
sity of the laser is 1.4 × 1014W/cm2. Here, we obtained the HHG
spectrum from the expectation value of the acceleration operator
[10, 11] as

< ψ|ẍ|ψ > = < ψ|  px|ψ > = < ψ|∇xV(r)|ψ >
= < ψ(x, t)|Z cos θ

r2 |ψ(x, t) >, (18)

where we assumed the electric  eld is polarized in the x-direction,
and cos θ = ex · nx. The spectra of the HHG are proportional to
the modulo square of the Fourier transform of the above expec-
tation value. It is noted the acceleration operator is proportional
to 1

r2 . This means that the HHG spectrum is sensitive to the wave
function in the vicinity of the nucleus. Therefore, a merit of this
method is that the expectation value Eq.(18) is calculated using
analytical matrix elements < Sκ

nl| 1
r2 |Sκ

n′ l′
> avoiding the numerical

singularity. This result displays the typical characteristics of the
observed HHG spectrum including odd order radiation, a plateau,
and cut-off.
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Figure 2:
Ionization probability as a function of the peak electric  eld
in a.u. (upper) and of time (lower). The linearly polar-
ized laser pulse with a photon energy of 1.5 a.u. is irra-
diated for 10 optical cycles. In the calculation, we take
κ = 0.5,nmax = 150, and lmax = 30.

4. Conclusion

We have developed a time-dependent Schrödinger equation
solver, in which the wave function is represented in terms of
Coulomb-Sturmian basis functions, and have demonstrated that
nonlinear laser-hydrogenic atom interactions can be properly sim-
ulated.
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Figure 3:
High harmonic generation spectra of the hydrogen atom for
the laser intensity 1.4 × 1014W/cm2.
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