Element-Value Determination with Measurement Errors

Isao Yamaguchi* and Shoji Shinoda**
* Department of Electrical and Electronic Engineering, Tokai University 1117 Kitakaname, Hiratsuka, Kanagawa 259-1292 Japan, E-mail isao@keyaki.cc.u-tokai.ac.jp
** Department of Electrical, Electronic and Communication Engineering, Chuo University 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 Japan, E-mail shinoda@elect.chuo-u.ac.jp

Abstract

This paper deals with a linear analog circuit which satisfies some sufficient conditions for the unique elementvalue determination, and proposes a method for actual computation of the element-values taking into account the measurement errors.

1. Introduction

It is of significantly importance in relation to the problem of diagnosis of deviation faults in linear analog circuits to check whether or not it is possible to uniquely determine the element-values in a given linear analog circuit from the measurements performed at its accessible nodes. The problem of checking the unique determinability of the element-values is called the element-value determinability problem. This problem was first considered by Berkowitz[1] in 1962, and subsequently was studied by many researchers[2]. However, the techniques presented in most of the papers are not promising, because they are given on the impractical assumption that the actual values of the good circuit elements are exactly on the respective design values. At present, the most promising approach to diagnosis of deviation faults is the element-value identification technique under the assumption that (a) a given linear analog circuit is of known topology (and of known element-kinds if possible) and (b) the actual value of each element-value of the circuit almost always deviates from the design value and is not known exactly. The key part in this element-value identification technique is to check whether or not it is possible to uniquely determine the element-values from the measurements and then to give a method for actual computation of the element-values if it is possible. Some useful sufficient conditions for the element-value determinability of a linear analog circuit and a method for actual computation of the element-values were developed([3],[4]). The sufficient conditions are characterized by using the equivalent circuit transformation with the repeated application of a generalized star-topolygon transformation and its inverse equivalent circuit transformation.

In this paper, we deal with a linear analog circuit which satisfies such sufficient conditions for the unique elementvalue determination, and propose a method for actual computation of the element-values taking into account the measurement errors.

2. Unistor Circuit Model and Generalized Star-to-Polygon Transformation

We consider a linear analog circuit N made up of resistors, inductors, capacitors, voltage-controlled current sources and/ or independent current sources. Nodes at which voltages and/or currents can be applied and/or measured in N are called the accessible nodes of N, and the remaining nodes are designated as inaccessible nodes where the inaccessible nodes are nodes at which neither voltages nor currents can be applied or measured. We assume that the inaccessible nodes of N are numbered consecutively from 1 to m, and the accessible nodes of N are numbered consecutively from $m+1$ to $m+n+1$, where m and $n+1$ denote the numbers of inaccessible nodes and accessible nodes, respectively. The node $m+n+1$ is designated as the reference node of N.

A unistor is a directed branch such that its current can only flow in the direction of the arrow through the branch and is proportional to the node-voltage of its initial node, independently of the node-voltage of its terminal node. The proportional constant is called the admittance of the unistor. The unistor is represented by an ordered pair of the form (p, q) if its initial node is q and its terminal node is p, and is shown in Fig.1, where i is the current of the unistor, $y_{p q}$ is the admittance of the unistor, and v_{q} is the node-voltage of node q with respect to the reference node, and the voltagecurrent characteristic of the unistor is represented by

Fig. 1 Unistor.
It should be noted that the unistor is an abstract circuit element but is a powerful tool for treating the element-value determination problem. Now let \boldsymbol{V} be the node-voltage vector, let \boldsymbol{I} be the current-source vector, and let \boldsymbol{Y} be the nodal admittance matrix with respect to the reference node of N. Then the nodal equation of N is represented by

$$
\begin{equation*}
\boldsymbol{Y} \boldsymbol{V}=\boldsymbol{I} \tag{2}
\end{equation*}
$$

Let $y_{p q}$ be the negative of the p-th row and q-th column element of \boldsymbol{Y}, and let $y_{m+n+1 q}$ be the sum of all the elements
in the q-th column vector of \boldsymbol{Y}. Then, for N, we can construct a unistor circuit N^{*} in such a way that (i) N^{*} and N have the same node set, (ii) there exists in N^{*} a unistor (p, q) whose admittance is $y_{p q}$ if and only if $y_{p q} \neq 0$ for $p \neq q$, where p, $q=1,2, \ldots, m+n$, (iii) there exists in N^{*} a unistor ($m+n+1, q$) whose admittance is $y_{m+n+1 q}$ if and only if $y_{m+n+1 q} \neq 0$, where $q=1,2, \ldots, m+n$, and (iv) N^{*} and N have the same independent current sources. Such a unistor circuit N^{*} is called associated unistor circuit of N. Two unistors are called parallel unistors if they have the same initial nodes and the same terminal nodes. In this construction, N^{*} has no parallel unistors. It should be noted that the topology of N^{*} can be determined directly from both the topology of N and the distribution of voltage-controlled current sources in N. The unistor circuit representation of a non-source branch with admittance y is a pair of unistors with equal admittance y. If each pair of unistors with equal admittance in N^{*} is drawn in a figure by a single branch with no direction, then the topology of N^{*} is identical with the topology of N if N does not contain voltage-controlled current sources.

Let us consider a sequence of circuits $N_{0}, N_{1}, \ldots, N_{m-1}$ and N_{m}, which are obtained from N^{*} by eliminating the inaccessible nodes one by one in an elimination order π by a generalized star-to-polygon transformation, where parallel unistors generated by eliminating each inaccessible node are assumed to be replaced with a single unistor with the sum of admittances of the parallel unistors. N_{0} is the original unistor circuit N^{*} itself, $N_{k}(k=1,2, \ldots, m)$ is the unistor circuit obtained from N_{k-1} by eliminating inaccessible node $\pi(k)$ by the transformation, and N_{m} is the final unistor circuit which contains the accessible nodes only and whose nodal admittance matrix can be calculated from measurements performed at the accessible nodes. It should be noted that N_{m} is unique, independently of the order π. Let V_{k} be the set of nodes of N_{k} and let E_{k} be the set of unistors of N_{k}. With respect to node $\pi(k)$ in N_{k-1}, let V_{k}^{-}be the set of terminal nodes of unistors directed from the node $\pi(k)$ in N_{k-l}, let V_{k}^{+}be the set of initial nodes of unistors directed to the node $\pi(k)$ in N_{k-1}, let A_{k} be the set of unistors connected to the node $\pi(k)$ in N_{k-1} (i.e., directed either from or to the node $\pi(k)$ in $\left.N_{k-1}\right)$, let B_{k} be the set of all the unistors in N_{k-1} such that the initial (resp.,terminal) node of each of unistors is in V_{k}^{+}(resp., in V_{k}^{-}), and let C_{k} be the set of all the unistors in N_{k} such that, for the initial node, say b, and the terminal node, say a, of each of the unistors, there exists no unistor (a, b) in N_{k-1}. Let $y_{p q}^{(k)}$ be the admittance of unistor (p, q) of N_{k} and let $y_{p q}^{(0)}=y_{p q}$. Then, for every $k=1,2, \ldots, m$, the following relations holds;
(i) $V_{k}=V_{k-1}-\{\pi(\mathrm{k})\}$ and $E_{k}=\left(E_{k-1}-A_{k}\right) \cup C_{k}$
(ii) for every unistor (p, q) in $E_{k-1}^{k-1}-A_{k} \cup B_{k}$ in N_{k}

$$
\begin{equation*}
y_{p q}^{(k)}=y_{p q}^{(k-1)} \tag{3}
\end{equation*}
$$

(iii) for every unistor (p, q) in B_{k} in N_{k}

$$
\begin{equation*}
y_{p q}^{(k)}=y_{p q}^{(k-1)}+y_{p \pi(k)}^{(k-1)} y_{\pi(k) q}^{(k-1)} / \Delta^{(k-1)} \tag{4}
\end{equation*}
$$

(iv) for every unistor (p, q) in C_{k} in N_{k}

$$
\begin{equation*}
y_{p q}^{(k)}=y_{p \pi(k)}^{(k-1)} y_{\pi(k) q}^{(k-1)} / \Delta^{(k-1)} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta^{(k-1)}=\sum_{p \in V_{k}^{k}} y_{p \pi(k)}^{(k-1)} \tag{6}
\end{equation*}
$$

A set of equations of (4) and (5) is called a generalized star-to-polygon transformation which obtains N_{k} from N_{k-1} by eliminating inaccessible node $\pi(k)$.

3. A Solution of Element-Value Determinability Problem of the Unistor Circuit Model

Assume that $D_{k}=V_{k}^{+} \bigcap V_{k}^{-}$is not empty. If all the unistor admittances in N_{k} are known, and if the following set of equations:

$$
\left.\begin{array}{l}
y_{p \pi(k)}^{(k-1)} y_{\pi(k) q}^{(k-1)} / \Delta^{(k-1)}=y_{p q}^{(k)} \text { for all }(p, q) \in C_{k} \tag{7}\\
y_{p \pi(k)}^{(k-1)}=y_{\pi(k) q}^{(k-1)} \text { for all } p \in D_{k}
\end{array}\right\}
$$

contains as the variables the admittances (of the forms $y_{p \pi(k)}^{(k-1)}$ and/or $y_{\pi(k) q}^{(k-1)}$) of all the fundamental unistor (at least one of its endnodes is inaccessible) of N_{k-1}, and furthermore if it has a unique solution with respect to the variables, then the remaining unistor admittances in N_{k-1} are obtained from sets of equations of (4) and (5), where $\Delta^{(k-1)}$ is given by (6). That is, if (7) can be uniquely solved, then N_{k-1} can be restored from N_{k}. For convenience's sake of unified description, let us introduce new notations: $x_{p}^{(k-1)}=y_{p \pi(k)}^{(k-1)}=y_{\pi(k) p}^{(k-1)}$ for every p in $D_{k} ; x_{p}^{(k-1)}=y_{p \pi(k)}^{(k-1)}$ for every p in $V_{k}^{-}-D_{k} ; x_{p+}^{(k-1)}=y_{\pi(k) p}^{(k-1)}$ for every p in $V_{k}^{+}-D_{k} ; a_{p q}^{(k)}=y_{p q}^{(k)}$ for every (p, q) in $\left\{(p, q) \in C_{k}\right.$ $\left.\mid p, q \in D_{k}\right\} ; a_{p q+}^{(k)}=y_{p q}^{(k)}$ for every (p, q) in $\left\{(p, q) \in C_{k} \mid p \in D_{k}\right.$, $\left.q \in\left(V_{k}^{+}-D_{k}\right)\right\} ; a_{p-q}^{(k)}=y_{p q}^{(k)}$ for every (p, q) in $\left\{(p, q) \in C_{k} \mid\right.$ $\left.p \in\left(V_{k}^{-}-D_{k}\right), q \in D_{k}\right\} ; a_{p-q+}^{(k)}=y_{p q}^{(k)}$ for every (p, q) in $\left\{(p, q) \in C_{k} \mid p \in\left(V_{k}^{-}-D_{k}\right), q \in\left(V_{k}^{+}-D_{k}\right)\right\} ;$ and $\bar{C}_{k}=\left\{(p, q) \mid(p, q) \in C_{k}, p, q \in D_{k}\right\} \bigcup\left\{\left(p, q^{+}\right) \mid(p, q) \in C_{k}, p \in D_{k}\right.$, $\left.q \in\left(V_{k}^{+}-D_{k}\right)\right\} \bigcup\left\{\left(p^{-}, q\right) \mid(p, q) \in C_{k}, p \in\left(V_{k}^{-}-D_{k}\right), q \in D_{k}\right\} \bigcup\left\{\left(p^{-}\right.\right.$,$\left.\left.q^{+}\right) \mid(p, q) \in C_{k}, p \in\left(V_{k}^{-}-D_{k}\right), q \in\left(V_{k}^{+}-D_{k}\right)\right\}$.
Then, (7) can be rewritten simply as:

$$
\begin{equation*}
x_{u}^{(k-1)} x_{v}^{(k-1)} / \Delta^{(k-1)}=a_{u v}^{(k)} \text { for all }(u, v) \text { in } \bar{C}_{k} \tag{8}
\end{equation*}
$$

where (6) can be rewritten as

$$
\begin{equation*}
\Delta^{(k-1)}=\sum_{p} x_{p}^{(k-1)} \tag{9}
\end{equation*}
$$

As a graph associated with (8), we define an undirected graph G_{k} such that the set of nodes in $V\left(G_{k}\right)=\left\{p \mid p \in D_{k}\right\} \bigcup\left\{p^{-}\right.$ $\left.\mid p \in\left(V_{k}^{-}-D_{k}\right)\right\} \bigcup\left\{p^{+} \mid p \in\left(V_{k}^{+}-D_{k}\right)\right\}$ and the set of edges is $E\left(G_{k}\right)=\{[u, v] \mid(u, v) \in \bar{C}\}$ where $[\mathrm{u}, \mathrm{v}]$ denotes an undirected edge whose both endnodes are u and $v . G_{k}$ is called the associated graph of (8), or the graph associated with the elimination of inaccessible node $\pi(k)$ in N_{k-1}. A particular subgraph of G_{k} such that (a) the subgraph contains all the nodes of G_{k} and (b) each of the connected components of the subgraph contains exactly one cycle with an odd number of edges (greater than or equal to three) is a dendroid of G_{k}, where a cycle is loop whose nodes are all distinct. Also, G_{k} is said to be dendroidal if either (a) it has a connected dendroid or (b) it has a disconnected dendroid such that the signs of the real and imaginary parts of the unistor admittance
associated with a certain node of each connected component are known.

In [3], the following theorem was obtained:
Theorem 1: Suppose that the topology of N^{*} and all the unistor admittances of N_{m} are known. Then, $N^{*}\left(=N_{0}\right)$ can be uniquely restored from N_{m} if there exists an elimination order π of inaccessible nodes such that every G_{k} is dendroidal for $k=1,2, \ldots, m$.//

4. Element-Value Determination with Measurement Errors

Theorem 1 gave us a method for actual computation of the element-values of $N_{0}[3,4]$. We can obtain N_{0} from N_{m} by reviving all the eliminated nodes one by one in the reverse order of elimination. In such backward process, we use admittances corresponding to edges of the dendroid to solve (8). However, actual computation of element-values has not taken measurement errors into consideration. Suppose that all the admittances of N_{k} are subjected to measurement errors and G_{k} has several dendroids. Then by using admittances corresponding the respective dendroids, we obtain several N_{k} ,'s whose admittances are different from one another, but we have no means of knowing which one is suitable for N_{k-1}.

Suppose that G_{k} has s edges and the dendroid consists of t edges, where $s>t \geq 3$. Then (8) constitutes a system of overdetermined equations with respect to variables $x_{w}^{(k-1)}$'s ($w \in V\left(G_{k}\right)$), that is, the number of equations is larger than the number of unknown variables. One of the common methods to resolve this problem is the least-squares method. We shall determine all the variables by minimizing

$$
\begin{equation*}
S^{(k-l)}=\sum_{[u, v] \in E\left(G_{k}\right)}\left(z_{u}^{(k-l)} z_{v}^{(k-l)}-a_{u v}^{(k)}\right)^{2} \tag{10}
\end{equation*}
$$

where $z_{w}^{(k-l)}=x_{w}^{(k-l)} / \sqrt{\Delta^{(k-l)}}$'s $(w=u, v)$. The minimum is specified by setting all the partial derivatives $\partial S^{(k-l)} / \partial_{z_{w}}^{(k-l)}$'s $\left(w \in V\left(G_{k}\right)\right)$ equal to zero, i.e.,
$\partial s^{(k-1)} / \partial z_{u}^{(k-1)}=2 \sum_{[u, v] \in E\left(G_{k}\right)}\left(z_{u}^{\left.(k-1) z_{v}^{(k-l)}-a_{u v}^{(k)}\right) z_{v}^{(k-1)}=0}\right\}$
$\partial S^{(k-1)} / \partial z_{v}^{(k-1)}=2 \sum_{[u, v] \in E\left(G_{k}\right)}\left(z_{u}^{(k-1)} z_{v}^{(k-1)}-a_{u v}^{(k)} z_{u}^{(k-1)}=0\right.$)
(11) is a system of nonlinear equations, and can be solved by Newton-Raphson method starting from the element-values of N_{k-1} obtained based on a dendroid as the initial guess. Then, substituting the solution into $\Delta^{(k-1)}, x_{w}^{(k-1)}$'s $\left(w \in V\left(G_{k}\right)\right)$ are obtained as follows;

$$
\begin{equation*}
x_{w}^{(k-l)}=K^{(k-l)} z_{w}^{(k-l)} \tag{12}
\end{equation*}
$$

where $K^{(k-l)}=\sum_{p} z_{p}^{(k-l)}$.
A system of nonlinear equations (11) can be linearized by taking logarithms before summing squares. Taking logarithms of both sides of (8), the following sum of squares is obtained instead of (10),

$$
\begin{equation*}
\tilde{S}^{(k-l)}=\sum_{[u, v] \in E\left(G_{k}\right)}\left(\tilde{z}_{u}^{(k-l)}+\tilde{z}_{v}^{(k-l)}-\tilde{a}_{u v}^{(k)}\right)^{2} \tag{13}
\end{equation*}
$$

where $\tilde{z}_{w}^{(k-l)}=\ln \left(x_{w}^{(k-l)} / \sqrt{\Delta^{(k-l)}}\right)$ and $\tilde{a}_{u v}^{(k)}=\ln \left(a_{u v}^{(k)}\right)(\mathrm{w}=\mathrm{u}$, v). Setting all the partial derivatives $\partial \tilde{S}^{(k-l)} / \partial \tilde{z}_{w}^{(k-l)}$'s ($w \in V\left(G_{k}\right)$ equal to zero gives

$$
\left.\begin{array}{l}
\partial \tilde{S}^{(k-l)} / \partial \tilde{z}_{u}^{(k-l)}=2 \sum_{[u, v] \in E\left(G_{k}\right)}\left(\tilde{z}_{u}^{(k-l)}+\tilde{z}_{v}^{(k-l)}-\tilde{a}_{u v}^{(k)}\right)=0 \tag{14}\\
\partial \tilde{S}^{(k-l)} / \partial \tilde{z}_{v}^{(k-l)}=2 \sum_{[u, v] \in E\left(G_{k}\right)}\left(\tilde{z}_{u}^{(k-l)}+\tilde{z}_{v}^{(k-l)}-\tilde{a}_{u v}^{(k)}\right)=0
\end{array}\right\}
$$

(14) is a system of linear equations with respect to $\tilde{z}_{w}^{(k-I)}$ ($w \in V\left(G_{k}\right)$. Solving (14), $x_{w}^{(k-l)}$'s are obtained as follows;

$$
\begin{equation*}
x_{w}^{(k-l)}=\tilde{K}^{(k-l)} \exp \left(\tilde{z}_{w}^{(k-l)}\right) \tag{15}
\end{equation*}
$$

where $\tilde{K}^{(k-l)}=\sum_{p} \exp \left(\tilde{z}_{p}^{(k-l)}\right)$.
Example 1. We work out a resistive network N_{0} of Fig.2(a) to illustrate the procedure. Let us assume that nodes 1, 2, 3 and 4 are accessible and node 5 is inaccessible. Fig.2(b) illustrates N_{1} obtained from N_{0} by eliminating node 5 by a generalized star-to-polygon transformation, where

$$
\left.\begin{array}{l}
y_{12}^{(1)}\left(=y_{21}^{(1)}\right)=y_{15}^{(0)} y_{25}^{(0)} / \Delta^{(0)}, y_{13}^{(1)}\left(=y_{31}^{(1)}\right)=y_{15}^{(0)} y_{35}^{(0)} / \Delta^{(0)} \\
y_{14}^{(1)}\left(=y_{41}^{(1)}\right)=y_{15}^{(0)} y_{45}^{(0)} / \Delta^{(0)}, y_{23}^{(1)}\left(=y_{32}^{(1)}\right)=y_{25}^{(0)} y_{35}^{(0)} / \Delta^{(0)} \tag{16}\\
y_{24}^{(1)}\left(=y_{42}^{(1)}\right)=y_{25}^{(0)} y_{45}^{(0)} / \Delta^{(0)}, y_{34}^{(1)}\left(=y_{43}^{(1)}\right)=y_{35}^{(0)} y_{45}^{(0)} / \Delta^{(0)}
\end{array}\right\}
$$

and $\Delta^{(0)}=y_{15}^{(0)}+y_{25}^{(0)}+y_{35}^{(0)}+y_{45}^{(0)}$.

(a) N_{0}
(b) N_{1}
(c) G_{1}
(d) $G_{1}{ }^{\prime}$

Fig. 2 Circuits and associated graphs for example 1.
Since the associated graph has the same structure as N_{1} and has several connected dendroids, we can see from theorem 1 that N_{0} can be uniquely restored from N_{1}, if all the admittances of N_{1} are free of measurement errors. The original circuit, denoted by N_{0}, can be uniquely obtained by using admittances of N_{1} corresponding to edges of G_{1} of Fig.2(c). Also, the another original circuit, denoted by N_{0} ', can be uniquely obtained by using admittances of N_{1} corresponding to edges of the another dendroid $G_{1}{ }^{\prime}$ of Fig.2(d). If all the admittances of N_{1} are subject to measurement errors, then N_{0} and $N_{0}{ }^{\prime}$ are different from each other. Next we shall determine all $y_{p q}^{(0)}$'s by minimizing the sum of squares,

$$
\begin{equation*}
S^{(0)}=\sum_{p, q=1}^{4}\left(z_{p}^{(0)} z_{q}^{(0)}-a_{p q}^{(I)}\right)^{2} \quad(p<q) \tag{17}
\end{equation*}
$$

where $z_{p}^{(0)}=y_{p S}^{(0)} / \sqrt{\Delta^{(0)}}$ and $a_{p q}^{(1)}=y_{p q}^{(1)}$. At the minimum for $S^{(0)}$, all the partial derivatives $\partial S^{(0)} / \partial z_{p}^{(0)}$'s vanish. Writing the equations for these gives four equations;

$$
\left.\begin{array}{l}
\partial S^{(0)} / \partial z_{l}^{(0)}=2\left\{f_{12}^{(0)} z_{2}^{(0)}+f_{13}^{(0)} z_{3}^{(0)}+f_{14}^{(0)} z_{4}^{(0)}\right\}=0 \\
\partial S^{(0)} / \partial z_{2}^{(0)}=2\left\{f_{12}^{(0)} z_{1}^{(0)}+f_{23}^{(0)} z_{3}^{(0)}+f_{24}^{(0)} z_{4}^{(0)}\right\}=0 \\
\partial S^{(0)} / \partial z_{3}^{(0)}=2\left\{f_{13}^{(0)} z_{1}^{(0)}+f_{23}^{(0)} z_{2}^{(0)}+f_{34}^{(0)} z_{4}^{(0)}\right\}=0 \tag{18}\\
\partial S^{(0)} / \partial z_{4}^{(0)}=2\left\{f_{14}^{(0)} z_{1}^{(0)}+f_{24}^{(0)} z_{2}^{(0)}+f_{34}^{(0)} z_{3}^{(0)}\right\}=0
\end{array}\right\}
$$ where $f_{p q}^{(0)}=z_{p}^{(0)} z_{q}^{(0)}-a_{p q}^{(I)}$. The system of (18) is solved by using Newton-Raphson method starting from the elementvalues of N_{0} or $N_{0}{ }^{\prime}$ as the initial guess. Then, substituting the solution into $\Delta^{(0)}$, admittances of N_{0} is obtained as follows;

$$
\begin{equation*}
y_{p 5}^{(0)}=K^{(0)} z_{p}^{(0)} \quad(p=1,2,3,4) \tag{19}
\end{equation*}
$$

where $K^{(0)}=z_{l}^{(0)}+z_{2}^{(0)}+z_{3}^{(0)}+z_{4}^{(0)}$.

Taking logarithms of both sides of (16), the following sum of squares is obtained instead of (17),

$$
\begin{equation*}
\tilde{S}^{(0)}=\sum_{p, q=I}^{4}\left(\tilde{z}_{p}^{(0)}+\tilde{z}_{q}^{(0)}-\tilde{a}_{p q}^{(I)}\right)^{2} \tag{20}
\end{equation*}
$$

where $\tilde{z}_{p}^{(0)}=\ln \left(y_{p 5}^{(0)} / \sqrt{\Delta^{(0)}}\right)$ and $\tilde{a}_{p q}^{(I)}=\ln \left(y_{p q}^{(I)}\right)$. Setting all the partial derivatives $\partial \tilde{S}^{(0)} / \partial \tilde{z}_{p}^{(0)}$'s $(p=1,2,3,4)$ equal to zero gives

$$
\left[\begin{array}{llll}
3 & 1 & 1 & 1 \tag{21}\\
1 & 3 & 1 & 1 \\
1 & 1 & 3 & 1 \\
1 & 1 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
\tilde{z}_{1}^{(0)} \\
\tilde{z}_{2}^{(0)} \\
\tilde{z}_{3}^{(0)} \\
\tilde{z}_{4}^{(0)}
\end{array}\right]=\left[\begin{array}{l}
\tilde{a}_{12}^{(I)}+\tilde{a}_{13}^{(I)}+\tilde{a}_{14}^{(I)} \\
\tilde{a}_{12}^{(I)}+\tilde{a}_{23}^{(I)}+\tilde{a}_{24}^{(I)} \\
\tilde{a}_{13}^{(I)}+\tilde{a}_{23}^{(I)}+\tilde{a}_{34}^{(I)} \\
\tilde{a}_{14}^{(I)}+\tilde{a}_{24}^{(I)}+\tilde{a}_{34}^{(I)}
\end{array}\right]
$$

Solving (21), $y_{p 5}^{(0)}$ are obtained as follows;

$$
\begin{equation*}
y_{p S}^{(0)}=\tilde{K}^{(0)} \exp \left(\tilde{z}_{p}^{(0)}\right) \quad(\mathrm{p}=1,2,3,4) \tag{22}
\end{equation*}
$$

where $\tilde{K}^{(0)}=\exp \left(\tilde{z}_{l}^{(0)}\right)+\exp \left(\tilde{z}_{2}^{(0)}\right)+\exp \left(\tilde{z}_{3}^{(0)}\right)+\exp \left(\tilde{z}_{4}^{(0)}\right)$.
When all the admittances of N_{1} contain measurement errors within $\pm 1 \%$, calculation results are given in Table 1. We see that computation errors resulting from the method of leastsquares are smaller than those based on the dendroids.

Table 1 Calculation results.

		G1		G1'		Newton method		Linear eqs.	
	$\left\lvert\, \begin{array}{l\|} \hline \text { exact } \\ \text { values [S] } \end{array}\right.$	calculated values [S]	$\begin{array}{\|l} \hline \begin{array}{l} \text { errors } \\ \text { [\%] } \end{array} \\ \hline \end{array}$	calculated values [S]	$\begin{aligned} & \hline \begin{array}{l} \text { errors } \\ {[\%]} \end{array} \\ & \hline \text {. } \end{aligned}$	calculated values [S]	$\begin{aligned} & \hline \begin{array}{l} \text { errors } \\ {[\%]} \end{array} \\ & \hline \end{aligned}$	calculated values [S]	$\begin{array}{\|l} \hline \begin{array}{l} \text { errors } \\ {[\%]} \end{array} \\ \hline \end{array}$
$y_{15}^{(0)}$	1.000	0.994	0.60	1.026	2.64	0.996	0.39	0.997	0.34
$y_{25}^{(0)}$	2.000	2.028	1.4	2.012	0.60	2.007	0.35	1.993	0.34
$y_{35}^{(0)}$	3.000	3.104	3.46	2.958	1.39	2.961	1.29	2.990	0.34
$y_{45}^{(0)}$	4.000	4.056	1.41	4.024	0.60	3.998	0.04	3.986	0.34

Example 2. We illustrate DC small-signal equivalent circuit of a single-stage transistor amplifier of Fig.3(a), considered in [5]. The associated unistor circuit $N^{*}=N_{0}$ is shown in Fig.3(b). First, eliminating node 6 by a generalized star-to-polygon transformation, we obtain as N_{1} and G_{1} a circuit and a graph shown in (c) and (d) of Fig.3, respectively. Subsequently, eliminating node 7 by a generalized star-topolygon transformation, we obtain as N_{2} and G_{2} a circuit and a graph shown in (e) and (f) of Fig.3. Since both G_{2} and G_{1} have the respective connected dendroids indicated by the bold lines in the figure, we can see from theorem 1 that N_{0} can be restored from N_{2}. Since N_{0} has two inaccessible nodes 6 and 7, the sum of squares, $S^{(I)}=\sum\left(z_{p}^{(I)} z_{q}^{(I)}-a_{p q}^{(2)}\right)^{2}$, is required to be minimum in the restoration of N_{1} from N_{2}, where $z_{u}^{(I)}=x_{u}^{(I)} / \sqrt{\Delta^{(l)}}\left(u \in V\left(G_{2}\right)\right), \quad a_{p q}^{(2)}=y_{p q}^{(2)}\left((p, q) \in E\left(G_{2}\right)\right)$ and \sum stands for the summation taken over all $(p, q) \in E\left(G_{2}\right)$. Subsequently, the sum of squares, $S^{(0)}=\sum\left(z_{p}^{(0)} z_{q}^{(0)}-a_{p q}^{(I)}\right)^{2}$ is required to be minimum in the restoration of N_{0} from N_{1}, where $\left.z_{u}^{(0)}=x_{u}^{(0)} / \sqrt{\Delta^{(0)}}\left(u \in V\left(G_{1}\right)\right), a_{p q}^{(1)}=y_{p q}^{(1)}(p, q) \in E\left(G_{1}\right)\right)$ and \sum stands for the summation taken over all $(p, q) \in E\left(G_{1}\right)$. The system similar to (11), obtained by setting the partial derivatives $\partial S^{(I)} / \partial z_{p}^{(I)}$'s (resp., $\partial S^{(0)} / \partial z_{p}^{(0)}$'s) equal to zero is solved by using Newton-Raphson method starting from the element-values of $N_{2}\left(\right.$ resp., $\left.N_{1}\right)$ obtained based on dendroid $G_{2}\left(\right.$ resp., $\left.G_{1}\right)$ as the initial guess. In the case where all the admittances of N_{2} are assumed to be subjected to measurement errors within $\pm 1 \%$, calculation results with resistances are
given in Table 2. We see that the computation errors resulting from the method of least-squares are smaller.

(a) N

(b) N_{0}

(c) N_{1}
(d) G_{1}
(e) N_{2}

Fig. 3 Circuits and graphs for example 2.
Table 2 Calculation results.

	exact values $[\mathrm{k} \Omega]$	denculated values $[\mathrm{k} \Omega]$		errors $[\%]$	calculated values $[\mathrm{k} \Omega]$	errors $[\%]$	calculated values $[\mathrm{k} \Omega]$	errors $[\%]$	
R_{1}	90.00	89.11	0.99	89.11	0.99	89.11	0.99		
R_{2}	10.00	9.901	0.99	9.901	0.99	9.901	0.99		
R_{3}	5.00	5.033	0.67	5.050	1.01	5.046	0.93		
R_{4}	1.00	0.987	0.91	0.991	0.91	0.998	0.24		
R_{5}	1.00	1.027	2.70	1.010	0.99	1.014	1.43		
R_{6}	1.00	1.007	0.67	1.009	0.93	1.003	0.26		
r_{7}	2.360×10^{9}	2.329×10^{9}	1.32	2.337×10^{9}	0.99	2.335×10^{9}	1.07		
r_{8}	3.670×10^{8}	3.609×10^{8}	1.65	3.632×10^{8}	1.03	3.622×10^{8}	1.32		
r_{9}	1.670	1.648	1.32	1.655	0.91	1.666	0.24		
r_{10}	1.670×10^{-2}	1.642×10^{-2}	1.68	1.654×10^{-2}	1.00	1.656×10^{-2}	0.83		

5. Conclusion

In this paper, it has been shown that the element-value determination taking into account the measurement errors constitutes a system of overdetermined equations. We have proposed the least-squares method for actual computation of element-values. Newton-Raphson method converges rapidly because the initial guess is from the element-values previously determined based on dendroids.

References

[1] R.S.Berkowitz,"Conditions for network-element-value solvability",IRE Trans. Circuit Theory,CT-9, pp.24-29, 1962.
[2] S.Shinoda and K.Okada,"On solutions of the Elementvalue determinability problem of linear analog circuits," IEICE Trans. Fundamentals, vol. E77-A, No.7, pp11321143, 1994.
[3] I.Yamaguchi, S.Shinoda and T. Ozawa," Conditions on the parameter-value determinability of linear analog circuits," Trans. IEICE, vol. J70-A, No.5, pp.839-855, 1987.
[4] I.Yamaguchi and S.Shinoda,"A sufficient condition for the unique restorability of circuits and its related graph-theoretic problems," Trans. IEICE, J73-A, No.4, pp.839-855, 1990.
[5] N.Navid and A.N.Willson, Jr.," A theory and an algorithm for analog circuit fault diagnosis," IEEE Trans. Circuit and System, CAS-26, pp.440-457, 1979.

