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Abstract—We consider M -phase spreading se-
quences of Markov chains (M = 3, 4, · · · ) and show
that the correlational properties of M -phase spread-
ing sequences of Markov chains are generally indepen-
dent of the mixing property for the associated M -state
Markov chains. We also give a necessary and sufficient
condition for these two properties to be independent.

1. Introduction

Designing spreading sequences is one of the essen-
tial elements of spread spectrum techniques. Pursley
defined the average interference parameter (AIP) and
gave the average signal-to-noise ratio (SNR) at the re-
ceiver output by using Gaussian distributions whose
variance was the AIP for asynchronous SSMA com-
munication systems using binary spreading sequences
[1]. This is so called the standard Gaussian approxi-
mation (SGA) with the AIP.

It is natural to consider the problem to find
spreading sequences that minimize the AIP. The
AIP is a function of aperiodic auto-correlation func-
tions for spreading sequences. It is the vari-
ance of multiple access interference (MAI) regarding
the data symbols, the time delays, and the phase
shifts as random variables for fixed spreading se-
quences. In [2], an N -dimensional random vector
(X1, X2, · · · , XN ) taking values in SN is considered,
where S =

{
1, e

1
M 2π

√−1, e
2

M 2π
√−1, · · · , e

M−1
M 2π

√−1
}
.

For such a vector, like a stationary process, requiring
Cov(X1, X1+�) = Cov(Xn, Xn+�) (n = 1, 2, · · · , N−�)
for � = 0, 1, 2, · · · , N − 1, the expected value of the
AIP for complex-valued sequences becomes a func-
tion over R2N with respect to �(Cov(X1, X1+�)) and
�(Cov(X1, X1+�)), where Cov(X, Y ) denotes the co-
variance of random variables X and Y . �(α) and �(α)
denote respectively the real part and imaginary part
of the complex number α. Then it is shown that the
AIP is a positive definite quadratic form over R2N and
global minimizers are given by �(Cov(X1, X1+�)) =
ar� + b/r�, and �(Cov(X1, X1+�)) ≡ 0 with r =
−2 +

√
3, where a and b are constants determined

by the property of aperiodic auto-correlation functions
C(�).

To construct spreading sequences with the decay
rate r of correlational property, spreading sequences
generated by PL (piecewise linear) Markov maps with
the mixing rate r were proposed in [3].

As far as symbolic dynamics of PL Markov transfor-
mations are concerned, we know that their statistical
properties are equivalent to those of Markov chains [4].

In this study, we consider M -phase spreading se-
quences of Markov chains and show that the corre-
lational properties of M -phase spreading sequences of
Markov chains are generally independent of the mixing
property for the associated M -state Markov chains.
We also give a necessary and sufficient condition for
these two properties to be independent. These results
raise an important question on the designing method
for spreading sequences in [2].

2. Spreading Sequences Generated by Markov
Chains Characterized by Circulant Matrices

We know that circulant matrices can be diagonal-
ized by Fourier matrices (see Theorem 3.2.2 in [5]).
By virtue of this theorem, we can explicitly obtain the
distributions of the real part of the normalized MAI for
SSMA communication systems using M -phase spread-
ing sequences of Markov chains characterized by circu-
lant matrices as follows. Practically, this is very useful
for applying these sequences to SSMA communication
systems because bit error probabilities in such systems
caused by the real part of MAI from other J −1 chan-
nels can be explicitly evaluated in advance.

Firstly we consider M -phase spreading sequences of
Markov chains. Let X = (Xn)∞n=0 and Y = (Yn)∞n=0

be Markov chains, on a state space

S =
{
1, e

1
M 2π

√−1, e
2

M 2π
√−1, · · · , e

M−1
M 2π

√−1
}

. (1)
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We set

pij = Prob
{

Xn+1 = e
j−1
M 2π

√−1

∣∣∣∣Xn = e
i−1
M 2π

√−1

}

= Prob
{

Yn+1 = e
j−1
M 2π

√−1

∣∣∣∣Yn = e
i−1
M 2π

√−1

}

(2)

for i, j = 1, 2, · · · , M . We define the transition matrix
by P = (pij)i,j∈S .

Suppose that X and Y are stationary Markov
chains and mutually independent. Let their station-
ary distributions be

Prob
{
Xn = e

i−1
M 2π

√−1
}

= Prob
{
Yn = e

i−1
M 2π

√−1
}

= 1/M (3)

for i = 1, 2, · · · , M . Then we have

E[Xn] = E[Yn] = 0, (4)
E

[
XnYn+�

]
= E[Xn]E

[
Yn

]
= 0 for � ≥ 0, (5)

where E[Z] denotes the expected value of random vari-
able Z.

We note here that the transition matrix P is a dou-
bly stochastic matrix by the condition (3).

Consider a class of the Markov chains stated above
whose transition matrix P is circulant and set

P

=

⎛
⎜⎜⎜⎝

1 − ∑M−1
i=1 pi p1 · · · pM−1

pM−1 1 − ∑M−1
i=1 pi · · · pM−2

...
...

...
...

p1 p2 · · · 1 − ∑M−1
i=1 pi

⎞
⎟⎟⎟⎠ ,

(6)

where 0 ≤ pi ≤ 1 (i = 1, 2, · · · , M − 1), then we have

Lemma 1

E
[
XnXn+�

]
= E

[
YnYn+�

]
= λ� for � ≥ 0, (7)

which immediately leads to

∣∣E [
XnXn+�

]∣∣2 =
∣∣E [

YnYn+�

]∣∣2 = |λ|2� for � ≥ 0.
(8)

Besides we have

Lemma 2

E[XnXn+�] = E[YnYn+�] = 0 for � ≥ 0, (9)

which immediately leads to

|E[XnXn+�]|2 = |E[YnYn+�]|2 = 0 for � ≥ 0, (10)

where λ = 1 − ∑M−1
i=1 pi + p1e

M−1
M 2π

√−1 +

p2e
2(M−1)

M 2π
√−1 + · · · + pM−1e

(M−1)2

M 2π
√−1.

Applying Theorem 2 in [6] in conjunction with
Lemma 2, we have

Corollary 1 Consider SSMA communication sys-
tems using M -phase spreading sequences of Markov
chains characterized by transition matrix P . For fixed
the fractional part of the relative time delay τ , the dis-
tributions of the real part of the normalized MAI for
such systems are Gaussian if P is a circulant matrix.

Now we are in a position to obtain the distribu-
tions of the real part of the normalized MAI for SSMA
communication systems using M -phase spreading se-
quences of Markov chains characterized by circulant
matrices.

If we regard τ as the outcome of random variable T
with uniform distribution on [0, 1), then we have

Lemma 3 Consider SSMA communication systems
using M -phase spreading sequences of Markov chains
with circulant transition matrix. The density of distri-
bution of the real part of the normalized MAI for such
systems is given by

∫ 1

0

1√
2πσ(τ)2

exp
(
− z2

2σ(τ)2

)
dτ, z ∈ R, (11)

where

σ(τ)2 = {(1 − τ)2 + τ2}1
2

(
1 +

2|λ|2
1 − |λ|2

)

+2(1 − τ)τ
1
2
(λ + λ)

(
1 +

|λ|2
1 − |λ|2

)
. (12)

As a first approximation, we simply follow the con-
ventional optimization in [7]–[8]. Its reliability is ex-
perimentally discussed in [9]. The expected value of
the variance σ(T )2 is given by

E[σ(T )2]

=
1
3

(
1 +

2|λ|2
1 − |λ|2

)
+

1
3
· 1
2
(λ + λ)

(
1 +

|λ|2
1 − |λ|2

)
.

(13)

Since E[σ(T )2] is a function of λ, we denote it by
σ(λ)2. We obtain

Theorem 1 σ2 takes the minimum value 1/(2
√

3) if
and only if λ = −2 +

√
3.

Interestingly we encounter this very number −2+
√

3
again as we found in [2] and [7].

Although the optimization method in [2] does not
tell us how to design the optimum spreading sequences
based on the AIP, the optimization method proposed
in this study explicitly gives the optimum 3-phase and
Q-phase spreading sequences of Markov chains based
on the CLT as follows.
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Example 1 In a class of Markov chains whose tran-
sition matrix P is circulant, the optimum 3-phase
spreading sequences of Markov chains are uniquely
characterized by

P =

⎛
⎝ 1 − 2a a a

a 1 − 2a a
a a 1 − 2a

⎞
⎠ (14)

with a = 1 − 1/
√

3. The set of all eigenvalues of P is
given by Λ = {1,−2 +

√
3,−2 +

√
3}.

Example 2 In a class of Markov chains whose tran-
sition matrix P is circulant, the optimum Q-phase
spreading sequences of Markov chains are character-
ized by

P

=

⎛
⎜⎜⎝

1 − 2a − c a a c
c 1 − 2a − c a a
a c 1 − 2a − c a
a a c 1 − 2a − c

⎞
⎟⎟⎠

(15)

with a + c = (3 − √
3)/2, 0 ≤ a ≤ 1, 0 ≤ c ≤ 1, and

0 ≤ 2a+c ≤ 1. The set of all eigenvalues of P is given
by Λ =

{
1,−2 +

√
3,−2a− (1 −√

3)/2 ±√−1{2a

−(3 −√
3)/2}}.

3. Mixing Property of Optimum Q-Phase
Spreading Sequences of Markov Chains

Let us here examine the magnitude of the second
largest eigenvalue in absolute value of (15). We write
the one of complex conjugate eigenvalues of (15) by

ρ(a) = −2a− (1 −
√

3)/2 +
√−1{2a− (3 −

√
3)/2},

where 0 ≤ a ≤ (
√

3 − 1)/2. Simple computation leads
to

| − 2 +
√

3|/
√

2 ≤ |ρ(a)| = |ρ(a)| ≤
√

3 − 1,

and |ρ((
√

3 − 1)/4)| = |ρ((3 −√
3)/4)| = | − 2 +

√
3|.

Hence we obtain

| − 2 +
√

3| < |ρ(a)| = |ρ(a)|
for 0 ≤ a < (

√
3− 1)/4, (3−√

3)/4 < a ≤ (
√

3− 1)/2,
which leads to

Remark 1 Let P be the transition matrix of Markov
chain generating the optimum M -phase spreading se-
quences that minimizes bit error probabilities in asyn-
chronous SSMA communication systems. The magni-
tude of the second largest eigenvalue in absolute value
of P is not always | − 2 +

√
3|.

Interestingly this implies that the correlational
properties of M -phase spreading sequences of Markov
chains are generally independent of the mixing prop-
erty for the associated M -state Markov chains.

4. Mixing Property for Markov Chains and
Correlational Property of Spreading Se-
quences of Markov Chains

Let S = {1, 2, · · · , M} (M ≥ 2). We denote
its power set by P(S). We consider the measur-
able space (S, P(S)) and its direct product space
(X,B) =

∏∞
0 (S, P(S)). Let T : X → X denoted the

shift transformation defined by T (x0x1 · · ·xn · · · ) =
x1x2 · · ·xn+1 · · · for x = x0x1 · · ·xn · · · ∈ X .

A word (or block) over S is a finite binary sequence
of numbers from S. A word of length n is called an
n-word. We denote the set of all n-words over S by
Sn.

We are given a probability vector p = (p1, · · · , pM )
(
∑M

i=1 pi = 1) and a stochastic matrix P = (pi,j)i,j∈S
(pi,j ≥ 0,

∑M
j=1 pi,j = 1) such that pP = p.

For an n-word a = a1 · · · an, we define m by

m ({x ∈ X : xq = a0, · · · , xq+n = an}) = p0

n−1∏
k=0

pk,k+1.

(16)
Thus m can be extended to a probability measure on
(X,B) and T preserves the measure m. We call this
measure-preserving transformation the (p, P )-Markov
shift.

For simplicity, we suppose p = 1
M (1, · · · , 1) from

now on.
For the (p, P )-Markov shift, it is well known that

the following are equivalent: (i) P is irreducible and
aperiodic, (ii) T is weak-mixing, and (iii) T is strong-
mixing. This implies for any u, v ∈ CM ,

uPnv∗ = u · v∗ + O(|λ|n), (17)

where v∗ is the conjugate transpose of v and λ is the
second largest eigenvalue in absolute value.

On the other hand, we are now interested
in not all the complex-valued M -dimensional vec-
tors, but the specific M -dimensional vector s =(
1, e

1
M 2π

√−1, e
2

M 2π
√−1, · · · , e

M−1
M 2π

√−1
)
. We obtain

E[XnXn+�] = sP �s∗ (18)

=
M−1∑
i=1

ciλ
�
i , (19)

where ci is a constant, and |λ| = |λ1| = · · · = |λq| >
|λq+1| ≥ · · · ≥ |λM−1| (1 ≤ q ≤ M − 1).

By the elements of matrix theory, we obtain

Theorem 2 In the above-mentioned situation, let ui

and vi be respectively the left and right eigenvectors of
P corresponding to λi (1 ≤ i ≤ q). The decay rate of
the correlation value (18) is independent of the mixing
rate of the (p, P )-Markov shift if and only if s ·ui = 0
or vi · s∗ = 0 for all i.
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5. Conclusion

In this report, we considered M -phase spreading se-
quences of Markov chains and showed that the corre-
lational properties of M -phase spreading sequences of
Markov chains are generally independent of the mixing
property for the associated M -state Markov chains.
We also gave a necessary and sufficient condition for
these two properties to be independent.

Acknowledgment

The author is grateful to Professor Riccardo Rovatti
for his helpful comments on the author’s report [6].
Without his observations, this study would never have
been treated by the author.

References

[1] M. B. Pursley, “Performance Evaluation for Phase-
Coded Spread-Spectrum Multiple-Access Commu-
nication — Part I: System Analysis”, IEEE Trans.
Commun., vol.COM-25, no.8, pp.795–799, 1977.

[2] G. Mazzini, R. Rovatti, and G. Setti, “Interfer-
ence minimization by auto-correlation shaping in
asynchronous DS-CDMA systems: Chaos-based
spreading is nearly optimal”, IEE Electronics Let-
ters, vol.35, pp.1054–1055, 1999.

[3] G. Mazzini, G. Setti, and R. Rovatti, “Chaotic
Complex Spreading Sequences for Asynchronous
DS-CDMA Part I : System Modeling and Results”
IEEE Trans. Circuit Syst.–I vol.CAS-44, No.10,
pp.937-947, 1997.

[4] R. E. Kalman, “Nonlinear aspects of sampled-data
control systems”, Proc. Symp. Nonlinear Circuit
Analysis VI, pp. 273–313, 1956.

[5] P. J. Davis, Circulant Matrices, 2nd ed., Chelsea,
1994.

[6] H. Fujisaki, “On Distributions of Multiple Access
Interference for Spread Spectrum Communication
Systems Using M -Phase Spreading Sequences of
Markov Chains”, Proc. 2004 IEEE Int. Symp. on
Circuit and Systems, Vol. IV, pp.609–613, 2004.

[7] T. Kohda and H. Fujisaki, “Variances of multiple
access interference code average against data av-
erage”, IEE Electronics Letters, vol.36, pp.1717–
1719, 2000.

[8] T. Kohda and H. Fujisaki, “Pursley’s Aperi-
odic Cross-Correlation Functions Revisited”, IEEE
Trans. Circuit Syst.–I vol.CAS-50, pp.800–805,
2003.

[9] H. Fujisaki and Y. Yamada, “On Bit Error Prob-
abilities of SSMA Communication Systems Using
Spreading Sequences of Markov Chains”, submit-
ted to IEEE Trans. Commun.

748


