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Abstract—An efficient algorithm is proposed for
finding all solutions of systems of nonlinear equations.
This algorithm is based on interval analysis, the dual
simplex method, the contraction method, and a special
technique which makes the algorithm not require large
memory space. By numerical examples, it is shown
that the proposed algorithm could find all solutions
of a system of 2000 nonlinear equations in acceptable
computation time.

1 Introduction

Finding all solutions of nonlinear equations is an
important problem which is widely encountered in sci-
ence and engineering. In this paper, we discuss the
problem of finding all solutions of a system of n non-
linear equations:

fl(mlyx%"'amn) 0
f2($17x27"'7$n) 0

(1)
fn($17x27---7$n) =0

contained in a bounded rectangular region D in R"™,
where fi, f2,...,fn are real-valued nonlinear func-
tions.

As a computational method to find all solutions of
nonlinear equations, interval analysis based techniques
are well-known, and various algorithms based on in-
terval computation have been developed [1]-[4]. Using
the interval algorithms, all solutions of (1) contained
in D C R" can be found with mathematical certainty.
However, the computation time of the interval algo-
rithms tends to grow exponentially with the dimension
n. One of the difficulties of these algorithms is that the
number of boxes ! to be analyzed is extremely large
for large scale problems. Therefore, it is necessary to
develop a powerful test for nonexistence of a solution
in a given box so that we can exclude many boxes con-
taining no solution at an early stage of the algorithm.

In [3], a powerful computational test was proposed
for nonexistence of a solution to the system of non-
linear equations (1) in a given box X C D. This

1 An n-dimensional rectangular region with the sides parallel
to the coordinate axes will be called a box.
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test is termed the LP test. The basic idea of this
test is to formulate a linear programming (LP) prob-
lem whose feasible region contains all solutions in X.
Hence, if the feasible region is empty (which can be
easily checked by the simplex method), then X con-
tains no solution, and we can exclude it from further
consideration. The LP problem was much improved
by introducing the dual simplex method [4],[5]. Us-
ing the dual simplex method, the LP test becomes not
only powerful but also efficient and requires only a few
pivotings per box. In [4], this improved LP test is in-
troduced to the Krawczyk-Moore algorithm [1], which
succeeded in finding all solutions to systems of non-
linear equations with n = 200. At the present time,
the algorithm proposed in [4] is one of the most effi-
cient algorithms for finding all solutions of nonlinear
equations.

In this paper, we extend the algorithm in [4], and
propose an efficient algorithm for finding all solutions
of systems of nonlinear equations.

2 Basic Algorithm

In this section, we first summarize the basic proce-
dures of interval algorithms [1].

An n-dimensional interval vector with components
[a;,b;] (i=1,2,...,n) is denoted by

X:([alvbl]v[a27b2]v~--7[an)bn])T' (2)
Geometrically, X is an n-dimensional box.

In interval algorithms, the following procedure is
performed recursively, beginning with the initial box
X = D. At each level, we analyze the box X. If there
is no solution of (1) in X, then we exclude it from fur-
ther consideration. If there is a unique solution of (1)
in X, then we compute it by some iterative method.
In the field of interval analysis, computationally veri-
fiable sufficient conditions for nonexistence, existence
and uniqueness of a solution in X have been devel-
oped. If these conditions are not satisfied and neither
existence nor nonexistence of a solution in X can be
proved, then bisect X in some appropriately chosen
coordinate direction to form two new boxes; we then
continue the above procedure with one of these boxes,
and put the other one on a stack for later considera-
tion. Thus, provided the number of solutions of (1)
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contained in D C R" is finite, we can find them all
with mathematical certainty.

Next, we summarize the powerful nonexistence test
proposed in [3] and [4].

For the simplicity of discussion, in this paper we
assume that (1) can be represented as

Zgi]‘(l‘j)—i-Zhijl‘j—Si:O, i:l,?,...,n (3)
7=1

JEJ;

where g;;(x;) is a nonlinear function of one variable,
h;; and s; (4,5 = 1,2,...,n) are constants, and J;
is a subset of {1,2,...,n}. Assume that ) .  |J;] is
not large, where |J;| denotes the cardinality of the set
J;. Note that the discussion in this paper is easily ex-
tended to more general systems of nonlinear equations;
as for details, see [3].

Let the interval extension of g;;(z;) over [a;,b;] be
[cij,dij]. Then, we introduce auxiliary variables y;;
and put y;; = gi;(z;). If a; < x; < bj, then ¢;; <
Yi; < d;j.

Now we replace each nonlinear function g;;(z;) in
(3) by the auxiliary variable y;; and the linear inequal-
ity ¢;; < y;; < d;j, and consider the LP problem:

max (arbitrary constant)

subject to
n
STy + > higr—si=0, i=12,...n
JEJT; j=1
aisxisbia i:1,2,. )
cij < Yij < dyj, i=1,2,...,n, jE€J;

Then, we apply the simplex method to (4).

Evidently, all solutions of (3) which exist in X sat-
isfy the constraints in (4) if we put y;; = gi;(z;).
Hence, if the feasible region of the LP problem (4) is
empty, then we can conclude that there is no solution
of (3) in X.

The emptiness or nonemptiness of the feasible re-
gion of (4) can be checked by the simplex method. If
the simplex method terminates with the information
that the feasible region is empty, then there is no so-
lution of (3) in X, and we can exclude X from further
consideration. This test is called the LP test. It has
been shown that if we use directed roundings, then the
LP test gives correct results (in the sense that boxes
containing solutions are never discarded) [6],[7].

By introducing the LP test to the interval algo-
rithms (such as the Krawczyk-Moore algorithm), all
solutions of (3) can be found very efficiently. In [3],
this algorithm solves a system of nonlinear equations
with n = 60 in practical computation time, although
the original Krawczyk-Moore algorithm can solve the
system only for n < 12.

In [4] and [5], it is shown that the LP test can be
performed with a few pivotings (often no pivoting) per
box by using the dual simplex method from the second
box. In [4], this improved LP test algorithm succeeds
to find all solutions of systems of nonlinear equations
with n = 200.

3 Proposed Algorithm

Although the LP test proposed in [4] requires only a
few pivotings per box, it has to be performed on many
boxes. In order to decrease the number of boxes on
which the LP test is performed, we introduce the con-
traction method proposed in [2] which contracts a box
X to a smaller box X containing the same solutions 2.

In the proposed algorithm, we use the algorithm in
[4] as the base and perform the contraction method
several times after the LP test is performed on a box
X. Then, we bisect the reduced box X and repeat the
same procedure on the sub-boxes.

However, there is one problem in the above al-
gorithm when it is applied to large scale systems.
Namely, since the algorithm has the structure of a
binary tree, it requires very large memory space. In
other words, tableaus of the dual simplex method have
to be copied and reserved at each node of the binary
tree. Moreover, the time needed for copying tableaus
occupies a large part of the total computation time
of the algorithm in [4]. Hence, we show a technique
which makes the algorithm not require large memory
space and not require copying tableaus.

In the implementation of the simplex method to (4),

. we apply the variable transformation Z; = z; — a; and

¥ij = Yij —Cij, and introduce the slack variables X; and
pij (1=1,2,...,n, j € J;) so that the LP problem is
transformed into a standard form:

max (arbitrary constant)

subject to
n
Zﬂij—FZhiji‘j—gi:O, 1=1,2,...,mn
ek j=1
:Tci—l—j\i:bi—ai, 1=1,2,...,m
Yij + pij = dij — cij, i=1,2,...,n, j€J;
Z; >0, X\ >0, i=1,2,...,n,
gijzoa ﬂlj207 i:1727"'7n7j€‘]i'

(5)
Then, we construct the initial tableau.

We explain the proposed idea using Figs. 1 and 2.
Consider that we have performed the LP test on a
box X in Fig. 1 and have obtained an optimal tableau

2In [2], an algorithm for finding all solutions of nonlinear
equations is proposed using the contraction method. However,
the effectiveness of this algorithm to large scale problems is not
clear because in the numerical experiments of [2], the algorithm
was applied only to small systems with n < 10.
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Fig. 1 After X, the LP test is performed on X'.

for (5). Here, the term optimal implies that the opti-
mality condition is satisfied in the auziliary objective
function low. Then, consider that we next perform
the LP test on a box X'. Let [c;,d;;] and [c};,d]
be the interval extensions of g;;(z;) over [a;,b;] and
[a}, D], respectively, as shown in Fig. 2. In the LP
test for X', we similarly introduce auxiliary variables
yi; (1=1,2,...,n, j € J;) and consider the LP prob-
lem:

max (arbitrary constant)

subject to
n
> wii+ > hizi—si=0, i=12,...,n
JEJ: j=1
a, < xz; < b, 1=1,2,...,n

(6)
Applying the variable transformation #; = x; — a} and
¥ij = Yij — ci;, and introducing the slack variables, (6)
is transformed into a standard form:

max (arbitrary constant)

subject to
S i+ > hiEi -5 =0, i=12,...,n
JEJ; Jj=1
i‘i-l-j\i:b;—a;, 1=1,2,...,n
gij"‘ﬁij:d;j_c;ﬁ 1=1,2,...,n, 5 € J;
z; >0, A >0, 1=1,2,...,n,
gij207 ﬁz]ZO7 i:1,27...,n,j€Ji-

(7)
_ From Fig. 2, it is clear that #; = z; — (a} — a;),
Ai = Xi—(bi=b)), G5 = Gij—(ci;—ciz), and fii; = fiij—
(dij —di;) (i=1,2,...,n, j € J;) hold. Substituting
these relations to the previous optimal tableau for (5),
the optimal tableau for (7) is easily obtained, which
differs from the previous tableau only in the constant
column.

Of course, this tableau may not be feasible (i.e.,

Yi=Gi (X))

di
dij

G
Gj|

Fig. 2 Illustration of the interval extensions of
gi(z;) over [a;,b;] and [a], b]].
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all elements in the constant column may not be non-
negative), but always dual feasible because the opti-
mality condition is satisfied. Hence, starting from this
tableau, we can perform the dual simplex method and
check the existence of the feasible region of (6). Thus,
the LP test using the dual simplex method can be
performed without copying (reserving) the tableau at
each node.

In most cases, this dual simplex method requires
only a few pivotings. It often requires no pivoting;
namely, if the dual feasible tableau is feasible (i.e., all
elements in the constant column are non-negative) or
the tableau indicates that the feasible region is empty,
then the dual simplex method terminates with no piv-
oting. Hence, the average number of pivotings per box
becomes very small.

This technique also improves the computational effi-
ciency substantially, because as stated before, the time
needed for copying tableaus occupies a large part of the
total computation time in the conventional algorithm

[4]-

4 Numerical Examples

We introduced the proposed techniques to the
well-known Krawczyk-Moore algorithm [1] and imple-
mented the new algorithm using the programming
language C (double precision) on a Sun Blade 2000
(UltraSPARC-IIT Cu 1.2GHz). In this section, we

show some numerical examples.

FEzample 1: Consider a system of n nonlinear equa-

tions:

glz)+z1+ao+ -+, —i=0, i=12,....,n

where g(z) = 2.52° — 10.522 + 11.8z

which describes a nonlinear resistive circuit contain-
ing n tunnel diodes [2]-[5]. The initial region is
D = ([-10,10],...,[—10,10))". Note that the con-
ventional Krawczyk-Moore algorithm could solve this
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Table 1 Comparison of computation time (Example 1).

Ref.[3] | Ref.[4] | Proposed

n S| T (s) T (s) T (s)
100 | 9 71 306 1060 2
200 | 13 00 26748 21
300 | 11 00 00 65
400 | 9 00 00 124
500 | 13 00 00 333
600 | 11 00 00 543
700 | 9 00 00 632
800 | 11 00 00 1788
900 | 19 00 00 3704
1000 | 17 00 00 5706
1100 | 9 00 00 4387
1200 | 9 00 00 6377
1300 | 21 00 00 22123
1400 | 9 00 00 10741
1500 | 13 00 00 22501
1600 | 23 00 00 58157
1700 | 11 00 00 33638
1800 | 9 00 00 30745
1900 | 9 00 00 41906
2000 | 9 00 00 48 805
2100 | 11 00 00 77179
2200 | 23 00 00 173785
2300 | 15 00 00 169243
2400 | 9 00 00 85771
2500 | 9 00 00 136934

system for n = 12 in about three hours, and for n = 14
in about 44 h in [3].

Table 1 compares the computation time of the algo-
rithm in [3], that in [4], and the proposed algorithm,
where S denotes the number of solutions obtained by
the algorithms, T' (s) denotes the computation time,
and oo denotes that it could not be computed in prac-
tical computation time or memory over occured. As
seen from the table, the proposed algorithm could
solve this system for n 1000 in about 1.5 h, and
for n = 2000 in about 18 h.

Fig. 3 illustrates the growth of the computation time
when n increases. It is seen that the computation time
of the proposed algorithm grows exponentially, but not
very explosively. It is also seen that the computation
time depends largely on the number of solutions.

FEzample 2:  We next consider a system of n nonlinear

equations:

xi,1—2$i+wi+1+h2x320, 1=1,2,...,n
where 29 = 2,41 =0 and h = 1/(n + 1). This system

comes from a boundary value problem of a nonlin-
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Fig. 3 Computation time of the proposed algorithms.

ear ordinary differential equation. The initial region
is D = ([0,5],...,[0,5])T. Note that the LP test algo-
rithm proposed in [3] could solve this system for n = 60
in about 16 h, and the improved LP test algorithm
proposed in [4] could solve this system for n = 120 in
about 25 h. However, the proposed algorithm could
solve this system for n = 1000 in about 5.5 h.

Ezample 3: Finally, we solved the transistor circuits
shown in Figs. 3-5 of [5]. Then, we found 9, 3, and 11
solutions in 0.08, 0.06, and 1.55 s, respectively. It is
seen that all solutions were found in little computation
time.
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