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Abstract– In this paper, a novel chaos-based error 

detection coding scheme is proposed. The checksum is 
generated by a discrete chaotic map so that transmission 
errors can be detected.  Additional advantage in using 
chaos for error detection code is that a keyed feature can 
be easily embedded and the generated code is ready to use 
for message authentication in data communication, such 
as IEEE802.11 wireless communication. The design of 
the algorithm is presented and the performance analyses 
on error detection and authentication are discussed. 

 
1. Introduction 
 

Error detection codes or error controlling codes have 
been widely used in various areas, such as high-speed 
computer memory storage, digital audio/video 
transmission, data communication and so on [1]. By 
introducing the redundancy to the original data, error in 
the transmitted message can be detected or even corrected. 
The most popular scheme is cyclic redundancy check 
(CRC) [2]. 

The usage of CRC has recently been extended for the 
purpose of authentication in wireless communication, in 
particular IEEE802.11 protocol [3]. Although CRC is 
strong in error detection, it may not be good enough to 
resist the attacks, such as impersonation and substitution, 
due to its linearity property. Its weaknesses have been 
found and reported in [4, 5], and various ways are 
possible in altering a message without being detected.  

In this paper, a novel chaotic error detection code (CEC) 
is proposed. With the distinct properties of a chaotic map, 
such as ergodicity, quasi-randomness, sensitivity to initial 
conditions and system parameters, the proposed CEC not 
only provides the required error detection ability but also 
serves the authentication purpose in data communication. 
Although many cryptosystems have been developed 
based on the diffusion and confusion properties of chaotic 
systems in the past decade [6], its use in error detection 
and authentication code is firstly studied in this paper. 

The organization of this paper is as follows. The CRC 
is briefly revisited in Sect. 2. In Sect. 3, the design of 
CEC is explained in detail. Served as an error detection 
code, its performances in detecting single-bit, double-bit 
and burst errors are reported in Sect. 4. The security 
provided by the CEC is studied in Sect. 5. Finally, 
conclusion is given in Sect. 6. 

2. Cyclic Redundancy Check 
 

The CRC is one of the main techniques in providing the 
error detection in data communication. Based on some 
standard generator polynomials, g(x), such as 
CRC-12 : 11231112 +++++ xxxxx  
CRC-16 : 121516 +++ xxx  
CRC-CCITT : 151216 +++ xxx  
ETHERNET :
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valid codeword can be obtained by the following 
equation: 

 )()()( xgxuxv =  (1) 
where v(x) and u(x) are the polynomials representing the 
(m+c)-bit codeword and m-bit message, respectively; g(x) 
is a pre-defined c-degree polynomial given before. Based 
on the fact that the codeword v(x) should be divisible by 
g(x), error can be detected if that’s not the case.  

There are many characteristics that make CRC 
attractive, and they are summarized as follows: 
1) all single bit errors can be detected; 
2) most double bit errors can be detected; 
3) all odd number of bit errors can be detected; 
4) all burst errors with length ≤ degree of g(x) can be 

detected. 

Recently, CRC is further adopted in the Wired 
Equivalent Privacy (WEP) in IEEE 802.11b wireless 
network for verifying the data integrity. Although CRC is 
powerful in error detection, using it as a secure code is 
not recommended. According to some researches [4, 5, 7], 
it is possible to modify the message without being 
detected by CRC in WEP. Therefore, in this paper, a novel 
way is proposed in designing a secure error detection 
code for authentication purpose.  

 
3. Chaos-Based Error Detection Code 
 
3.1. Discrete Chaotic Map 
 

Chaotic maps are usually described in difference 
equations or recurrence relations. Despite of their simple 
forms, complex dynamics that fall between stochastic and 
deterministic behavior are reported. The chaotic features, 
such as ergodicity, quasi-randomness, sensitivity 
dependence on initial  conditions and system parameters,  
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are suggested to be advantageous for the construction of 
cryptosystems [6]. Over the past decade, we can witness 
many attempts to apply the chaotic dynamics and many 
chaos-based cryptosystems have been proposed [6].  

In this paper, an entire new application is suggested. A 
chaos-based error detection code, called CEC, is proposed 
and designed to achieve error detection and also data 
authentication. 

 A two-dimensional discrete chaotic map, the Arnold’s 
Cat Map [8], is adopted in the coding scheme. A 
generalized discrete Cat Map [9] can be formulated as 

 ( ) l
kpkpk sAsfs 2mod1 ==+  (2) 

where [ ]Tkkk yxs ,= , ( )bap ,=  and 

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with bayx kk ,,,  being integers in [ ]12,0 −l . An 
important feature of the map in (2) is that its determinant 
is equal to 1 and so it is area-preservative or one-to-one 
mapping.  
 
3.2. Design of CEC 
 

Assuming M is a packet with m-bit long, C is the CEC 
checksum with c-bit long and K is the secret key. The 
procedures for generating C from M are as follows: 

For any message M, 
1. If m is not divisible by c, append sufficient number of 

zeros, say r zeros, at the end of M. The padded 
message, M’, is with m’=(m+r) bit length where 
mod(m’,c)=0. 

2. Partition M’ into data blocks such that each block, si, 
is in c-bit long, where '1 Msi

q
i ==U , ∅=ji ss I  

( )ji ≠  with 
c
mq
′

=  is the total number of blocks. 

3. A group of parameters, { }qpppP ,,, 21 L=  is to be 
generated, where ( )iii bap ,=  is the parameter of 

ipf  in the i-th Cat map, as defined in (2). Firstly, the 
secret key K is decoded into 2 pairs, where the first 
pair specifies a Cat map and the next pair is 
considered as an initial point. With this initial point, q 
surrounding points are selected to be the initial values 
of the derived Cat map. Through iterations (in our 
design, 1000 iterations are used.), P can then be 
obtained with ji pp ≠  (i≠j) due to the one-to-one 
mapping property. 

4. Each data block, is , is transformed to is′  with the 
i-th Cat map where ( )i

t
pi sfs

i
=′  with some positive 

integer t (t=100 in our case), and ( ) ( )i
t

pi
t

p sffsf
ii

1−= o .  
5. The checksum C is obtained by XOR all the blocks in 

{ }qsssS ′′′=′ ,,, 21 L , i.e. qsss ′⊕⊕′⊕′ L21 . 
6. Append C to M to form a codeword W of (m + c)-bit 

long for transmission. 

According to the above procedures, each data block 
will be transformed by a distinct Cat map, whose 
parameters are key-sensitive. If the number of iterations, t, 
is sufficient, the relationship between the original and the 
transformed data blocks will be confused. With such a 
keyed property, the attacks, such as impersonation and 
substitution, can be resisted since the key is unknown to 
the forger. 

 
Fig. 1. The block diagram of the proposed CEC. 

 
The generated codeword W is then sent through a 

communication channel. When it is received, the 
transmission error and the integrity of the message can be 
verified with the following procedures: 
1. Remove the last c bits from W and label it as C. 
2. Label the first m bits of the received message as M̂ . 
3. Generate the checksum Ĉ  with M̂  and the secret 

key K, by the procedures described before. 
4. Compare the calculated checksum Ĉ  with the 

received checksum C. The codeword, W, is 
considered to be valid if CC =ˆ . 

 

 
Fig. 2. Block diagram of the CEC message authentication. 
 
4. Error Detection Analysis 
 

The effectiveness of the proposed CEC in error 
detection is analyzed under the conditions of single bit, 
double bit and burst errors in the transmitted codeword.  

 
4.1. Single Bit Error 
 

For single bit error, one bit in a particular single block, 
is , is changed. Due to the one-to-one mapping of discrete 

Cat map, the transformed result of this block, is′ ,  will 
be altered while the other js′  ( ji ≠ ) remains the same. 
As a result, the checksum will be different from the 
original one after the XOR function. Hence, the 
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probability of detecting single bit error is 100%.  

The distribution of the bit difference in the checksum 
due to the single bit error is studied. A hundred sets of 
messages are randomly generated, each with 1600-bit 
long. For each message, 32-bit checksum is generated 
based on a randomly-generated secret key. Performing an 
exhaustive test, all 1600 combinations of one-bit error are 
evaluated for every message and the resultant distribution 
of the bit difference in the checksum is shown in Fig. 3. 
The obtained mean, variance, maximum and minimum 
values of the bit difference are 15.886, 8.293, 29 and 4, 
respectively. It can be observed that the mean is close to 
the half of the checksum length, which is the best in terms 
of error detection.  

 
Fig. 3. Distribution of the bit difference of the checksum 

with single-bit error 
 

4.2. Double Bit Error 
 

For a double bit error, there are two possible cases: 
1) Both error bits fall in the same data block: Similar to 

the case of single bit error, the checksum will be 
changed and such error is 100% detectable. 

2) The two error bits fall in two different data blocks: In 
this case, the error may not be detectable if the two 
corresponding transformed blocks, is′  and js′  (i≠j), 
have the same changes in the bit pattern. 

Assuming that 
1) the distribution of the bit difference for a single bit 

error is normal with the mean and variance obtained in 
Sect. 4.1, and 

2) the probability distribution of the patterns for each 
kind of bit difference is uniform, 

the probability of the error detection for the case (2) can 
be estimated as 99.999999976694%. 

The distribution of the bit difference under the situation 
of double bit error is obtained with a test similar as before. 
A hundred sets of message are randomly generated and all 
the combinations of double bit error are injected into 
every message. The bit differences of the resultant 
checksum and the original one are recorded, and the 
distribution is depicted in Fig. 4. The mean, variance, 
maximum and minimum value of the distribution are 

15.994, 8.011, 30 and 0, respectively. Once again, the 
mean is about half of the bit length of the checksum. If it 
is assumed that the distribution in Fig. 4 is normal, the 
probability of the error detection for double bit error is 
99.99994%, which is close to our previous calculation. 

 
Fig. 4. Distribution of the bit difference of the checksum 

with double bit error 
 
4.3. Burst Error 
 

For burst error, it is assumed that the bit length of the 
burst error is less than or equal to the bit length of a data 
block. Then, there are two possible cases: 
1) The error bits caused by burst error fall in a single 

data block: Similar to the case of single bit error, there 
will always be some changes in the checksum, and 
hence this situation is 100% detectable. 

2) The error bits caused by burst error fall in two data 
blocks: Similar to the second case in double bit error, 
it may not be detectable if the two corresponding 
transformed blocks, is′  and js′  ( ji ≠ ), have the 
same changes in their bit patterns. 

Again, the distribution of the bit difference caused by 
32-bit burst error is plotted in Fig. 5. The mean, variance, 
maximum and minimum value of the distribution are 
15.993, 7.992, 28 and 5, respectively. Under the 
assumption of normal distribution, it is estimated that any 
burst error can be detected with a probability of 
99.99994%. 

 
Fig. 5. Distribution of the bit difference of the checksum 

with burst error  
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4.4. Comparison with CRC 
 

As observed in the above experiments, the distributions 
of the bit difference in all the studied cases are close to 
normal distribution with mean equal to the half of the bit 
length of the checksum. It indicates the randomness of the 
checksum which is obviously favorable for security 
purpose. In conclusion, 
1) The probability in detecting any single bit error is 

100% which is as powerful as the traditional CRC. 
2) Double bit error detection probability is estimated to 

be 99.99994% which is good enough in practice, 
though worse than CRC. 

3) Burst error detection probability is 99.99994%. The 
result is inferior to CRC which is 100% in this case. 

4) The mean of the bit difference is half of the bit length 
of the checksum which is favor for error detection 
especially when the bit error is occurred in the 
checksum instead of the data blocks. 

 
5. Security Analysis 
 

In this section, some security analyses on the proposed 
CEC scheme are performed. Firstly, the correlation 
between the secret key and the Cat map parameters is 
studied. A number of keys, iK  are randomly generated 
and used to form the corresponding parameters iP . The 
correlation coefficient between iK  and iP  is then 
calculated to study their linear relationship. It is known 
that the smaller the correlation coefficient is, the weaker 
the linear relationship. From our study, the mean 
correlation coefficient is found to be 0.01596, which is 
comparable with the correlation coefficient (0.011085) of 
randomly-generated data using the rand() function in 
C-language.  

 
Fig. 6. Distribution of the bit difference of the checksum 

with one-bit change in the secret key. 
 

Secondly, the relationship between the secret key and 
the calculated checksum is verified. By altering a single 
bit in the secret key, the distribution of the bit difference 
in the checksum is shown in Fig. 6. It can be observed 
that it is close to a normal distribution, and the mean, 
variance, maximum and minimum value of the 

distribution are 16.041, 7.962, 26 and 4, respectively. 

To avoid attackers, there should not be any linear 
relationship between the secret key and the checksum, 
otherwise, the resistance against attacks will be greatly 
reduced. The correlation coefficient between key and the 
checksum is calculated as 0.009837, which again 
demonstrates their weak linear relationship. 
 
6. Conclusions 
 

In this paper, a novel chaos-based error detection code 
scheme is proposed for error detection and data 
authentication. The effectiveness of this proposed scheme 
is analyzed. Although its capability of error detection may 
not be as good as CRC, it outperforms CRC since the 
distribution of the bit differences is normal, having the 
mean equal to half bit length of the checksum. In addition, 
the embedded keyed-feature is important for the data 
authentication, in particular useful for wireless 
communication.  
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