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Abstract—A binary-quantized two-dimensional
cellular array model of linear diffusion systems is in-
vestigated microscopically by introducing virtual par-
ticles. A simple deterministic rule applied to all the
cells of the array determines the motion of the particles
in the array. By numerical experiments with the array
we found that the virtual particles whose behavior is
deterministic possess almost the same characteristics
as probabilistic Brownian particles in diffusion systems
have.

1. Introduction

Discrete and multi-valued models of distributed pa-
rameter systems have been studied for computational
physics and digital signal processing.

Two and higher-dimensional linear diffusion systems
are modeled by lattice-gas cellular automata (LGCA)
[1]. However, application of LGCA is limited because
of simple behavior of particles assumed in LGCA mod-
els. LGCA have also a problem that they can not be
used for modeling one-dimensional diffusion systems.

A new type of binary-quantized one-dimensional cel-
lular array model of linear diffusion systems has been
proposed recently [2]. Its macroscopic behavior, that
is a diffusion phenomenon, is utilized as a measure
of fault tolerance for nanoelectronic circuits [3]. The
array may also be used for parallel generation of mu-
tually independent pseudo-random codes by exploiting
microscopic similarity between the array and diffusion
systems, that is the behavioral similarity between vir-
tual particles assumed in the array and Brownian par-
ticles in diffusion systems.

Expanding this useful array into higher dimension
is an important work since the expanded array may
generate pseudo-random codes of longer period even if
simpler operation rule is applied to the cells organizing
the array. This paper presents a two-dimensional cellu-
lar array and comparison between the array and linear
diffusion systems from microscopic points of view.

Table 1: Cell operation.
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2. Cells and Array Structure

Cells of which two-dimensional (2-D) arrays are
composed have two inputs a(n), b(n), two outputs
u(n), v(n), and one internal states q(n), all of which
take ”±1”. The cells operate according to Tab. 1.

One-dimensional arrays are built as shown in Fig.
1(a). The 2-D array is built by arranging the 1-D
arrays in lattice and connecting them by pairs of cells.
Outputs from every two cells in each 1-D array are
supplied to their adjacent four cells through the pair
of cells as shown in Fig. 1(b). We denote the cell
which belongs to j-th row or i-th column array and
locates just above or below a pair of cells by cellr

i,j or
cellci,j. Raised indices r, c indicate that the indexed cell
belongs to a row or column 1-D array. The inputs and
the outputs of cellri,j, cellci,j are denoted by ar

i,j(n), ...
, vc

i,j(n).

3. Virtual Particles and their Displacement

Figure 2 shows every possible path of a particle mov-
ing on one-dimensional axis x by +δ or −δ at a proba-
bility of 1/2 for each time interval τ . Suppose that the
initial location of the particle is x = 0. Then, a proba-
bility p(k, m) that that the particle locates at x = δk,
at time τm, k, m:integers, is given by

p(k, m) =
m!(

m+k
2

)
!
(

m−k
2

)
!

(
1
2

)m

(1)

The relation between the inputs and the outputs
of the cell which operates according to Tab. 1 is ex-
pressed by the following simile. Two virtual particles
carrying ”±1” enter the cell at time n−1, pass through
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Figure 1: One and two-dimensional cellular arrays.
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Figure 2: Paths of a random walker

the cell in parallel (a → u, b → v) or cross each other
in the cell (a → v, b → u), and go out of the cell at
time n. When a(n) �= b(n), parallel passing or crossing
is determined by the following Boolean expression:

parallel/cross = a(n − 1) ⊕ q(n − 1) (2)

If the values of a(n) and q(n) are ”+1/ − 1”, logical
”1/0” is given to the corresponding variables in Eq.(2).
We assume that cell condition parallel or cross in case
of a(n) = b(n) is also determined by Eq.(2). State q(n)
is considered to take ”+1” or ”−1” at a probability of
1/2 since the state is reversed every time when a(n) +
b(n) = 0. Then, a probability of parallel passing or
crossing is estimated to be 1/2.

In the 1-D array shown in Fig. 1(a), a virtual parti-
cle which entered in a cell at time n−1 goes out of the
cell and enters again into one of its adjacent cells at
time n. A probability that the particle moves to the
left cell or the right cell is 1/2 because parallel/cross
takes ”1/0” at even probabilities. Although the mo-
tion of the particle is deterministic, it is quite similar
to the randomly walking particle shown in Fig. 2.

Next, we consider motions of virtual particles on a
2-D array. In Fig. 2, a particle at an even location 2k
moves to location 2k−2, 2k, or 2k+2 for 2τ . Similarly,

in the 2-D array, a particle at cellri,j or cellci,j moves
either to one of three cells cellri+1,j, cellri,j, cellri−1,j in
j-th row array or to one of three cells cellc

i,j+1, cellci,j,
cellci−1,j in i-th column array for 3 time steps. In av-
erage, the particle is regarded to move both in the row
and the column arrays for 6 time steps. Then, a prob-
ability pr(j, n) that a particle in cellr0,0 or in cellc0,0 at
time n = 0 exists in j-th row array at time n is given
by

pr(j, n) = p(2j, 2n/6) (3)

where n is a multiple of 3. Similarly, a probability
pc(i, n) that the particle exists in i-th column array is
given by

pc(i, n) = p(2i, 2n/6) (4)

Assume that a motion for each 3-time-step is indepen-
dent to previous motions. Then, a probability that the
particle locates at cellri,j or cellci,j is given by

p2D(i, j, n) = pr(i, n)·pc(j, n), n : multiple of 3 (5)

When n is large, above equation is approximated by

p2D(i, j, n) ≈ 1(
π
2

) (
n
3

) exp
(
−4(i2 + j2)

2n
3

)
(6)

The probabilistic distribution (6) has j and i-
directional variances σ2

r and σ2
c given by

σ2
c = σ2

r =
n

12
(7)

Figure 3 shows numerically obtained probabilistic
distributions p2D(i, j, n), n=1000, 2000, of virtual par-
ticles in a 2-D array. The array is built of 64x64 1-D
arrays and given periodic boundary condition. The
experimental distributions p2D(i, j, n) are defined as
the ratio of a number of particles displaced by i in i-
direction and j in j-direction to the total number of
particles contained in the array. The experimental dis-
tributions agree with theoretically obtained Gaussian
distribution (6) whose two-dimensional projections are
shown by dotted curves.

By using the experimental distributions, second or-
der moments

Mii ≈
∑

i

∑
j i2p2D(i, j, n)

Mjj ≈ ∑
i

∑
j j2p2D(i, j, n)

Mij ≈ ∑
i

∑
j ijp2D(i, j, n)

(8)

are computed. They are shown in Fig. 4. From
the figure, we can not state that i-directional and j-
directional components of the motion are independent
because moment Mij is not zero. The independence
will be investigated again in the next section.
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Figure 3: Probabilistic distribution in terms of dis-
placement.

4. Velocity of Virtual Particles

Since the 2-D array is a deterministic system, mo-
tion of the virtual particles is periodic after macro-
scopic diffusion process on the array is in an equilib-
rium state. Figure 5 shows motions of two particles in
an array built of 19x19 1-D arrays. Interestingly, long
and complex periodicity is observed even though the
array is macroscopically in a trivial equilibrium state.
The ratio of the periods of two different motions of two
particles is rational.

A particle called Brownian particle has the following
properties: (i) Its probabilistic density distribution in
terms of displacement is a Gaussian distribution. (ii)
variance of the distribution increases in proportion to
time. From (i), following property is derived: (iii) In
the time domain, the autocorrelation of the average ve-
locity of the particle is a delta function. By the Fourier
transform of the autocorrelation, we obtain the follow-
ing: (iv) In the frequency domain, average velocity has
uniform spectral distribution. In the previous section
we saw that the virtual particles in a 2-D array have
properties (i) and (ii). Then, we expect that the vir-
tual particles also have properties (iii) and (iv).

Velocity of the virtual particles is defined as follows:
If a virtual particle at cellri,j or cellci,j moves to cellri±1,j

or cellci±1,j for 3 time steps, i and j-directional com-
ponents vi(n), vj(n) of its velocity, n:multiple of 3, are
given ±1 and 0 respectively. If the particle moves to
cellri,j±1 or cellci,j±1, vi(n), vj(n) are given 0 and ±1.
If the particle returns to cellri,j or cellci,j, both of the
velocity components are zero.

Numerical analyses of the velocities v1(n) =
{v1

i (n), v1
j (n)}, v2(n) = {v2

i (n), v2
j (n)} of the two mo-
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Figure 4: Variances of the probabilistic distribution.

tions in Fig. 5 in both frequency and time domains are
shown in Figs. 6 and 7. The spectral density distribu-
tion of each velocity component is almost uniform. Au-
tocorrelations Ra,dir(m) ≡ ∑

k vp
dir(3k)vp

dir(3k − m),
p = 1, 2, dir : i, j, are like delta functions. Cross
correlations between i and j-directional components,
Rc,ij(m) ≡ ∑

k vp
i (3k)vp

j (3k − m), are almost zero.
Then, each component of the motion is considered to
be independent to another.

Next, we investigate a correlation between velocities
of two particles. We use again the two particles whose
motions are shown in Fig. 5. The cross correlations
Rc(m) ≡ ∑

k v1
dir1(3k)v2

dir2(3k − m), dir1, dir2 = i, j,
are shown in Fig. 8. The range of the horizontal axes is
the greatest common multiple between the periods of
the motions of the two particles. The 2-D array may
contain a few particles whose motions are relatively
identical. If two particle whose motions are different
are selected, cross correlation Rc(m) between the two
particles is always small as shown in Fig. 8.

5. Conclusions

We have presented a 2-D cellular array and micro-
scopically analyzed its behavior by introducing virtual
particles. As a result of the analysis we found that
the virtual particles possess almost the same charac-
teristics as Brownian particles have. Moreover, we saw
that cross correlations between the velocities of differ-
ent particles and between two velocity components of
one particle are very small. These characteristics im-
ply that the array may be used as a parallel generator
of mutually independent pseudo-random codes and the
generated codes may be applied to CDMA communi-
cations. To investigate the applicability is one of our
future works.
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(a) Trajectory of a 49818-periodic particle (plotted at every 30 time steps).
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(b) Trajectory of a 116964-periodic particle (plotted at every 60 time steps).
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Figure 5: Trajectories of virtual particles in a 19x19
array

(a) DFT of i and j-directional velocities of a paricle�
     whose motion is 49818-periodic (437 plots / Pi).

(b) DFT of i and j-directional velocity of a paricle�
     whose motion is 116964-periodic (1026 plots / Pi).
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Figure 6: Spectral distribution of the velocities
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(b) Cross correlation Rc,ij(m) between i and j-directional velocity components�
      of a paricle whose motion is 49818-periodic (874 plots / T).

(a) Autocorrelations Ra,i(m), Ra,j(m) of i and j-directional velocity components�
     of a paricle whose motion is 49818-periodic (874 plots / T).

(c) Autocorrelations Ra,i(m), Ra,j(m) of i and j-directional velocity components�
     of a paricle whose motion is 116964-periodic (2052 plots / T).

(d) Cross correlation Rc,ij(m) between i and j-directional velocity components�
      of a paricle whose motion is 116964-periodic (2052 plots / T).
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Figure 7: Autocorrelations of the velocity components
and cross correlations between i and j-directional com-
ponents of the velocities.
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Figure 8: Cross correlations between the velocities of
two particles.
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