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Abstract—This paper deals with an identification
method of Hammerstein type nonlinear systems by using
an automatic choosing function (ACF) model and genetic
algorithm (GA). An unknown nonlinear static part to be
estimated is approximately represented by the ACF model.
The connection coefficients of the ACF and the system pa-
rameters of the linear dynamic part are estimated by the
linear least-squares method. The adjusting parameters for
the ACF model, i.e. the number and widths of the subdo-
mains and the shape of the ACF are properly determined
by using the GA, in which the Akaike information crite-
rion is utilized as the fitness value function. Simulation
results are shown to illustrate the effectiveness of the pro-
posed method.

1. Introduction

Since most practical systems have inherent nonlinear
characteristics such as saturation and dead-zone, the prob-
lem of identifying such kind of systems is of great impor-
tance for precise analysis, synthesis and prediction. One
of approaches for nonlinear system identification is use of
the block oriented models such as Hammerstein model or
Wiener model [1, 2, 3]. The Hammerstein model is ex-
pressed by a nonlinear static part followed by a linear dy-
namic part. The model has many advantages for control
design or stability analysis due to the model structure [3].
Several identification methods have been proposed for the
Hammerstein model by using correlation theory [4], neu-
ral networks [5], polynomials [6], piecewise linear model
[7], and so on. However in many cases the model structure
for representation of nonlinear static part is assumed to be
known.

In this paper an application of automatic choosing func-
tion (ACF) model [8] and genetic algorithm [9] is proposed
for identification of Hammerstein type nonlinear systems.
The data region of the input signals is divided into some
subdomains. Unknown nonlinear static part to be estimated
is approximately represented by a local linear equation on
each subdomain. These local linear equations are united
into a single one by the ACF smoothly. The connection co-
efficients of the ACF and the system parameters of the lin-
ear dynamic part are estimated by the linear least-squares
method. The accuracy of this identification method de-

pends strongly on the ACF model structure, i.e. the number
and widths of the subdomains and the shape of the ACF.
These adjusting parameters are properly determined by us-
ing the GA, which is a probabilistic search procedure based
on the mechanics of natural selection and natural genetics
[9]. The fitness value in this GA is calculated by the Akaike
information criterion (AIC) [10].

This paper is organized as follows. In section 2 the prob-
lem is formulated. In section 3 the identification method is
proposed in case of fixed ACF model structure. In section
4 the GA is applied to determine the ACF model structure.
In section 5 simulation results are shown to illustrate the
effectiveness of the proposed method. Finally some con-
clusions are remarked in section 6.

2. Statement of the Problem

Consider a discrete-time nonlinear system described by
the Hammerstein model shown in Figure 1:



A(q−1)y(k) = B(q−1)x(k − 1) + e(k)
x(k) = f (u(k))
A(q−1) = 1 + a1q−1 + · · · + anq−n

B(q−1) = b0 + b1q−1 + · · · + brq−r

(1)

where u(k) and y(k) are input and output signals, respec-
tively. x(k) is intermediate signal that is not accessible
for measurement. e(k) is measurement noise. q−1 denotes
backward shift operator. n and r are known degrees of poly-
nomials A(q−1) and B(q−1), respectively. f (·) is unknown
nonlinear function. The problem is to identify the system
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Figure 1: Hammerstein model
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parameters {ai} and {bj} of the linear dynamic part, and
nonlinear static function f (·) from input and output data.

3. Identification

In order to represent the nonlinear function f (·), the sig-
moid type ACF [8] is introduced.

Let a domain being a data region of u(k) be D =

[umin, umax]. The domain D is divided into some subdo-
mains of D = ∪M

i=1Di where Di = [αi, βi], α1 = umin,
βM = umax, αk = βk−1 (k = 2, 3, · · · ,M). Then the ACF
is defined by

Ii(u(k)) = 1 − 1
1 + exp(H(u(k) − αi))

− 1
1 + exp(−H(u(k) − βi))

(2)

where H is positive real value. Ii(u(k)) is almost unity only
on a subdomain Di = [αi, βi] and nearly equals to zero on
D − Di, so it chooses Di automatically (see Figure 2).

Assume that f (u(k)) is well approximated linearly on
each subdomain Di:

f (u(k)) � ci + diu(k) on Di. (3)

Then f (u(k)) is represented by using the ACF on the whole
domain D as

f (u(k)) =
M∑

i=1

(ci + diu(k))Ii(u(k)) + ε(k) on D, (4)

where ε(k) is an approximation error.
Substituting Eq.(4) into Eq.(1) yields

A(q−1)y(k) =
M∑

i=1

ciB(q−1)Ii(u(k − 1))+

M∑
i=1

diB(q−1)u(k − 1)Ii(u(k − 1)) + v(k)

(5)

or in vector form,

y(k) = ϕT(k)θ + v(k) (6)
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Figure 2: Automatic choosing function (ACF)

where v(k) = e(k)+ B(q−1)ε(k− 1) is an equation error, and



θ = [θT
a , θ

T
c1
, θT

c2
, · · · , θT

cM
, θT

d1
, θT

d2
, · · · , θT

dM
]T

θa = [a1, a2, · · · , an]T

θci = [θci (1), θci (2), · · · , θci (r + 1)]T

= [b0ci, b1ci, · · · , brci]T

θdi = [θdi (1), θdi (2), · · · , θdi (r + 1)]T

= [b0di, b1di, · · · , brdi]T

(7)

ϕ(k) = [ϕT
a (k),ϕT

c1
(k),ϕT

c2
(k), · · · ,ϕT

cM
(k),

ϕT
d1

(k), · · · ,ϕT
dM

(k)]T

ϕa(k) = [−y(k − 1),−y(k − 2), · · · ,−y(k − n)]T

ϕci (k) = [Ii(u(k − 1)), Ii(u(k − 2)), · · · ,
Ii(u(k − r − 1))]T

ϕdi (k) = [u(k − 1)Ii(u(k − 1)), u(k − 2)Ii(u(k − 2)),
· · · , u(k − r − 1)Ii(u(k − r − 1))]T

(i = 1, 2, · · · ,M).

Each parameter will be estimated as follows.
First, the unknown parameter vector θ is easily evaluated

by applying the linear least-squares method to Eq.(6):

θ̂ =


Ns+N∑

k=Ns+1

ϕ(k)ϕT (k)


−1 

Ns+N∑
k=Ns+1

ϕ(k)y(k)

 (8)

where N is the number of input and output data. Thus the
parameters of the linear dynamic part are estimated by

[â1, · · · , ân, b̂0, · · · , b̂r]T =

[
I(n+r+1)×(n+r+1) : 0

]
θ̂, (9)

putting c1 = 1 without loss of generality.
Next, the parameters of the nonlinear static part are ob-

tained by using the linear least-squares technique again as

ĉi =

r+1∑
j=1

θ̂c1( j)θ̂ci( j)/
r+1∑
j=1

θ̂ 2
c1( j) (i = 2, 3, · · · ,M)

d̂i =

r+1∑
j=1

θ̂c1( j)θ̂di( j)/
r+1∑
j=1

θ̂ 2
c1( j) (i = 1, 2, · · · ,M).

(10)

Thus the nonlinear static function is composed by Eq.(10)
as

f̂ (u(k)) =
M∑

i=1

(ĉi + d̂iu(k))Ii(u(k)). (11)

4. Optimization of ACF Model Structure by GA

The accuracy of the above identification algorithm
greatly depends on the ACF model structure, i.e. the num-
ber and widths of the subdomains and the shape of the ACF.
The number M of the subdomains should be determined
properly in order to avoid overparametrization and reduce
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the complexity of the estimated model. In this section the
AIC is utilized as an objective function, and the ACF model
structure is determined by the GA. Note that if candidates
of M, αi (i = 2, 3, · · · ,M) and H are given, then the un-
known parameter vector θ is estimated by the algorithm of
section 3. Therefore only Ω = (M, {αi},H) is coded into
binary bit strings and searched by the GA.

First, an initial population which consists of binary bit
strings as candidates ofΩ is generated. Then, candidates of
the ACF are constructed by using the decoded values from
the strings. The candidates of unknown parameter vector
θ are estimated by the identification method described in
section 3. The fitness values are calculated by using the
AIC. The genetic operations, which are reproduction based
on the fitness values, crossover and mutation, are repeated
so that the fitness value of the population increases.

In more detail the algorithm is as follows:
step 1: Initialization

Generate an initial population of Q binary bit strings for
Ω randomly.
step 2: Decoding

Decode Q strings into real values Ω̂i (i = 1, 2, · · · ,Q).
step 3: Construction of ACF

Construct Q candidates of the ACF using Ω̂i (i =
1, 2, · · · ,Q).
step 4: Identification

Identify θ̂i and f̂i(u(k)) (i = 1, 2, · · · ,Q) from
Eqs.(8)∼(11), using each candidates of the ACF.
step 5: Fitness value calculation

Calculate the AIC:

AICi = N log


1
N

Ns+N∑
k=Ns+1

(y(k) − ŷi(k))2

 + 2Pi

(i = 1, 2, · · · ,Q)

(12)

and the fitness values Fi = −AICi, using Ω̂i, θ̂i and f̂i(u(k)).
Pi = n + 2Mi(r + 1) is the number of the parameters in
the identification model Eq.(6). ŷi(k) is the output of the
estimated model.
step 6: Reproduction

Reproduce each of individual strings with the probability
of Fi/

∑Q
j=1 F j. Practically, the linear fitness scaling [9] is

utilized to avoid undesirable premature convergence.
step 7: Crossover

Pick up two strings randomly and decide whether or not
to cross them over according to the crossover probability
Pc. Exchange strings at a crossing position if the crossover
is required. The crossing position is chosen randomly.
step 8: Mutation

Alter a bit of string (0 or 1) according to the mutation
probability Pm.
step 9: Repetition

Repeat step 2 ∼ step 8 from generation to generation so
that the fitness value of the population increases. In sim-
ulations, the genetic operations will be repeated until pre-
specified G-th generation.

Finally, at the termination of this algorithm, the subop-
timal parameters of the ACF model Ω̂best is determined by
the string with the best fitness value over all the past gener-
ations. So the final estimated model is constructed by Ω̂best,
and the corresponding θ̂best and f̂best(u(k)).

5. Numerical Simulation

Consider a system described by


A(q−1)y(k) = B(q−1)x(k − 1) + e(k)
x(k) = f (u(k))

=



−2.0 (−3.0 ≤ u(k) < −1.8)
u(k)/0.6 + 1.0 (−1.8 ≤ u(k) < −0.6)
0.0 (−0.6 ≤ u(k) < 0.6)
u(k)/0.6 − 1.0 (0.6 ≤ u(k) < 1.8)
2.0 (1.8 ≤ u(k) ≤ 3.0)

A(q−1) = 1 + 0.8q−1 + 0.6q−2

B(q−1) = 0.4 + 0.2q−1
.

(13)

This system has saturation and dead-zone nonlinearity.
The output signal is generated by uniformly distributed

input with amplitude range [−3.0, 3.0]. e(k) is white Gaus-
sian noise N(0, 0.01). The number of input and output data
is N = 300. The maximum number of the subdomain is
Mmax = 11. The design parameters of the GA are empiri-
cally chosen as follows:

(1) population size: Q = 30
(2) all bit number of string: L = 180
(3) search range of H: [hmin, hmax] = [0.1, 100.0]
(4) crossover probability: Pc = 0.8
(5) mutation probability: Pm = 0.03

The genetic operations are repeated until G = 150-th gen-
eration.

The adjusting parameters of the ACF model have
been determined by the GA as Ω̂ = (M̂, {α̂i}, Ĥ) =
(8, {−2.06,−1.89,−1.03,−0.52, 0.00, 0.74, 1.61}, 99.30).

The estimated nonlinear static function f̂1(u(k)) by the
proposed method is shown in Figure 3. For comparison, the
estimated nonlinear static function f̂2(u(k)) is also shown
in Figure 3, where the conventional polynomial model (8th
order) is used to represent the nonlinear static part [3, 6].
Clearly f̂1(u(k)) by the proposed method is very close to
the true nonlinear function f (u(k)) on the given data region,
while f̂2(u(k)) by the polynomial model has larger error to
the true nonlinear function.

Figure 4 shows the true output y(k), the output ŷ1(k) of
the estimated model by the proposed method and |y(k) −
ŷ1(k)|. Similarly, the output ŷ2(k) by the polynomial model
and |y(k)− ŷ2(k)| are also shown in Figure 4. The output er-
rors are (

∑Ns+N
k=Ns+1 |y(k)− ŷ1(k)|)/N = 0.124 for the proposed

method and (
∑Ns+N

k=Ns+1 |y(k)− ŷ2(k)|)/N = 0.138 for the poly-
nomial model, respectively. From these results, we confirm
that the accuracy of the proposed method is superior to that
of the conventional polynomial model.

Estimates of the system parameters of the linear dynamic
part are shown in Table 1.
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Figure 3: True nonlinear function and estimated nonlinear
functions

Table 1: System parameters of the linear dynamic part
true values estimates estimates

(proposed) (polynomial model)
a1 0.8 0.823 0.801
a2 0.6 0.596 0.590
b0 0.4 0.400 0.400
b1 0.2 0.237 0.186

6. Conclusions

In this paper an identification method of the Hammer-
stein systems using the ACF model and GA has been pro-
posed. The nonlinear static part to be estimated is approx-
imately represented by the ACF model. Then the linear
least squares method has been applied to estimate the con-
nection coefficients of the ACF and the system parameters
of the linear dynamic part. The adjusting parameters for the
ACF model, i.e. the number and widths of the subdomains
and the shape of the ACF have been properly determined
by the GA. The GA would be one of suitable methods for
such complicated optimization problems. Simulation re-
sults show that the identification by this method is easy in
computation and superior in accuracy even in the presence
of low measurement noises.
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