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Abstract—In this paper, we show that a new numerical
method, the Constrained Interpolation Pro le - Basis Set
(CIP-BS) method, is effective in solving nonlinear partial
differential equations. This method uses a simple poly-
nomial basis set that is easily extendable to any desired
higher-order accuracy. The interpolating pro le is chosen
so that the subgrid scale solution approaches the local real
solution by constraints on the spatial derivatives of the mas-
ter equations. Then, introducing scalar products, the linear
and nonlinear partial differential equations are uniquely re-
duced to ordinary differential equations for values and spa-
tial derivatives at the grid points. The method gives stable,
less diffusive, and accurate results. It is successfully ap-
plied to the Korteweg-de Vries equation, and the coupled
nonlinear Schrödinger equation describing soliton dynam-
ics.

1. Introduction

During the past three decades there has been signi cant
progress in numerical analysis for nonlinear partial differ-
ential equations (PDEs). There are basically two types of
methods for numerical solutions of PDEs: spectral and grid
methods. The main difference between these two methods
comes from the methodology in treating the spatial deriva-
tives. Since spectral methods typically consist of expand-
ing the total solution in terms of differentiable basis func-
tions such as used in the Fourier transformation, they do not
suffer from numerical inaccuracies for derivatives. There-
fore, in general, these methods give accurate solutions with
a minimum number of discretization points, only if appro-
priate problem speci c basis functions which satisfy the
boundary conditions are applicable. On the other hand,
grid methods, such as  nite element methods or  nite dif-
ference methods, consist of approximating derivatives by
 nite differences. It is often difficult to approximate the
derivatives with sufficient accuracy, because the derivatives
are estimated by using only the values of the function on
a compact set of grid points. However, since  nite differ-
ence derivatives often lead to structured matrices, which
are easily adapted to a number of standard techniques, they
are typically more  e xible and easier to implement than
spectral methods for systems with complex boundary con-
ditions. Therefore, it is to be said that improvements in grid
methods which exemplify the spectral method’s accuracy is

the primary goal of a numerical method.
In 1991, Yabe and Aoki proposed the Constrained In-

terpolation Pro le (CIP) method[1, 3], in which not only
values but also their  rst derivatives are treated as indepen-
dent variables associated with the grid point, and the infor-
mation lost inside the grid cell is retrieved by a Hermite
type interpolation function[2]. It is worth noting that the
CIP method does not include any algorithm-dependent pa-
rameter. If the size of the system and grid intervals for the
problem are de ned, the governing equations are uniquely
transformed into a discretized form, in which no matrix
solution is used. However, methods using matrix opera-
tions are more advantageous because a number of numeri-
cal methods for large, sparse systems developed for the  -
nite difference method or the  nite element method can be
adopted. Recently, a new numerical method, the CIP-Basis
Set (CIP-BS) method[4], has been proposed by generaliz-
ing the concept of the CIP method from the viewpoint of
the basis set. The governing equations are unambiguously
discretized into matrix form equations requiring the resid-
uals to be orthogonal to the basis functions via the same
procedure as the Galerkin method. The CIP-BS method,
in which the local polynomial basis functions correspond-
ing to the values and spatial derivatives at each grid point
belong to the complete set and the CK class, is called the
CIP-BSK method. Numerical results in the solution of the
Schrödinger equation have demonstrated that accurate so-
lutions are obtained by the CIP-BS method and the use of
a higher order basis set is essential in increasing accuracy.

Furthermore, we have found that the CIP-BS method
can be extended to nonlinear PDEs by introducing differ-
ential algebra to discretize nonlinear functional operations.
The purpose of this paper is to show that the method can
be applied to nonlinear PDEs exempli ed by solutions of
the Korteweg-de Vries (KdV) equation, and the coupled
nonlinear Schrödinger (CNLS) equation which describe the
dynamics of solitons.

2. Numerical Method

Since the CIP-BS method is new and not widely known,
we  rst summarize the method adding extensions to adopt
the method to nonlinear hyperbolic equations.

We need a basis set where it is easy to de ne values
and derivatives of an arbitrary function, f (x), at the grid
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points. Therefore, we assume that the functions in the do-
main of R1 can be approximated by the CIP-basis set of
degree K method (CIP-BSK), where K refers to the order
of the derivatives we retain in the calculation, through the
expression

f (x) =

N∑

i=1

K∑

k=0
f (k)
i φk,i(x), (1)

where f (k)
i is the k-th coefficient at the grid point xi, the

summation on the index i is taken over all grid points, and
the basis functions, φk,i(x), on the local support [xi−1, xi+1]
are expressed in the form

φk,i(x) = θi−1,i(x)φk,i−(x) + θi,i+1(x)φk,i+(x), (2)

where θi,i+1(x) = θ(x − xi) − θ(x − xi+1), θ(x) is the Heavi-
side step function, and φk,i−(x), φk,i+(x) are polynomials of
degree (2K + 1) determined from the constraints:

Dl
xφk,i±(xi) =


1 f or l = k
0 f or l = 0, 1, · · · , k − 1, k + 1, · · · ,K

Dl
xφk,i±(xi±1) = 0 f or k = 0, 1, · · · ,K, (3)

where Dx is the derivative operator in x, and D0
x = 1. For a

uniform grid system the basis function satis es the transla-
tional relation φk,i(x) = φk,i−n(x − xn).

The  rst derivative of the basis function is expressed
as Dxφk,i(x) = θi−1,iφ

′
k,i−(x) + θi,i+1φ

′
k,i+(x). Here, we have

used the fact that φk,i±(x)δ(x − xi±1) = 0 due to the re-
lation xδ(x) = 0, and φk,i−(xi) = φk,i+(xi), where δ(x) is
the Dirac delta function. Similarly, we can obtain the l-
th order derivatives of φk,i(x) for l ≤ K + 1 as Dl

xφk,i(x) =

θi−1,iφ
(l)
k,i−(x)+θi,i+1φ

(l)
k,i+(x).Although the basis functions are

constructed by using distribution functions, the functions
represented in the CIP-BSK method belong to the CK class.
Therefore, it is easily found that the k-th spatial derivative
of f (x) at the grid point xi equals the coefficient f (k)

i , i.e.
Dk

x f (x)|x=xi = f (k)
i . We can say that the basis set belongs

to a complete set in the sense that the expansion (1) could
represent the exact solution with any degree of accuracy
in the limit N → ∞ or K → ∞. If f (x) = 0 in Eq.(1),
we can deduce that all the coefficients f (k)

i are zero, and
that the basis functions are linearly independent. Then the
function f (x) can also be represented by this basis set as
f = (f1, f2, · · · , fN) where fi = ( f (0)

i , f (1)
i , · · · , f (K)

i ).
Let us de ne addition and multiplication of the functions

as follows:

f (x) + g(x) ⇔ f + g = (f1 + g1, f2 + g2, · · · , fN + gN)(4)
c f (x) ⇔ cf = (cf1, cf2, · · · , cfN) (5)

f (x) · g(x) ⇔ f · g = (f1 · g1, f2 · g2, · · · , fN · gN), (6)

where c is a scalar value. Addition and scalar multiplica-
tion for fi are

fi + gi = ( f (0)
i + g(0)

i , f (1)
i + g(1)

i , · · · , f (K)
i + g(K)

i ) (7)

cfi = (c f (0)
i , c f (1)

i , · · · , c f (K)
i ) (8)

and multiplication is given by

fi · gi = (h(0)
i , h(1)

i , · · · , h(K)
i ), (9)

where h( j)
i =

∑ j
l=0

j!
l!( j−l)! f (l)

i g( j−l)
i . The identity of addition

and multiplication are (0, 0, · · ·) and (1, 0, · · ·), respectively.
Eqs.(7) - (9) are the same as the de nition for differential
algebra K D1, (see ref.[5]). Therefore, the functions f −1(x),√

f (x), sin( f (x)), or exp( f (x)) can be uniquely represented
by the basis set using the representation of f (x). For Ex-

ample, f −1(x) is can be expressed ( 1
f (0)
i
,− f (1)

i

f (0)
i

2 ,
2 f (1)

i
2− f (0)

i f (2)
i

f (0)
i

3 )

when K = 2 and f (0)
i , 0. However, it is worth noting

that, although the operation Dn
x maps K D1 into K−nD1 in the

differential algebra, we represent Dn
x as a matrix by intro-

ducing the scalar product of the basis function φk,i(x) and
φk′ ,i′ (x) in the domain R as [4]

< φk,i|φk′ ,i′ >≡
∫

R
φk,i(x)φk′ ,i′ (x)dx. (10)

Partial differential equations ∂ f (x, t)/∂t = L[ f (x, t)],
where L is a linear or nonlinear operator, are reduced to
ordinary differential equations by the scalar product. Ap-
plying < φk,i| ,(k = 0, 1, 2, · · · ,K, i = 0, 1, 2, · · · ,N), to the
left of the equation, we obtain

S
df
dt

= L[f], (11)

where S is a positive-de nite matrix with the element
S ki,k′ i′ =< φk,i|φk′ ,i′ >, and L is a m + 1 dimensional matrix
with the element

Lki,k1i1,···,kmim =< φk,i|Dn1
x φk1i1 · · ·Dnm

x φkmim >, (12)

where m is a power of f and Dnl
x is a differential operator

on the lth f . For example, if L contains a term f∂ f /∂x,
the element of the corresponding matrix is Lki,k1i1,k2i2 =<
φk,i|φk1i1 Dxφkmim >. Since S ki,k′ i′ is non-zero only for i′ =

i − 1, i, i + 1, S is a band diagonal matrix with bandwidth
3(K + 1). The non-zero elements of the matrix representa-
tion of the operator L are only il = i − 1, i, i + 1, and can be
analytically calculated. The rank of the differential opera-
tor must satisfy one of the following conditions: (1) nl ≤ K
for l = 1, 2, · · · ,m, (2) the maximum of nl is K + 1, and the
other nl are less than K, (3) the maximum of nl is K + 2,
and the other nl are less than K − 1. Otherwise, terms like
θ(x)δ(x)′ , which cannot be regularized, would appear. This
procedure is equivalent to the one in the Galerkin method
in which the residual ∂

∂t f (x, t) − L[ f (x, t)] is required to be
orthogonal to the basis functions φk,i(x). Roughly speaking,
the subset of the equations resulting from the multiplication
of < φk,i| corresponds to the equation ∂ f k/∂t = ∂kL[ f ]/∂xk.

3. Numerical Results

Here, we solve the KdV, and CNLS equations to demon-
strate the effectiveness of the CIP-BS method. For simplic-
ity, we consider one-dimensional problems with a uniform
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grid. The implicit solver with general sparse Jacobian ma-
trices developed by Hindmarsh and Balsdon [6] is used to
time propagate the discretized equations (Eq.(11)).

3.1. KdV Equation

We solve the KdV equation:

∂ f
∂t

+ f
∂ f
∂x

= −µ∂
3 f
∂x3 , (13)

on the two length periodic interval with the initial condition
f (x, 0) = cos πx and the dispersion coefficient µ = 0.0222.
This problem was  rst calculated by Zabusky and Kruskal
[7], using the  nite differencing method where the momen-
tum is identically conserved. Here, we discretize the equa-
tion as follows:

S ki,k′ i′
d f (k′ )

i′

dt
= −L(001)

ki,i1k1,i2k2
f (k1)
i1 f (k2)

i2 − µL(03)
ki,i1k1

f (k1)
i1 , (14)

for i = 1, 2, · · · ,N, k = 0, 1, · · · ,K, where L(03)
ki,i1k1

=<

φk,i|D3
xφk1i1 >. The summations for k′ , k1, k2 are taken on

0, 1, · · · ,K, and those for i′ , i1, i2 on i− 1, i, i + 1. Hereafter,
if a subscript appears twice in a term, this summation is
assumed.

Figure 1 depicts the temporal development of the wave
form, and Fig. 2 gives the space-time trajectories of the
solitons calculated by the CIP-BS1 method. The results
in Ref.[7] are well reproduced. We can observe that the
soliton retains its identity after strong nonlinear interac-
tions with other solitons. In addition, all the solitons al-
most reconstruct the initial state after each recurrence time
TR. These calculations are carried out by the CIP-BS1 or
CIP-BS2 method, since the KdV equation contains 3rd or-
der spatial derivatives and cannot be solved by the CIP-BS0

method as explained in the previous section. The quantity∫
f (x, t)dx is conserved for 0 ≤ t ≤ 3TR within 10−11 and

10−14 when solved by the CIP-BS1 and CIP-BS2 method,
respectively.

3.2. CNLS Equation

Next, we solve CNSL equation,

i
∂u
∂t

+
∂2u
∂x2 + (|u|2 + β|v|2)u = 0,

i
∂v
∂t

+
∂2v
∂x2 + (|v|2 + β|u|2)u = 0, (15)

where u and v are complex functions, and β is a coupling
constant. Letting u = p + iq, v = r + is, the CNLS equa-
tion(Eq.(15)) can be written as

∂p
∂t

= −∂
2q
∂x2 − ((p2 + q2) + β(r2 + s2))q,

∂q
∂t

=
∂2 p
∂x2 + ((p2 + q2) + β(r2 + s2))p,

∂r
∂t

= − ∂
2 s
∂x2 − ((r2 + s2) + β(p2 + q2))s,

∂s
∂t

=
∂2r
∂x2 + ((r2 + s2) + β(p2 + q2))r. (16)
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t=0t=tBt=3.6tB

x
Figure 1: The solution of the KdV equation by the CIP-
BS1 method with an initial condition of f (x, 0) = cos πx.
CFL number =0.1, and ∆x = 0.01. The curves are drawn
depending on the breakdown time of tB = 1/π.

x0 20 TR

1 TR

2 TR

3 TR
time

Figure 2: Soliton trajectories in a space-time diagram.
TR(= 30.4tB = 30.4/π) is the recurrence time. The white
and black color correspond to the value 3 and -1, respec-
tively.
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In the CNLS system the global norm Nu,Nv, momentum
J = Ju + Jv, and energy E = Eu + Ev + EI , where Eu =∫
R Eudx, Ev =

∫
R Evdx, EI =

∫
R EIdx, Eu = 1

2 (p2 + q2)2 −
(( ∂p
∂x )2 + ( ∂q

∂x )2), Ev = 1
2 (r2 + s2)2 − (( ∂r

∂x )2 + ( ∂s
∂x )2), and

EI = β(p2 + q2)(r2 + s2), are conserved.
The discretized CNLS equations are straightforwardly

obtained as:

S
ki,k′ i′

dp(k
′

)
i′
dt

= −L(02)
ki,i1k1

q
(k1)
i1

− L(000)
ki,i1k1 ,i2k2

((p2(k1)
i1

+ q2(k1)
i1

) + β(r2(k1)
i1

+ s2(k1)
i1

))q
(k2)
i2

,

S
ki,k′ i′

dq(k
′

)
i′
dt

= L(02)
ki,i1k1

p
(k1)
i1

+ L(000)
ki,i1k1 ,i2k2

((p2(k1)
i1

+ q2(k1)
i1

) + β(r2(k1)
i1

+ s2(k1)
i1

))p
(k2)
i2

,

S
ki,k′ i′

dr(k
′

)
i′
dt

= −L(02)
ki,i1k1

s
(k1)
i1

− L(000)
ki,i1k1 ,i2k2

((r2(k1)
i1

+ s2(k1)
i1

) + β(p2(k1)
i1

+ q2(k1)
i1

))s
(k2)
i2

,

S
ki,k′ i′

ds(k
′

)
i′
dt

= L(02)
ki,i1k1

r
(k1)
i1

+ L(000)
ki,i1k1 ,i2k2

((r2(k1)
i1

+ s2(k1)
i1

) + β(p2(k1)
i1

+ q2(k1)
i1

))r
(k2)
i2

,

Also, the discretized expressions for the global norm,
momentum, and energy are obtained in the same proce-
dure. For example, the global norm is calculated as Nu =

L(00)
i1k1,i2k2

(p(k1)
i1 p(k2)

i2 + q(k1)
i1 q(k2)

i2 ), where L(00)
ki,i1k1

=< φk,i|φk1i1 >.
We consider the CNLS equation with the initial condi-

tion [8, 9]: u(x, 0) =
√

2r1sech(r1x − ξ1)eiv1 x, v(x, 0) =√
2r2sech(r2x − ξ2)eiv2 x. We take r1 = 1.2, r2 = 1.0,

ξ1 = −ξ2 = d0/2 = 12.5, and v1 = −v2 = −v0/4 > 0 such
that the two solitons with different amplitudes approach
with the velocity v0 and collide at x ≈ 0 after t ≈ d0/v0.

Figure 3 shows the results for β = 1. The computations
are carried out over the range −30 ≤ x ≤ 30, 0 ≤ t ≤ 50
with a time step ∆t = 0.01 and a space interval ∆x = 0.3 by
the CIP-BS1 method. From Fig.3, we can observe that the
soliton retains its identity after nonlinear interactions with
the other soliton. The errors of the global norm Nu,Nv,
momentum J, and energy E are also shown in the  gure.
Although it seems that the errors of the momentum and en-
ergy increase during strong interaction, it is only due to
the lack of approximation accuracy for monitoring vari-
ables, i.e. the error is reduced soon after the interaction
ended. The conservation property of the energy by the
CIP-BS method compared well with those in Ref.[9], in
which the multi-symplectic method is used. The errors of
the energy versus ∆x and K at the end of computation (not
shown here), we have con rmed the CIP-BS1 and CIP-BS2

methods have 4th and 6th order accuracy despite nonlinear
interactions.

4. Conclusion

We have generalized the CIP-BS method by introduc-
ing matrix representations and clarifying the relation with
differential algebra to accommodate it to nonlinear partial
differential equations. The nonlinear PDEs are uniquely
reduced to ODEs for values and spatial derivatives at the
grid points. Furthermore, since the matrix, S and L, are
sparse and sufficient to be calculated only at the beginning
of the simulation, the method is computationally efficient.
It is successfully applied to typical nonlinear PDEs describ-
ing soliton dynamics: the KdV and CNLS equations. It is
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Figure 3: The solutions of the CNLS equation for the inter-
action of two solitons with β = 1. The surface plots show
the amplitude of solitons. The bottom plot shows numeri-
cal results of norm, momentum, and energy error.

proved that the method gives stable, less diffusive, and ac-
curate results.
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