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Abstract—We define discretized Markov transfor-
mations and find an algorithm to give the num-
ber of maximal-period sequences based on discretized
Markov transformations. In this report, we focus
on discretized dyadic transformations and define a
number-theoretic function related to the numbers of
maximal-period sequences based on the discretized
dyadic transformations. We also introduce the entropy
of the maximal-period sequences based on discretized
dyadic transformations.

1. Introduction

It’s been an age since Ulam and von Neumann
pointed out that, given an initial value, the sequence of
iterating one-dimensional ergodic transformation, for
instance a logistic transformation: T (x) = 4x(1 − x),
is a good candidate for a pseudo-random numbers [1].
These sequences are intended for Monte Carlo appli-
cations. At that time, the availability and the use of
computers are restricted.

Things have changed in the past two decades, and
the computer age has come. The computers are now
very inexpensive and ubiquitous. These situations en-
able us to propose the sequences of pseudo-random
numbers generated by one-dimensional ergodic trans-
formations to be used as spreading sequences in SSMA
(spread spectrum multiple access) communication sys-
tems (see [2] for instance) and as real-valued keystream
in so called chaotic encryption systems. Unfortunately,
however, they are not available for practical use.

To begin with, Ulam and von Neumann’s idea re-
quires handling real numbers for practice. On the
contrary, computers can only deal with floating point
numbers. Hence we need ergodic theory for a trans-
formation from a finite set onto itself to understand
the behaviour of the iterates of one-dimensional trans-
formations implemented in computers. Unfortunately,
no way is known to give a good theoretical model that
tells us characteristics of the execution time for float-
ing point numbers [3].

Recently a breakthrough has been made as follows:

discretized Bernoulli transformations were considered
and their applications to cryptography and SSMA
communication systems were proposed [4]-[5]. The
discretized ergodic transformation is a permutation of
subintervals determined by the transformation. We
may say that this is an example of ultradiscrete dy-
namical systems [6]. If we use the discretized ergodic
transformations, we need not care for floating point
number computation. This is a great advantage of us-
ing the discretized ergodic transformations rather than
implementing the original ergodic transformations in
a computer system.

In [5], maximal-period sequences based on dis-
cretized Bernoulli transformations were proposed and
their correlational properties were numerically investi-
gated. It is pointed out in [5] that the maximal-period
sequences based on discretized dyadic transformation
were a generalization of de Bruijn sequences. While
the number of de Bruijn sequences are well known
[7], the numbers of maximal-period sequences based
on several discretized Bernoulli transformations were
numerically conjectured in [5].

In this report, we define discretized Markov trans-
formations and give an algorithm to give the num-
ber of maximal-period sequences based on discretized
Markov transformations. This gives a proof to
Tsuneda et al.’s numerical conjecture on the num-
bers of maximal-period sequences based on discretized
Bernoulli transformations. We also define a number-
theoretic function relating to the numbers of maximal-
period sequences based on discretized dyadic trans-
formations. Finally we discuss the entropy of the
maximal-period sequences based on discretized dyadic
transformations.

2. Preliminaries

In graph theory, technical terminology does not
seem to be unified. Firstly we shall give some defi-
nitions of the graph theoretic notions frequently used
throughout this study.

A graph G = (V , E) is defined by a finite set V whose
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elements are called vertices together with a set E of
two-element subsets of V . The elements of E are called
edges. In our definitions, multiple edges are allowed.
For e = {u, v} ∈ E (u, v ∈ V), we say that e is in-
cident with u and v. The number of edges incident
with v is called the degree of a vertex v. A walk in a
graph G is defined by an alternating sequence of ver-
tices and edges: v0e1v1 · · · envn, vi−1, vn ∈ V , ei =
{vi−1, vi} ∈ E (i = 1, 2, · · · , n). If v0 = vn, then the
walk is called closed. A walk in which all edges are
distinct is called a path. If a path from u and v exists
for every pair of vertices u, v of G, then G is called
connected.

An Eulerian circuit in a graph is a closed path
through a graph using every edge once. If a graph
G has an Eulerian circuit, then we say that G is an
Eulerian graph. The following theorem is celebrated
for establishing graph theory:

Theorem 1 (Euler [8]) A graph G is Eulerian if
and only if it is connected and every vertex has even
degree.

A directed graph G = (V ,A) is defined by a finite set
V together with a set A of ordered pairs of elements
of V . These pairs are called arcs. In our definitions,
multiple arcs and loops � = (v, v) ∈ A (v ∈ V) are
allowed. We denote an arc (u, v) by uv. The arc uv
goes from u to v and is incident with u and v. We
also say that u is adjacent to v and v is adjacent from
u. The out-degree of a vertex v denoted by odeg(v) is
the number of vertices adjacent from it, and the in-
degree of a vertex v denoted by ideg(v) is the num-
ber adjacent to it. A (directed) walk in a directed
graph G is an alternating sequence of vertices and
arcs v0a1v1 · · · anvn, vi−1, vn ∈ V , ai = vi−1vi ∈
A (i = 1, 2, · · · , n). If v0 = vn, then a walk is called
closed. A walk in which all arcs are distinct is called a
path. A directed graph G is called strongly connected if
a path from u and v exists for every pair of distinct ver-
tices u, v of G. Every directed graph G = (V ,A) nat-
urally corresponds to an ordinary graph G0 = (V , E),
where G0 has an edge incident with u and v if and
only if u �= v and G has an arc from u to v or from v
to u; we say that G is connected if the corresponding
graph G0 is connected.

Let G be a directed graph with vertices
v1, v2, · · · , vn, and with ajk arcs leading from vj

to vk (j, k = 1, 2, · · · , n). We write σj =
∑n

k=1 ajk =
odeg(vj); τk =

∑n
j=1 ajk = ideg(vk).

Definition 1 (de Bruijn [7], Harary and Nor-
man [9]) The arc digraph G∗ is a directed graph with∑n

j=1 σj vertices, one for each arc of G; a vertex of
G∗, which corresponds to an arc from vj to vk in G,
will be denoted Ajk. G∗ has exactly 0 or 1 arcs leading
from Ajk to Aj′k′ according as k �= j′ or k = j′.

There may be several vertices of G∗ with the same
name Ajk, but they will be regarded as distinct. G∗

has
∑n

i=1 σiτi arcs.

3. De Bruijn Sequences

A binary word (or block) is a finite binary sequence.
We denote the length of a word b by |b|. A word of
length n is called an n-word. We denote the set of all
n-words over {0, 1} by {0, 1}n.

A (binary) cycle of length k is a sequence
of k digits a1a2 · · · ak taken in a circular or-
der. In the cycle a1a2 · · · ak, a1 follows ak, and
a2 · · · aka1, · · · , aka1 · · · ak−1 are all the same cycle as
a1a2 · · · ak.

A (binary) complete cycle of length 2n is a cycle
of binary 2n-word, such that the 2n possible ordered
sets of binary n-word of that cycle are all different.
Any binary n-word occurs exactly once in the complete
cycle.

Because of the following theorem, the complete cy-
cles are sometimes called de Bruijn sequences.

Theorem 2 (de Bruijn [7], Flye Sainte-Marie [10])
For each positive integer n, there are exactly 22n−1−n

complete cycles of length 2n.

In fact this theorem is a corollary of

Theorem 3 (de Bruijn [7]) Let G be a directed
graph with m vertices such that odeg(v) =ideg(v) = 2
for every vertex v. If G has exactly M complete cycles,
then its arc digraph G∗ has exactly 2m−1M complete
cycles.

This theorem was proved using combinatorial meth-
ods.

Theorem 2 enables us to determine the number of
k-ary complete cycles:

Remark 1 For each positive integer n, there are ex-
actly {(k − 1)!}kn−1

kkn−1−n complete cycles of length
kn.

4. Discretized Dyadic Transformations

Let T : [0, 1] → [0, 1]. Let P be a partition of [0, 1]
given by the point 0 = a0 < a1 < · · · < a#P = 1.
For i = 1, · · · , #P , let Ii = (ai−1, ai) and denote the
restriction of T to Ii by T |Ii . If T |Ii is a homeomor-
phism from Ii onto some connected union of intervals
of P , then T is said to be Markov. The partition
P = {Ii}#P

i=1 is referred to as a Markov partition with
respect to T .

As the simplest example of discretized Markov
transformations, we focus on discretized dyadic trans-
formations. Let T : [0, 1] → [0, 1] be the dyadic trans-
formation: T (x) = 2x (mod1), x ∈ [0, 1].
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Let Pm be a partition of [0, 1] given by the point

0 < 1/2m < 2/2m < · · · < 1 − 1/2m < 1.

For i = 1, · · · , 2m, let Ii = ((i − 1)/2m, i/2m). Thus
the partition Pm = {Ii}2m

i=1 is a Markov partition with
respect to T .

Definition 2 For each m, the discretized dyadic
transformation T̂ is defined by a permutation T̂ :
Pm → Pm with T̂ (Ii) ⊂ T |Ii(Ii) for i = 1, · · · , 2m.
We denote the set of all discretized dyadic transforma-
tions by Tm.

Example 1 We give an example of discretized dyadic
transformations (m=6):

T̂ =
(

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

I2 I3 I5 I7 I9 I12 I1 I4 I6 I8

I11 I12

I10 I11

)
.

Figure 1: An Example of Discretized Dyadic Transfor-
mations (m=6)

This permutation can be represented by binary 6-word
100001 corresponding the relation between Ii and T̂ (Ii)
for i = 1, 2, · · · , 6.

Let us consider a code of discretized dyadic trans-
formations. Let T̂ ∈ Tm. Note that #Tm = 2m.
We define a bijection φ : Tm → {0, 1}m by φ(T̂ ) =
a1a2 · · ·am where

ai =

{
1 for T̂ (Ii) = I2i,

0 for T̂ (Ii) = I2i−1,
i = 1, 2, · · · , m.

(1)
For a given binary m-word a, we simply write
φ−1(a) = T̂a.

Let T̂ ∈ Tm. Consider a sequence of subinter-
vals from Pm: (T̂ n(I1))∞n=0 where T̂ 0(I1) = I1 and
T̂ n(I1) = T̂ (T̂ n−1(I1)) for n ≥ 1. We transform this
sequence into a binary sequence a = a1a2 · · ·an · · · as
follows. Define a binary function σ : Pm → {0, 1} by

σ(Ii) =
{

1 for Ii ⊂ (1/2, 1),
0 for Ii ⊂ (0, 1/2), i = 1, 2, · · · , m.

(2)

We write an = σ(T̂ n−1(I1)). Thus we obtain a binary
sequence:

a = a1a2 · · · an · · ·
= σ(I1)σ(T̂ (I1))σ(T̂ 2(I1)) · · ·σ(T̂ n−1(I1)) · · · .

Apparently this sequence is periodic. If the least
period of the sequence is 2m, then the sequence is
called the maximal-length sequence or the full-length
sequence. Note that the obtained binary recurring se-
quence a = a1a2 · · · an · · · only depends on T̂ . Hence
we denote the maximal-length sequence by T̂ . If
2m = 2n, then the maximal-length sequence is a com-
plete cycle of length 2n.

5. The Number of Maximal-Length Sequences

For 2m = 2n, then Theorem 2 by de Bruijn tells
us that there are exactly 22n−1−n maximal-length se-
quences in Tm. For 2m �= 2n, how many maximal-
length sequences are there in Tm [5]? To answer this
question, we require further results in graph theory.

Let G be a directed graph with vertices
v1, v2, · · · , vn, and with ajk arcs leading from vj

to vk (j, k = 1, 2, · · · , n). The matrix A = (ajk)
(1 ≤ j, k ≤ n) is called the adjacency matrix. Let
D = diag(odeg(v1), odeg(v2), · · · , odeg(vn)). The
matrix C = D − A is called the matrix of admittance.
An oriented spanning tree of G with root vj is a set of
n− 1 arcs a1, a2, · · ·an−1 such that for k = 1, 2, · · · , n,
there is an directed path along these arcs from vk

to vj . The following theorem is well-known as the
matrix tree theorem.

Theorem 4 (Tutte [11]) The number of oriented
spanning trees of G with root vj is the cofactor of Cjj

in the matrix of admittance C.

Theorem 5 (van Aardenne-Ehrenfest and de
Bruijn [12]) Let G = (V ,A) be a directed graph
with odeg(v) =ideg(v) for every vertex v ∈ A, and
let G′ be an oriented spanning trees of G. Let r be
the root of G′ and let a(v) be the arc of G′ with ini-
tial vertex v. Let a1 be with initial vertex r. Then
v0a1v1 · · · amvm, v0 = r, vi ∈ V , ai = vi−1vi ∈
A (i = 1, 2, · · · , m) is an Eulerian circuit if it is an
oriented path for which

i) no arc is used more than once.
ii) a(v) is not used in a1, a2, · · · , am unless it is the

only choice consistent with rule (i).
iii) ra1v1 · · · amvm terminates only when it cannot

be continued by rule (i).

By virtue of this theorem together with the matrix
tree theorem, we obtain

Corollary 1 For every 2m, the number of maximal-
length sequences in Tm is given by the cofactor of C11
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in the matrix of admittance C obtained by the directed
graph with m vertices and 2m arcs corresponding to
the discretized dyadic transformation.

6. Entropy of the Discretized Dyadic Transfor-
mations

We may introduce a number-theoretic function
associated with the numbers of maximal-period
sequences based on the discretized dyadic transfor-
mations as follows. For m = 1, 2, · · ·, ν(m) is defined
by the number of maximal-length sequences in Tm.
A short table of values of ν(m) is in the following:

m: 1 2 3 4 5 6 7 8 9 10
ν(m) : 1 1 1 2 3 4 7 16 21 48

By the fundamental theorem of arithmetic, we can
write m = q2s where 2 � |q. Thus Theorem 3 leads to

ν(q2s) = ν(q)2q(2s−1)−s.

A short table of values of ν(q) is as follows:
q: 1 3 5 7 9 11 13 15 17

ν(q) : 1 1 3 7 21 93 315 675 3825
We may also introduce

Definition 3 The entropy hm of the discretized
dyadic transformations is defined by

hm =
1

Lm
log ν(m), (3)

where Lm = 2m is the the least period of the maximal-
length sequence.

Remark 2 Fix a positive odd integer q. For m = q2s,
we obtain

hm → 1
2

log 2 (s → ∞). (4)

This value can be interpreted as the complexity of the
doubling process from a given directed graph G to its
arc digraph G∗.

7. Discretized Markov Transformations

For an irreducible, aperiodic Markov transformation
T , given a Markov partition P with respect to T , cor-
responding each subinterval I ∈ P to one arc a(I), we
obtain the set A of arcs. For each ordered pair (I, J)
of elements of P , one vertex v(I, J) adjacent from a(I)
and to a(J) is allowed exactly when J ⊂ T |I(I). Thus
we obtain the directed graph G = (V ,A) represent-
ing the Markov transformation. Generally, this is not
Eulerian. Further, we need the following notions in
Graph theory.

A directed graph H = (W ,B) is said to be a sub-
graph of the directed graph G = (V ,A) if W ⊂ V and
B ⊂ A. In this case we write H ⊂ G. The directed
graph H is called a spanning subgraph of G if W = V .

Furthermore, if H is Eulerian, it is called Eulerian sub-
graph spanning G. We are interested in the spanning
Eulerian subgraph of G with maximal number of arcs.

Under the above-mentioned one-to-one correspon-
dence between P and A, we obtain the partition Q
which corresponds to B. Then the discretized Markov
transformation T̂ is defined by a permutation T̂ : Q →
Q with T̂ (I) ⊂ T |I(I) for all I ∈ Q. Eventually, the
number of maximal-length sequences in the discretized
Markov transformation is given by the cofactor of C11

in the matrix of admittance C of the Eulerian sub-
graph H spanning G with maximal number of arcs.

8. Conclusion

In this study, we defined discretized Markov trans-
formations and found an algorithm to give the num-
ber of maximal-period sequences based on discretized
Markov transformations.
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