2004 International Symposium on Nonlinear
Theory and its Applications (NOLTA2004)
Fukuoka, Japan, Nov. 29 - Dec. 3, 2004

Discrete Lyapunov Exponent for Rijndael Block Cipher

Ljupco KocareV, Paolo Amaté, Davide Ruggier§y and Immacolata Pedaci

tInstitute for Nonlinear Science
University of California San Diego
9500 Gilman Drive, La Jolla, CA 92093-0402, USA
Email: kocarev@ucsd.edu
1+STMicroelectronics
Soft Computing,Si-Optics & Post Silicon Technology Corporate R&D
Via Remo De Feo 1, 80022 Arzano (Napoli), Italy
Email: {paolo.amato; davide.ruggiero; immacolata.pedi@rst.com

Abstract—The Rijndael block cipher, the winner of the — suze  BEAR HEE

Advanced Encryption Standard competition, is analyzed e

as a discrete time, discrete phase-space dynamical system {

We compute its discrete Lyapunov exponent as well as ,_g% g&'& \,

the discrete Lyapunov exponents of Bgte SubShiftRow i Celern % /&g: 7 /,&;&' x'&%’»’& /’%
and MixColumntransformations, which are the main in- .0 ’-,"_Q’,". &g&'; % &'é%'
gredients of the Rijndael block cipher. Our work shows " & "o,’- ) '&.’w_’-
that strong chaos-based cryptographic algorithms should >
be formed by repeated products of two simple transforma- C ¢ - ¢ - é y é

tions: one having perfect nonlinearity (and smaller value LIl LTl LIL, Lo

of discrete Lyapunov exponent) and one having the largest

possible value of the discrete Lyapunov exponent (and be- Figure 1: Diagram of Rijndael round.

ing almost linear function).

exponent in a similar way as for continuous systems: the
system is said to be pseudo-chaotic if its finite-space Lya-

The research on network security has considerabR}:]novMeXponem approaches a positive number+y),
vnenivl — oo.

grown in the last decade. There is a need for using cryp¥ X ,
tographic tools (algorithms, protocols, etc.) in order to en- N this paper we calculate discrete Lyapunov exponent

sure privacy in data transfer among users. Recently, nd@/ the Riindael block cipher. In the following we give first

cryptographic techniques basedamos theonhave been a brief review pf Rijndael block cipher. Then we analyze
developed [1, 2, 3, 4, 5, 6]. In this paper we use chadk S @ dynamical system, and compute its Lyapunov ex-
theory in the analysis of asymptotic behavior of knowrPonent. Finally, we discuss possible applications of our

encrypting algorithms originally designed without chaoticPProach for designing chaos-based encryption schemes.

techniques. Mixing, and therefore chaotic, systems are pro-
posed in cryptography by C. E. Shannon in [7]. 2. Brief review of Rijndael
Chaotic systems, when implemented on finite-state ma- . . )
chines (digital computers), are, in fact, discrete-time dy- 1he Riindael [11, 12] cipher was the winner of the AES
namical systems acting on discrete phase-space. Owiﬁ@mpeutlon and was designed by the resez_irchers from Bel-
to the discreteness, any dynamical trajectory in comput@fUm- The cipher works for three block sizes: 128, 192,
becomes eventually periodic, thifet well known in the and 256 bItS.. Rijndael applies the Shannon product cipher
theory and practice of pseudo-random number generatof9NCept and is not based on the Feistel structure. Crypto-
The periodic approximations in dynamical systems are al§§@pPhic operations are based on arithmetiGiR(2°). In
considered in the ergodic theory [8], apparently WithouEhe following we assume that the blo_<_:k length is 128 bits.
any relation to pseudo-chaos. Figure 1 shows the structure of the Rijndael round.
Recently, we have proposed a definition of finite-space The cipher applies the following transformations:

(or discrete) Lyapunov exponent [9, 10]. It measures lo- ByteSubTransformation — an input block with 16

cal (between neighboring points) average spreading of the bytes is subject to a byte-by-byte transformation us-
discrete-time dynamical system. Litbe a cardinality of ing theS-box.

the discrete phase-space. We have also suggested a defi-
nition of pseudo-chaos in terms of finite-space Lyapunov e ShiftRowTransformation — the bytes of the input are

1. Introduction
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arranged into four rows and every row is rotated &learly, 0< Af,, < In(M—1). The map with null Lyapunov
fixed number of positions. exponent iy (X) = x for eachx € {0,1,...,M - 1}. The
: . . set of all diferent map$-y can be divided into equivalent
e MixColumnTransformation — the bytes of the input .

are arranged into four rows and every column is transc_lasses, each class having same Lyapunov exponent,

9 . \d every s We justify our definition of discrete Lyapunov exponent
formed using polynomial multiplication ov&F(2°). . .
by showing that, for large classes of chaotic maps, the cor-

o AddRoundKey- the input block is XOR-ed with the responding finite-space Lyapunov exponent approaches the

round key. Lyapunov exponent of a chaotic map whigh— . The
proof of this theorem can be found in [9].
3. Discrete Lyapunov exponent Example 3.1 The mapst\i,,) defined as
Let us consider a map X if 0<x<i,
. . i+3 if x=i+1
Fv:{0,1...,M-1}—>{0,1....M-1}. (1) F&)(X): iv1 if x=it2 %
We assume that the mag, is 1 : 1 and onto (bijection). i+2 if x=i+3
Clearly, all trajectories oF v are periodic; letrj be a peri- X if x=i+4,

odic orbit of F\y with periodT;. SinceFy, is a bijection, it
follows thatUje; = {0,1...,M - 1} and}; T; = M.
We define discrete Lyapunov exponent of the rigpas

have, foreach = 0,1,... M -5, same Lyapunov exponent:
A8 =In2/M.

1 [m=2 Example 3.2 LetM = 2m be an even number. We define
Ay = | N Fui+ D=Fu@If + (2 Puas
i=0 m+k if X = 2K,
1 PM(X)z{ kK if x=2k+1 ®
v NTFmM=2)-Fu(M - 1)}, ©) ’

h the dist bet ; | s of th wherek = 0,1,...m- 1. The Lyapunov exponent of this
where the distance between two elements of the Sﬁ,'tap is equal to

{0,1...,M -1} is the Euclidean distance between two in-
tegersd, =| Fu(i + 1) — Fw(i) |. We say thai + 1 are dp, = T Linmsem=1 In(m-+ 1),

neighboring points of. In the above equation all terms Y 2m 2m

measure the divergence of two trajectories evolving in one The importance of this example is given by the following
iteration from two “slightly” diferent initial conditions: an theorem, which is proven in [10].

initial pointi and its neighboir+1. Note that in the last term
the neighbor oM — 1 is the pointM — 2. Moreover, if we
formally write Fyy(M) = Fy(M - 2) the last equation can
be rewritten in more compact form in the following way: Example 3.4 LetM = 2m. We defindQy as

M-1 k if X = 2K,
Ak, =%ZIn|FM(i+l)—FM(i)|. ) QM(X)Z{ M-1-k if x=2k+1, ©)
i=0

Theorem 3.3 For any permutation Fy, of the set
{0,1,...,M -1} we havelg, < Ap,,.

Thus. the L ) dwherek = 0,1,...m- 1. The Lyapunov exponent of this
us, the Lyapunov exponent measures average sprea mgp is equal to

of the mapFy. X
Let Aqy = 77 IN(M - 1).
aj = (&, = Fu(@)),...a?, = Fu@ )

We adopt the following definition of perfect nonlinearity

be a periodic orbit with period’j; in another words let (note that our definition is weaker than the usual offg):

a(()’) + a(lJ) + . % a(TJ_)_1 and F1I\;Ij(al(:)J)) = ag). We define _hasaperfect nonlinearity |fﬂer.ence$FM(|+1)—FM(|)|,

the Lyapunov exponént of the ma for the periodicor- | =01....,M =2 take all possible values2,...,M — 1.

bit a; as Th|s' example shqws the existence of maps with perfect
nonlinearity. For giverM, there areM — 1 classes of maps

T-1 . . . .
1< i) i) with perfect nonlinearity. For the discrete Lyapunov expo-
AFu.aj) = T E [N IFu@E+ ) =Fu@) 1. (5)  nents of these classes, one has:
k=0
1
Observe that the Lyapunov exponent of the nfrgp can /l(szn = M[In(M - 1!'+1Ink],

also be rewritten as a weighted sum of the Lyapunov expo-
nents of all periodic orbits: wherek = 1,2,...M — 1. Note also that the permuta-

tion Py, which has the maximum Lyapunov exponent, has
A = E/l 6) Vveryweak nonlinear properties: thefeérences$Fy (i +1)—
Fum M (Fm.j)- ( ) .
; Fwm(i)] take only two diferent values.
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4. Rijndael as a dynamical system is slightly smaller that the corresponding value for the map
) ) with perfect nonlinearity antl = 256: 1q,, = 4.54. The
Theory of dynamical systems aims to understand theason for this is that our definition of perfect nonlinear-
asymptotic behavior of an iterative process. In anothq{y is somewhere weaker that one commonly accepted in
words, given a mag : X — X andx < X, the theory cryptography. Nevertheless, the role of gteSulirans-
hopes to understand the behavior of the set of the poinfsrmation in the Rijndael algorithm, similarly to any strong

% £09, £(f(x)), ...}, called a trajectory ok. nonlinear transformation, is to mix in a nonlinear way the
By the assumption that plainteXtand cryptogan¥ be-  jnpyt information.

long to the same domain, a block encryption algorithms can
be written in form of transformations;: 5.2. ShiftRowpermutation

Y = Ez(X), (20) Let agp,...,a03,.--830,.-.,833 be 16 bytes (128 bits)

of the the Rijndael algorithm. Th8hiftRowpermutation
where plaintexiX, cryptogramY and secret key are (ar-  takes the input

ray of) sequences of letters in finite alphahéjs Ly, £z,

respectively, which are not necessarily equal to each other. a = (20,a01,202,303)
WhenLyx = Ly, as for Rijndael algorithm, it is meaningful a1 = (ayo.ay1d12,313)
to iterate the majz on a given starting plaintex and to % = (300,801, 8z 803)
consider the trajectoriX, Ez(X), Ez(Ez(X)), .. .}. 2 20, 821, 822, 923

Rijndael works on 16 byte-blocks, and each byte a = (330,231,332, 33)

Ilfl independently transformed W{th respect.to the othea{nd returng; >>> G, i = 0,1.2,3, wherea >>> C is the

ocks. Then the phase space is substantially the SPACE. i ion of the sequenaeof bvtes to the riaht b@ byt

(0.....25516, o} of bytes to the rig YC bytes.
The values oC; areC; =i,i=0,1,2,3.

Rijndael works on 16 byte-blocks, and each byte is in-
5. Discrete Lyapunov exponent of Rijndael dynamical gependently transformed with respect to the other blocks
system using theByteSuliransformation. The role of thghiftRow

In this section we consider the Rijndael algorithm as aHermutation i.s just to permute all 16'bytes: it dqes not play
: . R role of a nonlinear map or a map with the maximum Lya-
iterative process, and compute its discrete Lyapunov expg- . :
nent. punov exponent, which measures the sprea@ng factor. We

have computed the Lyapunov exponent of $eftRowper-
mutation to be ®3, which is substantially smaller than the
maximum one (foM = 16) 213. Note also that the fier-

A nonlinear transformation is essential part of evengncegFy(i+1)—Fwu(i)| for this map take only two dierent
strong encryption algorithm. Nonlinear transformations arealues: 3 and 13, again showing its weak nonlinear proper-
often implemented as lookup tables or S-boxes. A S-baies.
with p input bits andg output bits is denoted with — q.

The DES uses eight fierent 6~ 4 S-boxes. Byte level 5.3. MixColumn transformation
S-boxes (8- 8) are suited for software implementation on
8-bit processors.

ByteSuliransformatiors(x) in the Rijndael algorithm is
a byte-level S-box (8- 8) defined in the following way:

5.1. ByteSubtransformation

In the Rijndael algorithm théMixColumn transforma-

tion is a transformation, which for given 4 input elements
(bytes) outputs 4 elements (bytes), and can be represented
by the following relation:

[ 10001111) (1] L _
11000111 1 [yl]4><l - [CI,]]4><4[XJ]4><1a
11100011 0 where the matrixC = [C; j]ax4 is chosen to be BlixColumn
S(x) = 11110001 xL+ 0 , matrix, and addition and multiplication are defined over a
11111000 0 finite field. For the Rijndael algorithm tHdixColumnma-
01111100 1 trix, using hexadecimal representation of the matrix ele-
00111110 1 ments, is defined as
| 00011111} | O |
02 03 01 01
wherex! € GF(28) is the multiplicative inverse ok if 01 01 03 01
x # 0 or zero ifx = 0. C=lo01 o1 02 o3|
Letf:L—-L,L={0,1,...,255 be theByteSulirans- 03 01 01 02
formation of the Rijndael algorithm. We have computed
the discrete Lyapunov exponent of the map tabe- 4.01. Multiplication in GF(Z) is defined as multiplication of

The discrete Lyapunov exponentByteSuliransformation binary polynomials modulo an irreducible binary polyno-
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mial m(x) of degree 8. For Rijndael, this polynomial is

[3]
mx) =x2+x¢+x+x+1

or '11B’ in hexadecimal representatioti (0001 1011 bi-
nary).
The role of MixColumn transformation is to ensure

[4]

L. Kocarev and G. Jakimoski, “Unpredictable Pseudo-
Random Bits Generated by Chaotic Maps,” IEEE
Trans. on Circuits and Systems, Part |, 2003.

R. Tenny, L. S. Tsimring, L. Larson, and H. D. |. Abar-
banel, “Using Distributed Nonlinear Dynamics for
Public Key Encryption,” Phys. Rev. Let®0, 047903

largest possible spreading factor, and therefore should have (2003);

maximum discrete Lyapunov exponent. This is indeed the
case: we have found the Lyapunov exponent ofineCol- [5]
umntransformation to be 249. Note that this map does
not have strong nonlinear properties.

5.4. Discrete Lyapunov exponent of Rijndael

[6]
In addition to the analysis of the single transformations,
the behavior of the whole Rijndael cipher has been studied.
We consider 16 bytes as a single block of length 12 7]
which is represented as an integer. The computation of the
Lyapunov exponent has been performed on 7000 iterations
of the Rijndael map obtaining 87.04 as Lyapunov exponefig]
value. The maximum value discrete Lyapunov exponents
may have among all maps witl = 2128is 8872. -

6. Conclusions

R. Mislovaty, E. Klein, |. Kanter, and W. Kinzel, “Pub-
lic Channel Cryptography by Synchronization of Neu-
ral Networks and Chaotic Maps,” Phys. Rev. Létt,
118701 (2003);

L. Kocarev, M. Sterjev, and P. Amato, “RSA encryp-
tion algorithm based on torus automorphism,” Pro-
ceeding of ISCAS 2004, vol. 1V, 2994, pp. 578 — 581.

C. E. Shannon, “Communication theory of secrecy sys-
tems,” Bell Syst. Techn. J., Vol. 28, 1949, pp. 656-715.

I.P. Cornfeld, S.V. Fomin and Ya. G. Sindtrgodic
Theory Springer Verlag, 1982.

L. Kocarev and J. Szczepanski, “Finite-space Lya-
punov exponents and pseudo-chaos,” submitted for
publication.

In this work we have studied discrete Lyapunov expoElO] L. Kocarev, J. Szczepanski, J. Amigo, C. Mitrovski,

nent of the Rijndael block-cipher views as a dynamica
system. We have computed its discrete Lyapunov expo-
nent as well as the discrete Lyapunov exponent oByte-

and P. Amato, “Discrete Chaos,” submitted for publi-
cation.

Sub ShiftRowandMixColumntransformations. Our work [11] J. Daemen and V.Rijmen, “The Block Cipher Ri-

indicated that strong chaos-based cryptographic algorithm
should be formed by repeated products of two simple trans-
formations: one having perfect nonlinearity (and smaller
value of discrete Lyapunov exponent) and one having the
largest possible value of the discrete Lyapunov expone
(and being almost linear function). Two questions which
will be a subject of our future study are: what are the im-
plications of our results to the Rijndael block-cipher and
how to extend our results to the case of truly chaotic maps
defined on the continuous phase space?
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