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Abstract—The generalized DC analysis of generic
piecewise-linear circuits includes some important
problems of large interest as: search for all DC so-
lutions, DC characterization of N -ports and search for
DC working regions of circuits with tolerances in de-
vices. A set-theoretical approach, based on the so-
called polyhedral circuits, allows one to solve these
problems in a unified way, leading to the formulation
of a robust and efficient algorithm.

1. Introduction

In this paper, we focuse our attention on the gen-
eralized DC analysis of circuits whose nonlinear char-
acteristics can be approximated by a piecewise-linear
(PWL) implicit or explicit function [1].
A first important and popular problem consists of

finding all the DC solutions of a resistive PWL circuit
obtained by open circuiting the capacitors and short
circuiting the inductors. A second important problem
is the analysis of the characteristics of resistive PWL
N -ports. Finding these characteristics for a generic
circuits is, in general, very difficult. Note that the
resultant characteristic of a one-port may consist of
several separate branches, even if all embedded PWL
elements have a one-branch characteristic. A third
problem consists of finding the DC working regions of
PWL circuits with tolerances in the devices character-
istics, both linear and nonlinear. The solution of this
problem is very important, because it is well known
that semiconductor devices are subject to a large dis-
persion in their parameters, due to many reasons as ag-
ing, temperature effects and constructive techniques.
A theoretical instrument suitable to solve all the

problems cited above, with a unified approach, is rep-
resented by the so-called polyhedral circuits, that are
described by means of linear equalities and inequal-
ities. Therefore, their solution domains are convex
multidimensional polyhedra that can be found using
Linear Programming (LP) techniques.
The aim of this paper is to show that this theoretical

unified approach, already presented in [2], is not only
robust and elegant, but it is also very powerful from a
computational point of view.

2. The Theoretical Framework

Let us introduce the N -augmented circuits, obtained
by connecting a norator to each port of a generic non-
linear N -port. From the view-point of classical circuit
theory, any N -augmented circuit possesses infinitely
many (in general ∞N ) solutions forming a set called
configuration domain. Its projection onto the voltages
and currents of the N ports coincides with the charac-
teristic of the N -port. By convention, a 0-augmented
circuit denotes any classical circuit without extra nora-
tors. Thus, the configuration domain of a 0-augmented
circuit is constituted by its DC solutions. The con-
sidered N -augmented circuits contain M nonlinear el-
ements, besides the norators. Their characteristics
fm(xm, ym) = 0, m = 1, . . . , M , may be constituted
either by a set of one-dimensional (1D) branches, or
by a set of planar stripes, as it happens in the case of
a circuit with tolerances. Indeed, a characteristic sub-
ject to dispersion of the parameters can be modelled
with a stripe in the xm-ym plane, delimited by an up-
per and a lower characteristic set around the nominal
one. A 1D characteristic can be approximated by a
1D PWL characteristic, made up of the union of one
or more chains of adjacent 1D segments jointed in the
breakpoints (Fig. 1a). A stripe characteristic can be
approximated by a spread PWL characteristic, made
up of the union of one or more chains of adjacent par-
allelograms, called hereafter spread segments, jointed
in the spread breakpoints (Fig. 1b). In the sequel, the
term PWL characteristic and the term segment will
refer to both 1D and spread ones, since the next def-
initions and properties apply equally to both 1D and
spread sets. The first and last segment (1D or spread)
of each chain may be either bounded or unbounded.
The number of segments defines the rank of the PWL
characteristic.

A PWL characteristic can be partitioned into two or
more portions, called truncated PWL (T-PWL) char-
acteristics, each made up of one or more sequentially
ordered segments (see Fig. 1). A set of T-PWL char-
acteristics is said to be complete if each of the seg-
ments of the m-th original PWL characteristic belongs
to one and only one T-PWL characteristic in the set.
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Figure 1: A complete set of T-PWL 1D and spread
characteristics and the associated polyhedra.

When we substitute each PWL characteristic by one
of its T-PWL characteristics, we obtain a T-PWL N -
augmented circuit. The linear regions are suitable sets
in which all T-PWL characteristics are reduced to seg-
ments (rank equal to 1). They can be separated in two
classes: a linear region is said to be admissible if its
configuration domain is not empty, otherwise, it is said
to be nonadmissible. The product of the ranks of the
M T-PWL characteristics is the rank of the T-PWL
circuit and it corresponds to the number of linear re-
gions contained in it. So, a set of T-PWL circuits is
said complete if each linear region of the original PWL
circuit belongs to one and only one T-PWL circuit in
the set.
The hull of a generic setA is the most restricted con-

vex set containing A. For each T-PWL characteristic,
we introduce the associated polyhedron, that is the as-
sociated hull (see Fig. 1). For a unit-rank T-PWL
characteristic (a single segment), the hull coincides
with the segment itself. We can now introduce the
concept of associated polyhedral N -augmented circuit,
as the circuit derived from a T-PWL N -augmented cir-
cuit by substituting each T-PWL characteristic with
the associated polyhedron. For each polyhedral cir-
cuit, the configuration domain is a convex multidimen-
sional polyhedron, exhibiting the following property.
Inclusion Property: The configuration domain of a
T-PWL circuit, if not empty, is included into the con-
figuration domain of the associated polyhedral circuit.

As a consequence, if the configuration domain of the
associated polyhedral circuit is empty, then the con-
figuration domain of the T-PWL circuit is, in turn,
empty, while the contrary is not true. Analogously,
if at least one linear region contained in the T-PWL
circuit is admissible, also the associated polyhedral cir-
cuit is admissible. On the contrary, if all linear regions
contained in a T-PWL circuit are nonadmissible, the
associated polyhedral circuit may be either admissible
or nonadmissible. This is due to the fact that the asso-
ciated polyhedral circuit is the hull of the union of all
embedded linear regions, and, therefore, may be more
extended than the union itself. To test the configu-
ration domain of an associated polyhedral circuit, we
construct a Linear Programming (LP) problem, such
that its feasible domain just coincides with the con-
figuration domain, that is the solution domain, of the
related associated polyhedral circuit. The emptyness
of the configuration domain can be tested by means of
Phase I, that is the procedure, well-known in LP, used
for finding if the LP problem has a feasible domain.
The algorithm is structured according to a binary

tree: each node of the tree represents simultaneously a
specific T-PWL circuit, the associated polyhedral cir-
cuit and the two related configuration domains. The
binary tree starts from the original PWL circuit, in
which all PWL characteristics are complete and the
related associated polyhedral circuit includes all linear
regions. If its configuration domain is not empty, this
node generates a complete set of two (first-generation
nodes) T-PWL circuits, each one obtained by parti-
tioning one of the M PWL characteristics into two
T-PWL characteristics. We examine their correspond-
ing configuration domains and, if they are not empty,
they generate, in turn, four second-generation T-PWL
circuits with the same rule, and so on. In principle,
at each generation the number of T-PWL circuits in-
creases exponentially by a factor of 2. Indeed, when
the emptyness of the configuration domain proves that
an associated polyhedral circuit is nonadmissible, the
related T-PWL circuit, including all its linear regions,
is deleted because it is nonadmissible too. For in-
creasing order of generation the rank of the surviv-
ing T-PWL circuits decreases until linear regions are
reached. If the configuration domain of a linear region
is not empty, we can establish that it is admissible.
The union of the admissible linear configuration do-
mains coincides with the configuration domain of the
original N -augmented PWL circuit.

3. DC Solution Problem

The DC solution problem consists in finding all the
DC solutions of a PWL circuit. It is very important in
the analysis of electrical circuits, also for determining
their dynamical behaviour. All elements have 1D one-
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Figure 2: Circuit of DC solution problem.

branch or multi-branch characteristics in R2, apart
from possible couples nullators-norators: the solution
domain is so formed, if the circuit is non patholog-
ical, by isolated points. The polyhedral circuits as-
sociated to the T-PWL circuits are generated adopt-
ing the method presented in [3]. Let us present one
example, shown in Fig. 2. The algorithm has been
implemented in C++ language on a PC with CPU
1400 MHz. The circuit contains 4 transistors and 1
exponential diode. The transitors are all modelled
with the same Ebers-Moll model, with two exponential
diodes and two current-controlled sources with param-
eters αI = 0.2 and αF = 0.98. The exponential diode
has characteristic: i = 10−9(e−40v − 1): it has been
approximated at maximum with 80 segments. The
maximum rank of the circuit is so 809 = 1.34 1017, an
impressive number. The circuit presents 3 solutions,
listed in Ref. [4], while some data about the algo-
rithm are shown in Table 1. Note that the algorithm
is very efficient with each diode rank. Indeed, the num-
ber of solved polyhedral circuits is much smaller than
the number of associated linear regions (rank) and the
CPU time is reasonably small. Moreover, the precision
obtained in the PWL approximations (80 segments) of
the diode exponential characteristics provides a good
accuracy in the solution values. If necessary, these
can be initial conditions for traditional algorithms as
Newton-Raphson, for example.

diodes polyhedral CPU time
rank circuits [s]
20 369 1.1
32 435 1.9
80 483 3.7

Table 1: DC solution algorithm

4. N-Port Characteristic Problem

The characteristic of a generic one-port consists in
the union of 1D segments, one for each admissible lin-
ear region, in the v-i plane [5]. When N = 2, the two-
port may be represented by a pair of families of char-
acteristics. A single characteristic of a family, for in-
stance: f1(v1, v2, i3 = i03) = 0 f2(v1 = v0

1 , i3, i4) = 0,
is obtained when one of the previous quantity, which

Figure 3: One-port example.

Figure 4: Characteristic of one-port in Fig. 3.

plays the role of family parameter, is fixed [6]. in
general, for any N , the characteristic may be a N -
dimensional manifold obtained examining the union
of the configuration domains of the admissible linear
regions. In this paper, we will show the results about
the PWL one-port shown in Fig. 3. It is a nonlinear
ring (see Ref. [7]) formed by 7 PWL resistive ele-
ments connected by 7 linear resistors of value 1.6 Ω.
The PWL characteristic is formed by 5 segments: 3
finite segments with breakpoints (−1, 1), (−0.8, 0.9),
(0.8,−0.9) and (1,−1) and two infinite segments with
slope 1. The rank of the circuit is 78125. The char-
acteristic, drawn in plane v-i (see Fig. 4), is formed
by 195 segments. The algorithm needs to solve 15829
polyhedral circuits in about 5 s. Note that the charac-
teristic presents some singular points and it is formed
by many overlapping branches with many sharp turn-
ing points, therefore it presents some difficulties for
other algorithms presented in literature.

5. DC Tolerance Analysis Problem

One of the greatest problems in electronics circuits
consists in tolerances in elements characteristics, due
to the dispersions of the related parameters [8]. As
an example, the circuit shown in Fig. 5 is exam-
ined. The same Ebers-Moll model with two diodes
and two current-controlled current sources has been
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Figure 5: Circuit of tolerance analysis problem.

adopted for all transistors. Each exponential nom-
inal characteristic of diodes has been approximated
with 10 segments and the rank of the PWL circuit
is 108. This circuit, with nominal characteristics for
all diodes, has nine exact DC solutions [3]. We sup-
pose that all four transistors, T1, T2, T3, and T4 have
tolerances in their parameters. The PWL spread char-
acteristic of each diode with tolerances has a width
of about 20% in current respect the nominal value of
the characteristic. This circuit presents 16 admissible
linear regions, whose configuration domains are con-
vex sets. The DC working regions are so formed by
clusters of these configuration domains, as follows: 4
convex certain working regions, each one formed by
the configuration domain of one linear region, and 5
non-convex certain working regions, each one formed
by clusters of two or more linear regions, for a total
of 9 certain working regions, corresponding to the DC
solution points found with the nominal characteristics.
The DC working regions are said to be certain, because
a DC solution point certainly exists in the region for
any choice of real characteristics inside the correspond-
ing spread characteristics. The algorithm has analysed
totally 815 polyhedral circuits in about 4.67 s, against
the 541 polyhedral circuits and the 1.04 s of the nom-
inal circuit. We see that the results obtained using
the tolerance analysis are really good compared with
the amount of simulations needed with the traditional
algorithms.

6. Conclusions

The DC solution problem, the N -port characteris-
tic problem and the DC tolerance analysis have been
solved by introducing the polyhedral circuits. We in-
vestigated the effects of this unified approach, showing,
by means of some examples, the power and efficiency
of the derived algorithm. From a mathematical point
of view, the algorithm adopting the polyhedral circuits
is based on Linear Programming (LP) techniques, ap-
plied following the development of a binary tree. The
next step will be to improve the precision and the ef-
ficiency of the algorithm, especially for large circuits.
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