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Abstract—In this study, a complex behavior in
two coupled chaotic circuits related with intermittency
is investigated. When each chaotic circuit generates
intermittency chaos near the three-periodic window,
three different synchronization states appear and dis-
appear in a chaotic manner. This complex behavior is
modeled by a first-order Markov chain with four states.
Further, the phenomenon is confirmed by circuit ex-
periments.

1. Introduction

Synchronization and the related bifurcation of
chaotic systems are good models to describe various
higher-dimensional nonlinear phenomena in the field of
natural science. In particular, the breakdown of chaos
synchronization has attracted many researchers’ atten-
tions and their mechanisms have been gradually made
clear [1]-[5]. However, a lot of phenomena around
chaos synchronization are still veiled as well as other
nonlinear problems. Hence, in order to understand
and exploit such phenomena, it is important to dis-
cover them, to model them, and to investigate them.

On the other hand, intermittency chaos [6] is deeply
related to the edge of chaos [7] and many people sug-
gest that such a behavior between order and chaos
gains better performance for various kinds of informa-
tion processing than fully developed chaos. Therefore,
we consider that unveiling various roles of the inter-
mittency chaos is important to exploit it for future
engineering applications.

In this study, a complex behavior in two coupled
chaotic circuits related with intermittency is investi-
gated. At first, we observe three different types of
synchronization states when each chaotic circuit gen-
erates three-periodic solution. Next, we vary a control
parameter of each chaotic circuit to generate intermit-
tency chaos near the three-periodic window. In that
case, we can observe a complex behavior of the three
synchronization states. Namely, intermittency bursts
interrupt the synchronizations and different synchro-
nizations reappear after the bursts settle down. We

model this interesting complex behavior by a first-
order Markov chain with four states. Transition prob-
abilities between the states are obtained by counting
all of the transitions in plenty of computer simula-
tion. The stationary probability distribution and the
expected sojourn time in each state are calculated from
the transition probabilities. These statistical quanti-
ties are compared with those obtained from computer
simulations. We emphasize that the synchronizations
of the three-periodic solutions and those complex be-
havior caused by the intermittency are observed from
both computer calculations and circuit experiments.

2. Circuit Model

Figure 1 shows the circuit model, which is the asym-
metric version of the circuit investigated in [8]. In the
circuit, two identical chaotic circuits are coupled by a
resistor R.

Figure 1: Circuit model.

At first, the i —wv characteristics of the diodes are ap-
proximated by two-segment piecewise-linear functions
as
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By changing the variables and parameters,
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the normalized circuit equations are given as
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(3)
where
f(yx) = 0.5 (Oyr + 1 — |oyr — 1]). (4)

3. Synchronization Phenomena

Figure 2 shows three-periodic attractor observed
from the isolated subcircuit. For the computer calcu-
lations, the fourth-order Runge-Kutta method is used
with step size h = 0.001.
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Figure 2: Three-periodic attractor observed form each
subcircuit. (a) Computer calculated result. xp vs. zg.
a=7.0,8=0.152, v = 0.0 and § = 100.0. (b) Circuit
experimental result. I vs. vg. L1 = 300mH, Ly =
10mH, C = 33nF, r = 74092 and R = 0.012.

Figure 3 shows that three different types of synchro-
nization states, when the two circuits generating the
three-periodic attractors are coupled. These three syn-
chronization states can be obtained by giving differ-
ent initial conditions. As we can see from the figures,
the two circuits tend to be synchronized in anti-phase.
This is because the states minimizing the energy con-
sumed by the coupling resistor R correspond to sta-
ble synchronization states. For three-periodic solu-
tions there exist three different peaks in the waveform.
Hence, three different synchronization states could co-
exist as shown in Fig. 3. We name the three synchro-
nization states as the states 11, T, and T5.

We also confirm the generation of the three different
synchronization states in circuit experiments as shown
in Fig. 4.
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Figure 3: Time waveforms of three synchronization
states (computer calculated results). o« = 7.0, § =
0.152, v = 0.005 and § = 100.0. (a) State Ty, (b)
State To, and (c) State T5.
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Next, we vary a control parameter of each chaotic
circuit to generate intermittency chaos near the three-
periodic window as shown in Fig. 5.

If we couple the two chaotic circuits when the in-
termittency chaos appear, we can observe a complex
behavior of the three synchronization states. Namely,
intermittency bursts disturb the synchronizations and
different synchronizations appear and disappear in a
chaotic way.

In order to investigate the complex phenomenon, we
define the Poincaré section as z; = 0 and x7 < 0. Fur-
ther we plot the discrete data of x5 on the Poincaré
map when z; is smaller than —1.2. This threshold is
introduced to extract only the data when x; takes the
largest peak (dots in the waveform in Fig. 3). Figure 6
shows the discrete data of x5 obtained by the above-
mentioned method. We can see that the synchroniza-
tion states are interrupted by the intermittent bursts
and different synchronization states reappear after the
bursts settle down. Although the results can not be
shown in the same manner, we also confirmed the same
phenomenon in the circuit experiments. The changing
of the synchronization states can be shown in a picture
as Fig. 7.
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Figure 4: Time waveforms of three synchronization
states (circuit experimental results). L; = 300mH,
Ly = 10mH, C = 33nF, r = 740Q and R = 40.092. (a)
State T4, (b) State Ts, and (c) State T5.

4. Markov Chain Modeling

In this section we model the interesting complex be-
havior in the last section by a first-order Markov chain
with four states. The proposed Markov chain is shown
in Fig. 8 where T7. T3, and T3 are the three synchro-
nization states introduced in the last section, B is the
burst state appearing in the transition between the
three. Further,

3
P(B|B)=1- ZP(Bm). (5)

must be satisfied.
From the state-transition diagram in Fig. 8, we can
obtain the transition probability matrix P as

P(Ty|Ty) 0 0 P(B|T1)
0 P(T2|T2) 0 P(B|Tz2)
0 0 P(Ts|Ts) P(B|Ts)
- P(T1|Ty) 1-P(T2|T>) 1-P(T5|Ts) P(B|B)

(6)
The stationary probability distribution describing
probability of the solution being in each phase state;

Q = [Q(T1), Q(T2), Q(T3), Q(B)]" (7)

can be calculated from the following equations

Q=PQ and ZQ ) +Q(B) = (8)

=1
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Figure 5: Intermittency chaos near the three-periodic
window. (a) Computer calculated result. zj vs. zj.
a=17.0,5=0.133682, v = 0.0 and 6 = 100.0. (b) Cir-
cuit experimental result. I vs. vg. L; = 300mH,
Ly = 10mH, C = 33nF, r = 73502 and R = 0.092.
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Figure 6: Time series of synchronization states dis-
turbed by intermittency chaos (computer calculated
re sults). « = 7.0, § = 0.133682, v = 0.005 and
0 = 100.0.

It is also possible to estimate expected sojourn time
in each phase state by using the transition probabili-
ties. For example, probability density function of the
sojourn time in Q(77) is given by

Ps7(Q(T1)),n) = P(N1|Ty)). (9)

From (9) the expected sojourn time in Q(71) is calcu-
lated as

P(Ty|T)" (1 -

Esr(Q(Th)) = Z{HXPST Q(T1),n)}
= (1-P(TWTh)) i P(T1|T0)"
) 1
T 1-P(MTh)

(10)

5. Results and Discussions

Because we cannot get the transition probabilities
theoretically, we obtain the data by counting all of
the transitions in plenty of computer simulations. For
the parameter values in Fig. 6, we obtained those as
P(Ty|Ty) = 0.91641, P(T3|T3) = 0.33261, P(T3|T3) =
0.79080, P(Tg|Tg) = 0.84255, P(Ts|Ty) = 0.03922,
P(Tg|T>) = 0.05680, and P(Tg|T5) = 0.06142. By
using these probabilities, we calculated the stationary
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Figure 7: Time series of synchronization states dis-
turbed by intermittency chaos (circuit experimental r
esults). a = 7.0, 8 =0.133682, v = 0.0 and § = 100.0.
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Figure 8: Markov chain model.

probability distribution and the expected sojourn time
in each state.

The results are summarized in Tables 1 and 2. In the
tables, “Simulation” is the data obtained by counting
the states in computer simulations and “Markov” is
the results calculated by using Egs. (6)-(10).

We can see the results obtained from Markov chain
agree very well with computer simulated results.

6. Conclusions

In this study, we have investigated a complex behav-
ior in two coupled chaotic circuits related with inter-
mittency. When each chaotic circuit generated three-
periodic solution, three different types of synchroniza-
tion states were observed. However, if a control param-
eter of each chaotic circuit was varied to generate inter-
mittency chaos near the three-periodic window, inter-

Table 1: Stationary Probability Q.

H State H Simulation \ Markov H

Q(Ty) || 0.2547 | 0.25397
Q(T») || 0.0460 | 0.04606
Q(Ts) || 0.1587 | 0.15888
Q(B) |[ 05406 | 0.54116

Table 2: Expected sojourn times Egrp.

H State H Simulation \ Markov H
Esr(Q(Ty)) || 11.9632 | 11.9198
Esr(Q(T3)) 1.4984 1.4984
EsT(Q(T5)) 4.7801 4.7500
Esr(Q(B)) 6.3391 6.3490

mittency bursts interrupted the synchronizations and
different synchronizations reappeared after the bursts
settle down. This complex behavior was modeled by a
first-order Markov chain with four states. Further, the
phenomenon was confirmed by circuit experiments.
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