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Abstract—We demonstrate how unknown process rates
within a stochastic modelling framework can be approxi-
mated from time series data using polynomial functions.
The problem of model selection is considered and a possi-
ble solution is suggested by adapting basis subset selection
methods and description length ideas previously developed
for nonlinear time series reconstruction.

1. Introduction

Stochastic modelling and simulation is an approach to
simulating the behaviour of complex systems such as bi-
ological populations, disease epidemics and chemical re-
actions. The theory of stochastic processes is also a nat-
ural framework in which to study agent-based models –
complex systems where agents interact with each other and
their environment using simple local rules.

We propose to represent the rate functions in a stochas-
tic process model by nonlinear functions. We discriminate
between competing models by using a novel application of
a basis selection algorithm [1] and the description length
model selection criterion [2] previously developed for non-
linear time series reconstruction.

In the stochastic framework the simple rules of agent-
based models are described by a sequence of events deter-
mined probabilistically. The event probabilities share the
common structure

P
(
s(t + δt) = s(t) + δs

)
= R(s→ s+ δs; λ)δt (1)

whereR(s→ s+ δs; λ) represents the rate of an event caus-
ing the changeδs in state space andλ represents parameters
of the stochastic process. More generally, the parameters
can depend on the system state or the time. We shall restrict
our discussion and studies to constant parameterizations.

A given realization of a Markov process is

z = {s(t1), . . . , s(tN)} (2)

wheret1, . . . , tn denote the event times ands(t) denotes the
state of the system immediately prior to the event at timet.

The model is event driven so letn index these events
and denote the event type occurring at timetn by E(n). If
all event types are visible and if the process is monitored
continuously we observe allN events of the realization. If
we denote the parameters of the process byλ then for the

system in states(t) for t ∈ (t0, t1) the likelihoodL(λ,D) may
be written

L(λ,D) =

N∏

n=1

rE(n)e
−(tn−tn−1)

∑m
j=1 r j (s(n)) (3)

where, in this case, the observationsD are equivalent to
the complete realizationS, the state of the system for all
t ∈ (t0, tN). The termrE(n) corresponds to the probability
of eventn occurring at timen whilst the exponential term
is the probability that nothing happens between eventn− 1
and eventn. The total event rate isR(s(t)) =

∑m
j=1 r j(s(t))

for mpossible transition rates.
When the parameter space is low dimensional, and the

data is a complete realization, it is straightforward to ob-
tain maximum likelihood estimates of the parameters by
applying standard optimization routines. In this paper we
do not consider incomplete realization data concentrating
only on developing methods of model selection for approx-
imating the process rates. The calculation of the likelihood
is much harder in the case of missing data and new meth-
ods must be developed. Nonetheless it is anticipated that
much of the framework for model selection presented here
will be applicable when only incomplete observations are
available. An alternative paradigm such as Bayesian statis-
tics and Markov chain Monte Carlo (MCMC) methods may
also provide a solution. Indeed we have applied and devel-
oped algorithms for reconstructing consistent realizations
of processes to be used in MCMC estimation of stochastic
spatial agricultural system models [3, 4]. The Bayesian ap-
proach to model selection in classification and regression
problems is discussed in the monograph [5].

2. Nonlinear function approximations

We propose to represent the (unknown) rate functions in
a stochastic process model by nonlinear functions. In this
paper we will consider polynomial basis functions but other
representations are possible.

If the state of the system at the time of eventn is denoted
by s(n) then a polynomial approximation to a process rate
is

R(s→ s+ δs) = A + Bs(n) + Cs(n)sT(n) + · · · (4)

whereA, B, C,. . . are constant tensors of appropriate rank.
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The values of the parameters can be estimated by mini-
mizing the negative log likelihood where the rate functions
and the event probabilities in (3) are replaced by the appro-
priate polynomial representations (4).

Crucial problems of using nonlinear basis function
and polynomial approximations in particular, is the bias-
variance problem and the curse of dimensionality; models
with a large number of parameters are difficult to estimate
and don’t generalize well. We are therefore faced with a
model selection problem, namely, given a chosen model
class how do we choose an appropriate selection of basis
functions?

3. Selection Algorithm

In this paper we adapt the selection algorithm devel-
oped by Judd and Mees [1] for selecting subsets of basis
functions of nonlinear basis function models under Gaus-
sian noise assumptions for time series model reconstruc-
tion. The sensitivity analysis results of optimization theory
are applied to the likelihood in order to determine which
model basis function should be selected for removal or in-
clusion. This step is computationally more complicated in
our present situation due to the non-Gaussian likelihood but
the arguments carry through in a similar manner.

Following Judd and Mees, the problem of selecting
which basis function to add to the current model of the
stochastic rate approximation can be written as

minimize − logL(λ) subject toN(λ) = k, (5)

where we have dropped the dependence on data in (3) for
clarity in exposition. The constraintN(λ) = k corresponds
to the number of terms in the model. SettingB = { j : λ j ,
0}, so thatN(λ) = |B|, we can use sensitivity analysis to see
the effect of changing the size ofB. We write the constraint
as

λ j = u j , j < B (6)

whereu = 0but are kept as parameters. The Lagrangian [6]
for (5) with (6) is

L(λ, µ) = − logL(λ) + µT(u − λ) (7)

whereµ are dual variables. The Kuhn-Tucker conditions
give rise to

µ = 5λ(− logL(λ))

u − λ = 0

Sinceµ is the dual variable corresponding to constraint (6)
it is the sensitivity to changes inu at optimality, and there-
fore the largest element ofµ in absolute values should be
added to the basis to give the greatest marginal improve-
ment in cost. This gives a prescription for adding basis
function to extend the model.

We can find a prescription for removing an existing basis
function from the model by considering the (Lagrangian)
dual problem. That is,

maximize − logL(λ) + µT(u − λ)

subject to µ j = w j , j ∈ B

wherew = 0 but are kept as parameters andλ = λ(µ). If
we setu = 0 immediately then the Kuhn-Tucker conditions
show thatν – the Lagrange multiplier for this problem – is
a dual variable toλ and so selecting the smallest existingλ j

in absolute value as the variable to remove from the basis
will do the least damage to the cost.

The above information gives a means by which an iter-
ative scheme for expanding and shrinking model size can
operate. Following [1] the ‘best’ model over all model sizes
can be chosen as the one which minimizes a description
length criterion to be described in the next section.

4. Description Length

The criterion we use is again motivated by the methods
and results of Judd and Mees [1] who applied the mini-
mum description length (MDL) results of Rissanen [2] to
discriminate between nonlinear basis function models of
different size.

Description length can be used to discriminate between
models of different size for the same data set by comparing
the cost of describing the data in terms of code length. The
data itself has a certain code length necessary for its de-
scription, i.e., the cost of representing the data using float-
ing point representations. Alternatively, one can consider
a model describing the data and calculate the cost of rep-
resenting the prediction errors of the model plus the code
length necessary to represent the model, or its parame-
ters, at a certain precision. We call the code length of the
model plus data (errors) the description length. The model
with the minimum description length is chosen as the ‘best’
model.

The total description length for a realizationz is

C(z, λ̄) = C(z|λ̄) + C(λ̄) (8)

where the data code length can be approximated by [2]

C(z|λ̄) = − logP(z|λ̄)) ≈ − logL(λ̄, z) (9)

the negative log likelihood of the data. The code length
needed to specify the parametersλ̄ is [1]

C(λ̄) ≈
k∑

j=1

log
γ

δ j
(10)

γ is the number of factors of 2 required in the exponent of a
floating-point representation of a parameter. Following [1]
we setγ = 32 in our experiments.
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We can bound the description length by considering the
maximum likelihood parameter valuesλ̂ so that

C(z|λ̄) ≤ C(z|λ̂) +
1
2
δT Qδ (11)

whereQ = DλλC(z|λ̂). Therefore,

C(z, λ̄) ≤ C(z|λ̂) +
1
2
δT Qδ + k logγ −

k∑

j=1

logδ j (12)

The right hand side can be minimized with respect toδ and
the optimal precisionŝδ are the solution to

(Qδ) j = 1/δ j (13)

The approximate description length of a model withk pa-
rameters can then be written as

Sk(z) = − logL(λ̂, z) + (
1
2

+ logγ)k−
k∑

j=1

log δ̂ j (14)

For each model obtained using the selection methods of the
previous section we calculateSk(z) and rank the various
models. The model with the minimumSk(z) is chosen as
the optimal model.

Asymptotically, the description length criterion can be
simplified to the form [2]

Mk(z) = − logL(λ̂, z) +
k
2

logN + O(k) (15)

where N is the number of data. A related criterion for
model selection is given by Akaike’s AIC which can be
written as [2]

Ak(z) = −2 logL(λ̂, z) + 2k (16)

5. Examples

Logistic birth-death population model The logistic
model describes general population growth in the ab-
sence of immigration and emigration. That is, only birth
and death processes are considered. The birth and death
rates are given by polynomial functions of the population,
namely

B[N(t)] = N(t)(a1 − b1N(t))

D[N(t)] = N(t)(a2 + b2N(t))

The state space is one dimensional with the state at time
t given byN(t). A typical simulation [7] withN(0) = 1,
a1 = 2.2, a2 = 0.2, b1 = b2 = 0.1 andtmax = 15 is shown in
Figure 1.

We assume the process rates can be represented by poly-
nomial functions of maximum order 5 (c.f. order 2 in
model used to generate data) and apply the methods out-
lined above. In Figure 2 we show the values of our model
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Figure 1: Typical simulation of the logistic birth-death pop-
ulation model.

selection criteria in this case. We see that the best model
suggested by MDL is a two parameter model which corre-
sponds to birth and death process rates linear in the pop-
ulation size. This is different from the known representa-
tions of the process rates but by examining Figure 1 we can
see that the realization reaches a “stochastic equilibrium”
quite quickly and so for a finite observation sequence it is
not too dispiriting that the model selection methods favour
simple model representations. For the data shown in Fig-
ure 1 several runs of the selection algorithm with different
two parameter initial models were carried out which indi-
cates the variability in the selection criteria as can be seen
in Figure 2.
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Figure 2: The top figure shows the results of using (14),
the middle figure shows the results of using the asymptotic
relation and the lower figure is a plot of Akaike’s relation-
ship.

Reaction time-lag birth-death population models
There is often a time-lag between cause and effect; plants
take time to mature before producing seeds for example.
Population models which depend on the population size at
the current time may not capture such behaviour, and so
it is necessary to build in a natural time-lag into the mod-
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els. The introduction of a time-delay vastly increases the
dimension of the process and can produce quite complex
dynamics as a result.

An example of a birth-death population model with de-
layed process rates is

B[N(t)] = N(t)

D[N(t)] = N(t)N(t − tD)b2

A lengthy simulation [7] withN(0) = 50, tD = 1.8, b2 =

1/50 and time steph = 0.001 is shown in Figure 3. The
population is output everyt = 0.001s and recorded when
the population changes by±1.
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Figure 3: A typical simulation of the time-lag birth-death
population model.

We attempt to reconstruct the behaviour of the popu-
lation from an observation of a realization of the above
stochastic time-delay model. We will consider polynomial
representations of maximum order 5 of the birth and death
process rates and uses(n) = (N(n),N(n − 150)) as the
system state. We note that as yet we have no diagnostic,
or even a prescription, for determining appropriate equiva-
lents to the nonlinear time series reconstruction concepts of
embedding dimension and time-delay lag for this applica-
tion. The lag of 150 was chosen as 1/4 of the approximate
dominant period in the stochastic time series shown in Fig-
ure 3.

In Figure 4 we show the results of a run of the estima-
tion and selection algorithm. The optimal model suggested
is a two parameter model where the birth and death pro-
cess rates are linear in the population. There is, however,
variability in the criteria calculations over many runs with
different initial model representations. For example, start-
ing with linear models with basis termN(n − 150) an 11
parameter model is suggested with the birth rate a 5th order
polynomial.

6. Conclusion

We have introduced and demonstrated how process rates
within a stochastic framework can be approximated using
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Figure 4: The top figure shows the results of using (14),
the middle figure shows the results of using the asymptotic
relation and the lower figure is a plot of Akaike’s relation-
ship.

polynomial functions. The problem of model selection was
addressed by adapting methods used in nonlinear time se-
ries reconstruction. The scope for modelling systems using
stochastic frameworks is wide and we believe the methods
introduced here can aid their diverse application.
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