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Abstract—In this paper we propose an effective surro-
gate generation algorithm for pseudoperiodic time series,
which can properly cope with a large scope of stochastic
perturbations in the noisy data sets. As an example of ap-
plication, we will demonstrate the ability of this algorithm
to distinguish chaotic time series from pseudoperiodic ones
of the Rossler system. In addition, we will briefly introduce
another surrogate generation algorithm for nonlinearity de-
tection whose central idea is similar with that in this algo-
rithm.

1. INTRODUCTION

The main idea of surrogate tests [1] is that, by presum-
ing a time series possesses a property of interest, we devise
an algorithm to produce surrogates of the original time se-
ries which aims to preserve the potential property but de-
stroy all others. The generated surrogates, together with
the original time series, provide necessary stuff for a Monte
Carlo hypothesis test on the property we are interested in.
Hence the advantage of surrogate tests is that, even though
we only have a limited amount of data, we can still assess
the confidence interval of our calculations. Such assess-
ments are important because in many situations the pres-
ence of noise will impair the statistical reliability of our
calculation results.

Here we consider an algorithm to generate surrogates for
pseudoperiodic time series. By pseudoperiodic time series
we mean the representative of a periodic orbit perturbed by
dynamical or observational noise, whose states within one
cycle are largely independent of those within previous cy-
cles given a cycle length. Initially, Theiler [2] proposed the
cycle shuffling algorithm to generate pseudoperiodic sur-
rogates. But the difficulty in applying this algorithm is
that, we have to know the precise periodicity of the data
set. But due to the quantization error when measuring the
data, along with other noise sources, it is inevitable that
we will introduce certain discontinuity into the surrogates
by randomly shuffling individual cycles of the time series.
Sometimes, such discontinuity might lead to spurious re-
sults if not dealt with cautiously [4].

Later, Small et al. [4] proposed the pseudoperiodic sur-
rogate (PPS) algorithm. First they conduct the time de-
lay embedding reconstruction on the time series to produce
a vector field, among which the underlying system of the
original time series is embedded. Then they utilize the local

linear modelling techniques to generate surrogates, which
will approximate the original time series. As the authors
reported, this method works well for pseudoperiodic time
series even with a very high dynamical noise level.

In this paper we propose another slightly simpler algo-
rithm to generate surrogates for pseudoperiodic time se-
ries. First we elucidate our null hypothesis which spec-
ifies the property of interest, then in the next section we
devise the corresponding algorithm to generate the surro-
gates. The null hypothesis is that, the stationary time series
is pseudoperiodic with noise components which are (ap-
proximately) identically distributed and uncorrelated for
sufficiently large temporal translations. By noise compo-
nents we mean any perturbations to the underlying deter-
ministic system of the time series, hence they can be dy-
namical noise, observational noise or their combinations.
However, we shall note that, if an unstable periodic orbit
(UPO) is perturbed by a large amount of dynamical noise,
it is possible that the observed orbit will not stay close to
the original one, and the pseudoperiodicity of the time se-
ries might be broken. In addition, the constraints of the
noise components are stronger than that of Theiler’s al-
gorithm, which only implicitly requires the noise compo-
nents will not change after cycles shuffling. Nevertheless,
the situations described in our null hypothesis still covers a
large scope, including the case of UPOs perturbed by small
enough dynamical noise together with observational noise,
which will be shown later.

We will discuss the surrogate generation algorithm in the
next section. As an example of application of this algo-
rithm, we will demonstrate its ability to distinguish chaotic
time series from pseudoperiodic ones of the Rossler sys-
tem. In addition, we will briefly introduce another surro-
gate generation algorithm for nonlinearity detection pro-
posed in our another recent works, which is somewhat sim-
ilar with the one to be introduced below.

2. SURROGATE ALGORITHM FOR PSEUDOPERI-
ODIC TIME SERIES

Let {mi}i]\il be a data set with [NV observations. We as-
sume {x,}f\il is stationary and can be (approximately) de-
composed into the deterministic components and the noise
components, which are independent of each other. There-
fore we can write a data point x; as x; = p; + n;, where
p; and n; denote the periodic component and the noise
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component respectively. Without losing generality, we set
E(p;) = E(n;) = 0 where E is the expectation operator.
To generate the surrogates, let

Y = axi+PBritr = (api+Ppiyr)+(ani+nirr) (1)

withi = 1,2, ..., N — 7, where coefficients « and 3 sat-
isfy a2 + 3% = 1 and parameter 7 is the ten&}poral trans-
. N—1 -7 .
lation between subsets {z;},_ ;" and {z;y,};_, . If 7 is
sufficiently large, under our hypothesis, n; and n;,, are
uncorrelated, then var(an; + fniy,) = var(n;). If we
also require the translation 7 to satisfy that the autocovari-
ance function cov(p;, pi+r) = 0, then var(ap; + Bpi+r) =

var(p;). Hence the surrogates {y] }fV:T and the orig-

inal time series {x;}~, will have the same noise level
(var(ni)/var(xi))lm.

In addition, if the deterministic components {p;}
are from a ]\?eriodic orbit, then the summation
{api + Bpier 2y of {api}Yy" and {Bpier ), will
also form a periodic orbit except when ap; + 6p;+, ~ 0
holds nearly for all indices 4, as to be explained below.
Note {ap; + Bpit-}i;  and {p;};_, might be quite
different periodic orbits, e.g., {pi}i]\il is a period 4 orbit
while {ap; + BpiJrT}Z].V:IT could turn to be a period 2
one. Nevertheless, the correlation dimensions of both the
periodic orbits will theoretically be the same since {p; } " ,

N
i=1

and {ap; + ﬂpi+r}£\57 have the same degree-of-freedom.
Hence we can adopt the correlation dimension as the
suitable discriminating statistic in this situation.

We now consider several computational issues:

1. We require the translation 7 to satisfy the condi-
tion cov(p;,pi+-) = 0. The reason is that we
want the deterministic components {p;}~ " to be
orthogonal to {Pz‘+r}£v:_17, otherwise the projection

N—1
of {ap;},_;
{BpHT}f\:lT under some situations, for example, if
pi &= —pi+r and a = f, the deterministic compo-
nents {ap; + ﬁpHT}f\ST will almost vanish while
the noise components {an; + 6711-”}?;7 remain.
Hence the correlation dimensions calculated are actu-
ally those of the noise components instead of the de-
terministic components, which will certainly lead to
the false rejection of the null hypothesis.

onto {Bpis+,}i,” might counteract

2. We attempt to preserve the noise level during the gen-
eration process of the surrogates, which requires 7 to
be sufficiently large to guarantee the decorrelation be-
tween the noise components. However, we expect
{2 }Y77 and {x;,,}Y " shall have at least some
overlaps to make use of the information of the whole
data set {z;}.,, which means 7 shall not exceed
N/2. Moreover, it is recommended that the length of
a data set shall not be too short in order to appropri-
ately calculate its correlation dimension, which also
implies 7 shall not be too large.

3. From Eqn. (1) we note that the coefficient ratio /3
shall not be too large or too small, otherwise {y] }11\;—17
will be very close to {z;} | or {i+,}1, ", which
will lead to approximately the same correlation di-
mensions of {xi}ﬁil and {y] }fV:_lT regardless of the
dynamical behavior of {z;}" ,, and thus impair the
discriminating power of the correlation dimension.
We suggest to let a be uniformly drawn from the inter-
val [—0.8,—0.6]U[0.6,0.8] and 8 = /1 — a2, which
provides the ratio o/ moderate values.

4. {xl}i\;l and {y{}f\:f have the same noise level, but
the distribution of their noise components, {n;}._,
and {an; + BnHT}f\LT, might be different. We
choose the Gaussian kernel algorithm (GKA) [5] to
calculate the correlation dimensions as it is reported
that the GKA can reasonably estimate the correlation
dimensions of noisy data sets with different noise dis-
tributions.

3. APPLICATION

In this section we apply this surrogate generation algo-
rithm to the Rdssler system to demonstrate its ability of
discrimination between chaotic and pseudoperiodic time
series. The central idea is that, if {pi}f\;l is periodic, its
linear combination, {ap; + Bpi+r}i]\;IT, shall also be peri-
odic. However, if the deterministic part {pi}f\il is chaotic,
then the summation {ap; + BpHT}ZN:_lT may have a new
dynamical structure with a different correlation dimension
from that of {pi}fvzl due to the sensitivity of chaotic sys-
tems to initial conditions, hence by adopting the correlation
dimension as the discriminating statistic we might detect
this difference.

The equations of the Rossler system are given by

T=—-y—z,
y=x+ay, 2
2=b+z(z—c).

with the initial conditions z(0) = y(0) = 2(0) = 0.1.
We fix parameters b = 2, ¢ = 4 and choose the integra-
tion time step = 0.1 time units. We integrate the system
10,000 times and take the x components as the time se-
ries to be studied (we discard the first 1,000 data points to
avoid the possible transient states for safety). When param-
eter a = 0.39095, the Rossler system exhibits limit cycle
behavior of period 6. To obtain the pseudoperiodic orbit,
we first add 0.15% Gaussian white noise (w.r.t the standard
deviation) to the = component at each integration step, and
then introduce observational noise into the obtained data
set. Although Gaussian white observational noise is the
most common choice in this situation, in order to demon-
strate the ability of our surrogate algorithm to deal with
colored noise, we instead adopt the noise generated from
the AR(1) process §;,; = 0.8§; + ¢; with the variable €
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Figure 1: (a) State space x;4, vs. x; of the pseudoperiodic orbit from the Rdssler system with n = 16; (b) State space
Titn VS. x; of the chaotic orbit from the Rdssler system with n = 16; (c) Surrogate test for the pseudoperiodic orbit.
The abscissa is the indices of 100 surrogates and the ordinate is the corresponding correlation dimensions. The middle
line is the mean correlation dimension of the original time series calculated 100 times using the GKA with the embedding
dimension m = 10, the upper and lower lines denote the correlation dimensions twice the standard deviation away from
the mean value and the curve indicates the correlation dimensions of 100 surrogates. (d) Surrogate test for the chaotic
orbit. The meaning of the lines and the curve is the same as that in Panel (c).

following the normal Gaussian distribution N (0, 1) and set
the standard deviation of the AR(1) noise to be 3% of that
of the obtained data set. However, one shall note that other
colored noise modelled by the ARM A(p, q) processes in
principle shall also lead to the same results. When param-
eter a = 0.392, the system exhibits chaotic behavior. To
obtain the chaotic orbit, we first integrate Eqn. (2) without
introducing any dynamical perturbations, and then add the
obtained data set with 3% AR(1) observational noise. The
phase spaces x; 4, vs. x; of both the pseudoperiodic and
chaotic orbits with n = 16 are plotted in panel (a) and (b)
of Fig. 1 respectively. Note that, although it is easy to vi-
sually distinguish between the pseudoperiodic and chaotic
orbits, without any a priori knowledge, it will be more dif-
ficult to appropriately infer the underlying dynamical be-
haviors from only visual inspections, hence it is nontrivial
to devise an algorithm to analyze quantitatively.

To choose the suitable temporal translations for surro-
gate generation, we select a interval of [100, 150]. Due to
the quantization error in generating the original time se-
ries, there might be no integer translations within this inter-
val which exactly satisfy the condition cov(z;, x;4-) = 0,
hence we have to instead search the local minimum integer
translations which make the measure |cov(z;, z;4+, )| most
close to zero. We adopt the integers thus obtained as the
temporal translations with the same probability to generate

100 surrogates, and then utilize the GKA implemented in
[6] to calculate their correlation dimensions. Before cal-
culating the correlation dimensions, we need to reconstruct
the data sets via time delay embeddings. For this purpose,
we select the time delay according to the algorithm pro-
posed in [7] and let the embedding dimension vary from
2 to 20, among which the calculation results of m = 10
are indicated, see Fig. 1. According to Taken’s embed-
ding theorem, other embedding dimensions will lead to the
same conclusions (to be shown below) if they are large
enough. Note that to speed up the calculation, only 2000
data points are used as the reference points for the GKA.
There are some statistical fluctuations even for the same
data set when calculating its correlation dimension, there-
fore we calculate 100 times to estimate its mean correlation
dimension and standard deviation. As shown in panel (¢)
and (d) of Fig. 1, there are three lines parallel to the abscis-
sas in both panels. The middle lines denote the estimation
of the mean correlation dimensions of the pseudoperiodic
and chaotic data sets, while the upper and lower lines indi-
cate the positions twice the standard deviation away from
the mean values. For the surrogates of both the pseudoperi-
odic and chaotic data sets, however, we calculate their cor-
relation dimensions only once to save time. The results are
illustrated as the curves in panel (c) and (d) respectively.

We use the ranking criterion [3] to determine whether
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the null hypothesis shall be rejected or not. The idea
of this criterion is that, suppose the discriminating statis-
tic of the original data set is )y, and those of Ng
surrogates are {Q1,Q2, ..., Qns}. Rank the statistics
{Qo, @1, ..., Qns} and denote the rank of Qg by ro, if
the data set is consistent with the hypothesis (i.e., no ev-
idence to reject), o can be any integer value between 1 and
Ng + 1. However, if the hypothesis is false, ()¢ might be
distracted from the realization {Q1, Q2, ..., @ng} of the
surrogate distribution, i.e, Qg will be the smallest or largest
amongst {Qo, @1, -.., @, }, hence we can reject the null
hypothesis if 7o = 1 or Ng+1, the probability of a false re-
jectionis 1/ (Ng + 1) for one-sided tests and 2/ (Ng + 1)
for two-sided tests. In our calculations with 100 surrogates,
for the pseudoperiodic data set, we cannot distinguish the
correlation dimension of the original data set from those
of the surrogates, as shown in panel (c) of Fig. 1, which
means we cannot reject the null hypothesis. However, for
the chaotic data set, the correlation dimension of the orig-
inal data set is obviously different from those of the sur-
rogates shown in panel (d), hence we can reject the null
hypothesis with a confidence level up to 98% even for a
two-sided test. By this way we can appropriately distin-
guish chaotic orbits from pseudoperiodic orbits.

4. FURTHER DISCUSSION

Theiler et al. [1] proposed three hierarchical algorithms
for nonlinearity detection, i.e., the Fourier transform (FT)
algorithm, the amplitude adjusted Fourier transform al-
gorithm (AAFT) and iterative AAFT algorithm (IAAFT).
However, the relatively strong constraints in their hypoth-
esis for the IAAFT algorithm narrow its application scope
in some situations. For example, for a chaotic neuron net-
work with several neurons, its output is the average of all of
the outputs of each neuron. Via Theiler’s three algorithms,
we cannot find the evidence of nonlinearity, i.e., we have
to conclude that the output of the chaotic neuron network
most likely comes from a linear stochastic system. This is
obviously not true.

In one of our recent works [8], we are investigating an-
other surrogate algorithm to detect the nonlinearity in the
time series from the chaotic neuron network. The central
idea is similar with that to distinguish pseudoperiodic or-
bits from chaotic ones as described previously, i.e., if the
underlying system of a time series is linear, there shall be
no fractal structure. By choosing suitable temporal transla-
tions, the surrogates generated by summing up several sub-
sets of the original time series might not change the linear
property of the original system. However, if the underlying
system is chaotic, summing up several subsets will very
likely destroy its original fractal structure. Since the corre-
lation dimension is not an appropriate statistic for stochas-
tic systems, we adopt the inter-point distribution as the dis-
criminating statistic instead to detect the possible nonlin-
earity.

5. CONCLUSION

In this paper a simple but effective algorithm is proposed
to generate surrogates for pseudoperiodic time series. The
main idea of this algorithm is that a linear combination of
any two segments of the same periodic orbit will gener-
ate another periodic orbit, by properly choosing the tempo-
ral translation, the surrogates thus generated will have the
same noise level as that of the original time series. As an
application of this algorithm, we can use it to distinguish
chaotic time series from pseudoperiodic ones since a lin-
ear combination of two segments of a chaotic orbit is very
possible to destroy its dynamical structure. The idea is not
limited to pseudoperiodic time series, we can also apply to
detect nonlinearity in stochastic-like time series. This is
under investigation now.
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