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Abstract— Due to the switching action and the presence It is always possible to convert a (continuous) orthogo-
of parasitics, waveforms arising from power electronics ci nality relationship, as defined in (1), into a discrete ogtho
cuits often contain high-frequency ringings embedded innality relationship simply by replacing the integral with
slowly varying segments. Such a feature is consistent wisummation. In general, of course, the result is only approx-
the localization property of wavelets which has been exmately true. However, where trigonometric functions or
ploited for fast approximations of steady-state waveform&€hebyshev polynomials are involved, there are many cases
This paper proposes an improved and more robust approdanhwhich the discrete orthogonality can be shown to hold
for calculating the wavelet coefficients, exploiting the orexactly, e.g.,
thogonality property of the Chebyshev polynomials. -

(T To) 3" Tw) Tulan) for0 <mon<i (3)

1. Introduction Pt

Some preliminary work on the analysis of power e|etherexk are the zeros of},, 1 (). Here, we have
tronics waveforms using wavelets was reported by Wernek-

inck, Valenzuela and Anfossi [1]. Recently, a systematic (k—3)m

algorithm for approximating steady-state waveforms aris- Tk = cos Oy, O = il 4)

ing from power electronics circuits using wavelets has been

reported by Tse and co-workers [2, 3]. The advantag&&tisfying the orthogonality condition, i.e.,

of using wavelets for the analysis of power electronics . .

circuits have also been demonstrated. The original algo- 0_ !f m # n;m,n < i .

rithm employs a standard curve-fitting method, which uses (Zm>Tn) = (i+1) iftm=n=0m<i (3)

the boundary conditions together with extra interpolation ((+1)/2 fm=mn#0m<i

points for solving the wavelet coefficients. The accuracy

of the approximated solution is therefore dependent upch Wavelet Approximation of Power Electronics Wave-

the position of the interpolation points and limited by the formsUsing Discrete Convolution

wavelet levels used. It has been found that the solution o

is very sensitive to the choice of interpolation points for It has been shqwn [_2] that wavelet approx_|mat|on can_be
obtaining wavelets coefficients, reducing the robustnéss Bsefgl fo_r approximating steady-state solu_tlons of non lin
the method. The aim of this paper is to tackle the limitaS@" CIrcuits without solving systems of nonlinear equation
tions in the standard curve-fitting method. We will provide" MOSt CaSes, power electronics circuits can be represente

a new technique for obtaining better approximated wav )y a time-varying state-space equation
forms with the same number of wavelet levels. &= Az +U(t) ©)
2. Review of Orthogonality in Chebyshev Polynomials ~ wherex is them-dim state vectorA is anm x m time-

_ __varying matrix, andl is the input function. Specifically
One important property of Chebyshev polynomials igye write

that they are orthogonal in the sense that their inner prtoduc

[4, 5, 6], defined by a11(t)  a2(t) -+ aim(t)
det [T Ton(2)T0(x) Aft) = : S : ©)
(T, Tp) = e da, 1) ami(t)  ama(t) - amm(t)
has the following property: and
0 if m#mn w(®)
(T, Tp) =47 fm=n=0 ) U(t) = : : (8)
w/2 ifm=mn#0. U (1)
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In the steady state, the solution satisfies In the original curve-fitting approach?*!m equations
are obtained by interpolating at+! distinct points in the
w(t) =x(t+T) for0 <t <T (9)  closedinterval—1, 1], and the interpolation points are cho-
where T is the period. For an appropriate translatio gr:jfr.omthe zeros of Chebyshev polynomials of the second
and scaling, the boundary condition can be mapped to t ghd. 1€,

. (2n Yy i
closed interval—1, 1] 7, = cos <W) . a7)
z(+1) = z(-1) (10) It is obvious from (16) that one of the end points of ei-

hernyg = 1 or nan+1 = —1 must be excluded from the
Assume that the basic time-invariant approxmatlorhterpma“on points, as will be discussed in Section 4. In
equation is contrast, our new approach here takes advantage of the or-
ai(t) = KZ“‘I,(t)’ for —1<t<1landi=1,2,---,m thogo_nality in Chet_)yshev polynom_ials. Thetlm more
(11 equations are obtained by taking discrete convolution over
where ®(¢) is any wavelet basis of size"*! + 1 (n the closed intervgl-1, 1] with T; fori = 0, - - -, 271 — 1.
being the wavelet level) constructed from Chebyshel Jhe number of points for discrete convolutlon is therefore
polynomials! Kz‘ [kio - kignst] is a coefficient no longer limited by the wavelet level in the calculation.
vector of dimensio”*! + 1, which has to be found. Thus, this discrete convolutlor_1 approaph gives a more ro-
The wavelet transformed equation of (6) is bust and more _accurate_solunon. In (_jlscrete convolution,
the approximation equation can be written as

KDW = At)K¥ + U(t) (12) PR a8)
where where ] )
k1o ki1 - kponn F= { F ] and U = [ Ui ] (19)
koo ka1 - kgont F, U,
K = i i ) ) . (13) . . )
: : . : andF', F,, U, andU, are given by
km,O km,l T km,2"+1 B 7]
Thus, (12) can be written generally as [®(1) (00---0) --- (00 ---0)
_ —P(-1)7
F)K =-U(t) (14) 00---0) [®() o (00 -+ 0)
H n+1 H R 7‘1’(71)}71
whereF(t) is am x (2"" + 1)m matrix, as given by P
1 - . . .
F(t) = (®(1)
- - DY ... ... —_— _— T
f\pT(t) e ah-(t)\IlT(t) . alm\IlT(t) 27+ 4 1 columns
e . L (2"t + 1)m columns andn rows i
;1 (t)‘I’T(t) e Qg (t)‘I’T(t) e aim\IlT (t) _
—wT(4)D” (F(t),To(t))
: _ : (F(t),T1(t))
am1 (t)‘I’T(t) e .a'rni (t)‘I’T(t) e a'rn'm‘.I’T (t) 1312 = 2" m rows
_w’()D" (F(t), Tynsr (1))
— ntt m col
andK is a(2"*! + 1)m-dim vector given by - 0(2 1 columns
K — [K? o Kz; T - (15) 0—1 = m elements
0
Note that since the unknowsf is of dimension2"+* + [ (=U(), To(t))
1)m, we need 2" + 1)m equations. Now, the boundary g, (=U@), T1(t)) o
condition (10) provides: equations, i.e., 2= : 27 m elements
(1) —w(-1)"K; =0, fori=1,---,m. (16) [ (=U®), T (1))
1The construction of wavelet basis has been discussed itietau ~ With (F'(t), Tix(t)) representing a new matrix whose ele-
et al. [2] and more formally in Frazier [7]. ments are the corresponding convolutions with By
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Figure 1: (a) Flyback converter model with transformer bBgkinductance and switching device parasitic capacitance

(b) on-time circuit model; (c) off-time circuit model.

solving (18), we obtain all the coefficients necessary fofable 1: Component and Parameter Values for Simulation.

generating an approximate solution for the steady-state sy

tem. Component/Parameter Value
Magnetizing (storage) inductance,, 0.4 mH
4. Simulationsand Evaluations Leal_<age inductancey . 1uH
Equivalent parallel resistance of
The results are evaluated using thean relative error transformer primaryk.», 1 MQ
(MRE) andmean absolute error (MAE), which are defined Output capacitance; 0.1 mF
as Load resistanceR 12.5Q
N Input voltage 16V
1 Ty — Diode forward drop}/ 0.8V
MRE = — 20 o ; !
N ; x; (20) Switching period’ 100us
N On-time,Tp 45 us
MAE — L 3 s — i 21) Equivalent loop resistance, 0.40
N&" Switch on-resistance?s 0.00102
) ) Switch capacitances 200 nF
where N is the total number of points sampled along the Diode on-resistance?, 0.0010

interval [—1, 1] for error calculation. In the following, we
use uniform sampling (i.e., equal spacing) with= 1001,
including boundary points.

Example: Flyback Converter with Parasitic Ringings A(t) Ai(1 = s5(t)) + Aos(t)
_ o Ut) = Ui(1-s(t))+Uazs(t)
We consider the flyback converter shown in Fig. 1 (a). i
defined as

This is a more realistic model as the parasitic capacitan&élth s(t)
across the switch and leakage inductance of the transformer 0

are deliberately included. The operation is as follows. s(t)y=<1
When the switch is turned on, current flows through the s(t—1T)
magnetizing inductanck,, and the leakage inductante

with the transformer secondary opened and the diode nor i
conducting. When the switch is turned off, the transformethOk)g'es'
secondary conducts through the diode, clamping the pri-
mary voltage (i.e., voltage acrogs,) to the output net-
work (assuming a 1:1 turns ratio). Thus,, discharges
through the transformer primary, while the leakdgeand
the parasitic capacitancg, form a damped resonant loop
around the input voltage source. Figs. 1 (b) and (c) shol/"

fitting method.

the detailed circuit models for the on-time and off-time du:
rations, respectively.
The state equation of this converter is given by

for0<t<Tp
forTp <t<T
forallt > T.

wherez = [i,, i, vs v,]T, andA(t) andU (t) are given by

(23)
(24)

(25)

d theU’s and A’s being derivable from the circuit

The parameters for simulation are listed in Table 1. We
have compared the approximated waveforms of the leakage
inductor current for both discrete convolution and curve-
Figs. 2 (a) and (b) show the approxi-
mated waveforms using discrete convolution at two differ-

t wavelet levels. Figs. 2 (c) and (d) show the approxi-
mated waveforms using the curve-fitting approach, exclud-
ing ngn+1(= —1) andng (= 1) respectively. As there is no
systematic method to predict which exclusion would pro-

duce better result, the original curve-fitting method isles

z=At)x+U(t) (22) robust.
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Table 2: Comparison of MAEs. All Wavelets up to lev- *°f
els 5, 6, 7 and 8 are Used for Approximating the Leakag 1

Inductor Current in Flyback Converter.

5

Wavelet Number of MAE foi; MAE for ¢, 0
levels wavelets  (curve fitting) (proposed)
—1to5 65 0.60376 0.24045 )
_1 to 6 129 052070 015298 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
—1to7 257 0.36704 0.15314 @
—1t0 8 513 0.18808 0.16106 or

10

Since the waveform contains a substantial portion whel )
the value is near zero, we use the MAE as the evaluatic
metric. Better results from the original method are selicte -5
for comparison in Table 2 which clearly verifies the advan_,,
tage of using discrete convolution for wavelet approxima
tion.
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5. Conclusion
5

In this paper, we propose a robust algorithm for approx o-
imating waveforms of power electronics using wavelets ||
The algorithm exploits the orthogonality property to pro-
vide the necessary alternative equations for solving tr
wavelet coefficients. Furthermore, it has been shown th ©
the discrete convolution method offers good robustness 15¢
well as numerical accuracy over the original curve-fitting 1o}-
approach. Moreover, further work should be directed i |
choosing an appropriate wavelet basis for an analytical co '
volution for further reducing computational cost. With an- OW
alytical convolution, the algorithm can be designed to cor -s5;
tain pre-calculated analytical solutions, allowing the Un-o—— ‘ ‘ ‘ w w w w w w
known wavelet coefficients to be found very quickly. This '
will be reported in a future publication.

0.2 0.4 0.6 0.8 1

(d)
Figure 2: Inductor waveforms of flyback converter. Dashed
line is waveform from SPICE simulation. Solid line is
approximated waveform. (a) Using discrete convolution

wavelets of level-1 to 5; (b) using discrete convolution

This work was supporte_d by a resgarch g_rant provided lWavelets of level-1 to 7; (c) using curve-fitting wavelets
the Hong Kong Polytechnic University (Project A-PD68). of level —1 to 5 excluding the interpolation poif. +: (=

—1); and (d) using curve-fitting wavelets of levell to 5
excluding the interpolation poimg (= 1).
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