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Abstract— Due to the switching action and the presence
of parasitics, waveforms arising from power electronics cir-
cuits often contain high-frequency ringings embedded in
slowly varying segments. Such a feature is consistent with
the localization property of wavelets which has been ex-
ploited for fast approximations of steady-state waveforms.
This paper proposes an improved and more robust approach
for calculating the wavelet coefficients, exploiting the or-
thogonality property of the Chebyshev polynomials.

1. Introduction

Some preliminary work on the analysis of power elec-
tronics waveforms using wavelets was reported by Wernek-
inck, Valenzuela and Anfossi [1]. Recently, a systematic
algorithm for approximating steady-state waveforms aris-
ing from power electronics circuits using wavelets has been
reported by Tse and co-workers [2, 3]. The advantages
of using wavelets for the analysis of power electronics
circuits have also been demonstrated. The original algo-
rithm employs a standard curve-fitting method, which uses
the boundary conditions together with extra interpolation
points for solving the wavelet coefficients. The accuracy
of the approximated solution is therefore dependent upon
the position of the interpolation points and limited by the
wavelet levels used. It has been found that the solution
is very sensitive to the choice of interpolation points for
obtaining wavelets coefficients, reducing the robustness of
the method. The aim of this paper is to tackle the limita-
tions in the standard curve-fitting method. We will provide
a new technique for obtaining better approximated wave-
forms with the same number of wavelet levels.

2. Review of Orthogonality in Chebyshev Polynomials

One important property of Chebyshev polynomials is
that they are orthogonal in the sense that their inner product
[4, 5, 6], defined by

〈Tm, Tn〉 def
=

∫ +1

−1

Tm(x)Tn(x)√
1 − x2

dx, (1)

has the following property:

〈Tm, Tn〉 =







0 if m 6= n
π if m = n = 0
π/2 if m = n 6= 0.

(2)

It is always possible to convert a (continuous) orthogo-
nality relationship, as defined in (1), into a discrete orthog-
onality relationship simply by replacing the integral witha
summation. In general, of course, the result is only approx-
imately true. However, where trigonometric functions or
Chebyshev polynomials are involved, there are many cases
in which the discrete orthogonality can be shown to hold
exactly, e.g.,

〈Tm, Tn〉 def
=

i+1∑

k=1

Tm(xk)Tn(xk) for 0 ≤ m, n ≤ i (3)

wherexk are the zeros ofTi+1(x). Here, we have

xk = cos θk, θk =
(k − 1

2 )π

i + 1
(4)

satisfying the orthogonality condition, i.e.,

〈Tm, Tn〉 =







0 if m 6= n; m, n ≤ i
(i + 1) if m = n = 0; m ≤ i
(i + 1)/2 if m = n 6= 0; m ≤ i.

(5)

3. Wavelet Approximation of Power Electronics Wave-
forms Using Discrete Convolution

It has been shown [2] that wavelet approximation can be
useful for approximating steady-state solutions of nonlin-
ear circuits without solving systems of nonlinear equations.
In most cases, power electronics circuits can be represented
by a time-varying state-space equation

ẋ = Ax + U(t) (6)

wherex is them-dim state vector,A is anm × m time-
varying matrix, andU is the input function. Specifically
we write

A(t) =






a11(t) a12(t) · · · a1m(t)
...

...
. . .

...
am1(t) am2(t) · · · amm(t)




 (7)

and

U(t) =






u1(t)
...

um(t)




 . (8)
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In the steady state, the solution satisfies

x(t) = x(t + T ) for 0 ≤ t ≤ T (9)

where T is the period. For an appropriate translation
and scaling, the boundary condition can be mapped to the
closed interval[−1, 1]

x(+1) = x(−1) (10)

Assume that the basic time-invariant approximation
equation is

xi(t) = K
T
i Ψ(t), for − 1 ≤ t ≤ 1 andi = 1, 2, · · · , m

(11)
where Ψ(t) is any wavelet basis of size2n+1 + 1 (n
being the wavelet level) constructed from Chebyshev
polynomials,1 K

T
i = [ki,0 · · · ki,2n+1 ] is a coefficient

vector of dimension2n+1 + 1, which has to be found.
The wavelet transformed equation of (6) is

KDΨ = A(t)KΨ + U(t) (12)

where

K =








k1,0 k1,1 · · · k1,2n+1

k2,0 k2,1 · · · k2,2n+1

...
...

. . .
...

km,0 km,1 · · · km,2n+1








. (13)

Thus, (12) can be written generally as

F (t)K = −U(t) (14)

whereF (t) is am × (2n+1 + 1)m matrix, as given by

F (t) =

















a11(t)Ψ
T (t)DT

−Ψ
T (t) · · · a1i(t)Ψ

T (t) · · · a1mΨ
T (t)

...
. . .

...
. . .

...
ai1(t)Ψ

T (t) · · · aii(t)Ψ
T (t) · · · aimΨ

T (t)

−Ψ
T (t)DT

...
. . .

...
. . .

...
am1(t)Ψ

T (t) · · · ami(t)Ψ
T (t) · · · ammΨ

T (t)

−Ψ
T (t)DT


















andK is a(2n+1 + 1)m-dim vector given by

K =
[

K
T
1 · · · K

T
m

]T

. (15)

Note that since the unknownK is of dimension(2n+1 +
1)m, we need(2n+1 + 1)m equations. Now, the boundary
condition (10) providesm equations, i.e.,

[Ψ(1) − Ψ(−1)]
T

Ki = 0, for i = 1, · · · , m. (16)

1The construction of wavelet basis has been discussed in detail in Liu
et al. [2] and more formally in Frazier [7].

In the original curve-fitting approach,2n+1m equations
are obtained by interpolating at2n+1 distinct points in the
closed interval[−1, 1], and the interpolation points are cho-
sen from the zeros of Chebyshev polynomials of the second
kind, i.e.,

η
(2n+1)
i = cos

(
iπ

2n+1

)

. (17)

It is obvious from (16) that one of the end points of ei-
ther η0 = 1 or η2n+1 = −1 must be excluded from the
interpolation points, as will be discussed in Section 4. In
contrast, our new approach here takes advantage of the or-
thogonality in Chebyshev polynomials. The2n+1m more
equations are obtained by taking discrete convolution over
the closed interval[−1, 1] with Ti for i = 0, · · · , 2n+1 − 1.
The number of points for discrete convolution is therefore
no longer limited by the wavelet level in the calculation.
Thus, this discrete convolution approach gives a more ro-
bust and more accurate solution. In discrete convolution,
the approximation equation can be written as

F̃K = Ũ (18)

where

F̃ =

[
F̃ 1

F̃ 2

]

and Ũ =

[
Ũ1

Ũ2

]

(19)

andF̃ 1, F̃ 2, Ũ1 andŨ2 are given by

F̃ 1 =






















[Ψ(1) (0 0 · · · 0) · · · (0 0 · · · 0)
−Ψ(−1)]T

(0 0 · · · 0) [Ψ(1) · · · (0 0 · · · 0)
−Ψ(−1)]T

...
...

. . .
...
[Ψ(1)

(0 0 · · · 0)
︸ ︷︷ ︸

2n+1 + 1 columns

(0 0 · · · 0) · · · −Ψ(−1)]T

︸ ︷︷ ︸

(2n+1 + 1)m columns andm rows






















F̃ 2 =











〈F (t), T0(t)〉
〈F (t), T1(t)〉

...
〈F (t), T2n+1

−1(t)〉
︸ ︷︷ ︸

(2n+1 + 1)m columns

















2n+1m rows

Ũ1 =






0
...
0












m elements

Ũ2 =








〈−U(t), T0(t)〉
〈−U(t), T1(t)〉

...
〈−U(t), T2n+1

−1(t)〉














2n+1m elements

with 〈F (t), Tk(t)〉 representing a new matrix whose ele-
ments are the corresponding convolutions withTk. By
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Figure 1: (a) Flyback converter model with transformer leakage inductance and switching device parasitic capacitance;
(b) on-time circuit model; (c) off-time circuit model.

solving (18), we obtain all the coefficients necessary for
generating an approximate solution for the steady-state sys-
tem.

4. Simulations and Evaluations

The results are evaluated using themean relative error
(MRE) andmean absolute error (MAE), which are defined
as

MRE =
1

N

N∑

i=1

∣
∣
∣
∣

x̂i − xi

xi

∣
∣
∣
∣

(20)

MAE =
1

N

N∑

i=1

|x̂i − xi| (21)

whereN is the total number of points sampled along the
interval [−1, 1] for error calculation. In the following, we
use uniform sampling (i.e., equal spacing) withN = 1001,
including boundary points.

Example: Flyback Converter with Parasitic Ringings

We consider the flyback converter shown in Fig. 1 (a).
This is a more realistic model as the parasitic capacitance
across the switch and leakage inductance of the transformer
are deliberately included. The operation is as follows.
When the switch is turned on, current flows through the
magnetizing inductanceLm and the leakage inductanceLl,
with the transformer secondary opened and the diode not
conducting. When the switch is turned off, the transformer
secondary conducts through the diode, clamping the pri-
mary voltage (i.e., voltage acrossLm) to the output net-
work (assuming a 1:1 turns ratio). Thus,Lm discharges
through the transformer primary, while the leakageLl and
the parasitic capacitanceCs form a damped resonant loop
around the input voltage source. Figs. 1 (b) and (c) show
the detailed circuit models for the on-time and off-time du-
rations, respectively.

The state equation of this converter is given by

ẋ = A(t)x + U(t) (22)

Table 1: Component and Parameter Values for Simulation.

Component/Parameter Value
Magnetizing (storage) inductance,Lm 0.4 mH
Leakage inductance,Ll 1 µH
Equivalent parallel resistance of

transformer primary,Rm 1 MΩ
Output capacitance,C 0.1 mF
Load resistance,R 12.5Ω
Input voltage,E 16 V
Diode forward drop,Vf 0.8 V
Switching period,T 100µs
On-time,TD 45µs
Equivalent loop resistance,Rl 0.4Ω
Switch on-resistance,RS 0.001Ω
Switch capacitance,CS 200 nF
Diode on-resistance,RD 0.001Ω

wherex = [im il vs vo]
T , andA(t) andU(t) are given by

A(t) = A1(1 − s(t)) + A2s(t) (23)

U(t) = U1(1 − s(t)) + U2s(t) (24)

with s(t) defined as

s(t) =







0 for 0 ≤ t ≤ TD

1 for TD ≤ t ≤ T
s(t − T ) for all t > T .

(25)

and theU ’s and A’s being derivable from the circuit
topologies.

The parameters for simulation are listed in Table 1. We
have compared the approximated waveforms of the leakage
inductor current for both discrete convolution and curve-
fitting method. Figs. 2 (a) and (b) show the approxi-
mated waveforms using discrete convolution at two differ-
ent wavelet levels. Figs. 2 (c) and (d) show the approxi-
mated waveforms using the curve-fitting approach, exclud-
ing η2n+1(= −1) andη0(= 1) respectively. As there is no
systematic method to predict which exclusion would pro-
duce better result, the original curve-fitting method is less
robust.
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Table 2: Comparison of MAEs. All Wavelets up to lev-
els 5, 6, 7 and 8 are Used for Approximating the Leakage
Inductor Current in Flyback Converter.

Wavelet Number of MAE foril MAE for il
levels wavelets (curve fitting) (proposed)
−1 to 5 65 0.60376 0.24045
−1 to 6 129 0.52070 0.15298
−1 to 7 257 0.36704 0.15314
−1 to 8 513 0.18808 0.16106

Since the waveform contains a substantial portion where
the value is near zero, we use the MAE as the evaluation
metric. Better results from the original method are selected
for comparison in Table 2 which clearly verifies the advan-
tage of using discrete convolution for wavelet approxima-
tion.

5. Conclusion

In this paper, we propose a robust algorithm for approx-
imating waveforms of power electronics using wavelets.
The algorithm exploits the orthogonality property to pro-
vide the necessary alternative equations for solving the
wavelet coefficients. Furthermore, it has been shown that
the discrete convolution method offers good robustness as
well as numerical accuracy over the original curve-fitting
approach. Moreover, further work should be directed in
choosing an appropriate wavelet basis for an analytical con-
volution for further reducing computational cost. With an-
alytical convolution, the algorithm can be designed to con-
tain pre-calculated analytical solutions, allowing the un-
known wavelet coefficients to be found very quickly. This
will be reported in a future publication.
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