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Abstract—In this report, we shall construct mathemat-
ical theory based on the concept of set-valued mappings,
suitable for available operation of network systems ex-
traordinarily complicated and diversified on large scales,
by introducing some connected-block structures. A fine
estimation technique for availability of system behaviors
of such network systems are obtained finally in the form
of fixed point theorem for a special system of fuzzy-set-
valued mappings.

1. Introduction

In large-scale network systems, so called as multi-media
and/or integrated network systems, the precise evaluation
and the perfect control, and also the ideal operation, of
overall system behaviors cannot be necessarily expected
by using any type of commonplace technologies for main-
tenance, which might be usually accomplished by sim-
ple measures in hierarchical network structures. There-
fore, in order to evaluate, control and operate such compli-
cated large-scale network systems, the quite separate type
of methodologies becomes to be important, rather than the
type of usual ones. They have to be introduced for pro-
cedure suitable to treating with undesirable uncertainties
induced into those network systems [1].

For such a purpose, the author has recommended to
introduce some connected-block structures: i.e., whole
networks might be separated into several blocks which
are carefully self-evaluated, self-controlled and self-
maintained by themselves, and so, which are originally
self-sustained systems. In these network systems, when-
ever they observe and detect that some other blocks are
in ill-conditions by some accidents, by always carefully
watching each other, every block can repair and sustain
those ill-conditioned blocks, through inter-block connec-
tions, at once. This style of maintenance of system is some-
times called as “locally autonomous”, but the author rec-
ommends that only the ultimate responsibility on observa-
tion and regulation of whole system might be left for the
headquarter itself, which is organized over all blocks[3, 2].

Here, let us consider complete metric linear spaces (Xi,
ρ) (i = 1, · · · , n) and (Y j, ρ) ( j = 1, · · · , n), and their
bounded convex closed subsets X(0)

i and Y (0)
j , respectively,

corresponding to each block, Bi and B j of whole network
system. Let us introduce mappings fi j : Xi → Y j such that
fi j(X

(0)
i ) ⊂ Y (0)

j and let fi j be completely continuous on X(0)
i .

For each block Bi(i = 1, · · · , n), dynamics of system behav-
iors can be represented originally by simple equations:

xi = αi fii(xi), (i = 1, · · · , n), (1)

where αi is a continuous operator: Y (0)
i → X(0)

i . These
equations have solutions x∗i in every X(0)

i (i = 1, · · · , n), ac-
cording to the well-known Schauder’s type of fixed point
theorem[4]. Of course, these solutions represent original
values of system behaviors.

But, in general conditions with inter-block connections,
system dynamics may be represented in the form of system
of equations:

xi = αi fii(xi) +
∑

j,i β ji fi j(xi) +
∑

j,i γ ji f ji(x j),
(i = 1, · · · , n), (2)

where β ji is a continuous operator: Y j → Xi and γ ji is a
continuous operator: Yi → Xi. In the right-hand side of
this system of equations, the first term represents the orig-
inal performance of the i-th block itself, the second term
represents the operation fed-back through all other blocks
( j , i) into the original i-th block, and the third term repre-
sents inter-block connections from all other blocks, in or-
der to repair and sustain the i-th block performance. This
system of equations also has solutions x∗i (i = 1, · · · , n) in
every X(0)

i (i = 1, · · · , n), which represent resultant behav-
iors of block Bi, as a whole.

For more general situation of mutual connections be-
tween blocks, by newly introducing n composition-type
mappings gi : Xi × Πn

jY j × ΠnYi → Xi, where Πn
jY j means

the direct product of n Y j’s for all j ∈ {1, · · · , n}, and ΠnYi

means the direct product of n Yi’s for fixed i, we have gen-
eral system of mapping equations:

xi = gi(xi; fi1(xi), · · · , fin(xi); f1i(x1), · · · , fni(xn)),
(i = 1, · · · , n). (3)

Here again, we can know that, under some natural con-
ditions, these mappings gi have at least one fixed point x∗i
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in the respective bounded convex closed subset X(0)
i (i =

1, · · · , n) [3].
These bounded closed subsets X(0)

i can be understood
conveniently as “available” ranges of system behaviors {x∗i }
(i = 1, · · · , n), if we can get them sufficiently small.

However, the fluctuation imposed on the actual system
is nondeterministic rather than deterministic. In this case,
even the effect due to a single cause is multi-valued, and the
behavior is more naturally represented by a set of points,
rather than a single point. Therefore, it is reasonable to con-
sider some suitable subset of the range of system behavior,
in place of single ideal point, as relevant target such that
the behavior must reach under influence of system control.
Now, we can newly name it as an “available range” of the
system behavior. Thus, by the available range, we mean
the range of behavior in which every behavior effectively
satisfies tolerably good conditions beforehand specified, as
a set of quasi-ideal behaviors. From such a point of view,
the theory for fluctuation imposed on the system should be
developed concerning the set-valued mapping [5, 6].

Here, by the set-valued mapping G defined on a space X
is meant a correspondence in which a set G(x) is specified
in correspondence to any point x in X. In particular, when
G(X) ⊂ X, and if there exists a point x∗ such that x∗ ∈
G(x∗), x∗ is called a fixed point of G[6].

2. A Fixed Point Theorem for a System of Set-Valued
Nonlinear Mappings

Recently, the author presented a fixed point theorem for a
general system of set-valued nonlinear mapping equations,
as follows [2].

Corresponding to the original mappings gi, let us intro-
duce n set-valued mappings Gi : Xi×Πn

jY j×ΠnYi → F (Xi)
(the family of all non-empty closed compact subsets of Xi)
(i = 1, · · · , n).

Under some natural hypotheses, we can know that these
mappings Gi have at least one fixed point x∗i in the respec-
tive bounded convex closed subset X(0)

i such that,

x∗i ∈ Gi(x∗i ; fi1(x∗i ), · · · , fin(x∗i ); f1i(x∗1), · · · , fni(x∗n)),
(i = 1, · · · , n).

(4)
This fixed point theorem can be applied to the analysis

of complicated large-scale nonlinear networks, which con-
sist of n nonlinear blocks originally represented by n map-
ping equations (3), undergone by some uncertain fluctua-
tions so that system dynamics are overcome by the system
of set-valued mapping equations (4). Here, bounded closed
subsets X(0)

i are understood as “available” ranges of system
behaviors {x∗i } (i = 1, · · · , n), as described at the last part
of the preceding section.

Although this situation of system disturbance is origi-
nally crisp, at the next step, as a typical example of ex-
tremely refined methodologies using the concept of set -
valued mappings, we will present a fixed point theorem for

a system of fuzzy-set-valued nonlinear mapping equations,
and will refer to available behaviors of such nonlinear net-
work systems.

3. Fuzzy Set and Fuzzy-Set-Valued Mapping

First of all, let us consider a family of all fuzzy sets orig-
inally introduced by L. A. Zadeh [7], in a linear space X,
and let any fuzzy set A be characterized by a membership
function µA(x) : X → [0, 1]. Now, we can consider an α-
level set Aα of the fuzzy set A as Aα

4
= {ξ ∈ X|µA(ξ) ≥ α},

for any constant α ∈ (0, 1]. The fuzzy set A is called com-
pact, if all α-level sets are compact for arbitrary α ∈ (0, 1].

A fuzzy-set-valued mapping G from X into X is defined
by G : X → F (X), whereF (X) is a family of all non-empty
, bounded and closed fuzzy sets in X. If a point x ∈ X is
mapped to a fuzzy set G(x), the membership function of
G(x) at the point ξ ∈ X is represented by µG(x)(ξ).

For convenience’ sake, let us introduce a useful notation:
for an arbitrarily specified constant β ∈ (0, 1], a point x
belongs to the β-level set Aβ of the fuzzy set A: x ∈ Aβ

4
=

{ξ ∈ X | µA(ξ) ≥ β} is denoted by x ∈β A [8].
Here, let us introduce a new concept of β-level fixed

point: for the fuzzy set G(x), if there exists a point x∗ such
that x∗ ∈β G(x∗), then x∗ is called β-level fixed point of the
fuzzy-set-valued mapping G [8].

Now, let us remember that we have introduced a new
metric into the space of fuzzy sets [8].

Definition 1 Let us consider a metric linear space (X, ρ).
For any fixed constant β ∈ (0, 1], the β-level metric ρβ be-
tween a point x ∈ X and a fuzzy set A is defined as follows:

ρβ(x, A) 4= inf
β≤α≤1

dα(x, A), (5)

where

dα(x, A) 4=


inf
y∈Aα

ρ(x, y) if α ≤ αA,

inf
y∈AαA

ρ(x, y) if α > αA.
(6)

Here, αA
4
= supx∈X µA(x). And also, for any fixed constant

β ∈ (0, 1], by means of the Hausdorff metric dH , the β-level
metricHβ between two fuzzy sets A and B is introduced as
follows:

Hβ(A, B) 4= sup
β≤α≤1

Dα(A, B), (7)

where Dα is defined as

Dα(A, B) 4=



dH(Aα, Bα)
if α ≤ min{αA, αB},

dH(AαA , Bα)
if αA < α ≤ αB,

dH(Aα, BαB )
if αA ≥ α > αB,

dH(AαA , BαB )
if α > max{αA, αB}.

(8)

92



Here, αB
4
= supx∈X µB(x), and the Hausdorff metric dH be-

tween two sets S 1 and S 2 is defined by

dH(S 1, S 2) 4
= max{sup{d(x1, S 2) | x1 ∈ S 1},

sup{d(x2, S 1) | x2 ∈ S 2}},

where d(x, S ) 4= inf{ρ(x, y) | y ∈ S } is the distance between
a point x and a set S .

In order to give a new methodology for the discussion
more sophisticated than the one by usual set-valued map-
pings, the author presented mathematical theories based
on the concept of β-level fixed point, by establishing fixed
point theorems for β-level fuzzy-set-valued nonlinear map-
pings which describe detailed characteristics of such fuzzy-
set-valued nonlinear mapping equations, for every level
β ∈ (0, 1] [8].

4. A Fixed Point Theorem for a System of Fuzzy-Set-
Valued Mappings

Here, we will present a fixed point theorem for a more
general system of fuzzy-set-valued mapping equations.

Now, by using the same notation with crisp sets Gi, let
us introduce n fuzzy-set-valued mappings Gi : Xi ×Πn

jY j ×
ΠnYi → F (Xi) (the family of all non-empty closed compact
fuzzy subsets of Xi) (i = 1, · · · , n).

Moreover, let us introduce arbitrary constants βi ∈ (0, 1],
for every i (i = 1, · · · , n), separately. Here, for any fixed
constants βi ∈ (0, 1], let Gi satisfy Lipschitz conditions
with respect to the βi-level metric Hβi : i.e., there are three
kinds of constants 0 < ai ≡ ai(βi) < 1, b ji ≡ b ji(βi) > 0
and c ji ≡ c ji(βi) > 0 such that for any x(1)

i , x(2)
i ∈ X(0)

i , for
any y(1)

ji , y
(2)
ji ∈ Y (0)

i , and for any y(1)
i j , y

(2)
i j ∈ Y (0)

j , Gi’s satisfy
inequalities:

Hβi (Gi(x(1)
i ; y(1)

i1 , · · · , y(1)
in ; y(1)

1i , · · · , y(1)
ni ),

Gi(x(2)
i ; y(2)

i1 , · · · , y(2)
in ; y(2)

1i , · · · , y(2)
ni ))

≤ ai · ρ(x(1)
i , x(2)

i ) +

n∑

j=1

b ji · ρ(y(1)
i j , y

(2)
i j )

+

n∑

j=1

c ji · ρ(y(1)
ji , y

(2)
ji ),

(i = 1, · · · , n). (9)

Further, let us assume that there is a unique βi-level projec-
tion point x̃(0)

i ∈ X(0)
i of an arbitrary point x(0)

i ∈ X(0)
i upon

the fuzzy set Gi(xi; yi1, · · · , yin; y1i, · · · , yni), such that

ρ(x̃(0)
i , x(0)

i ) = min{ρ(ξ, x(0)
i ) |

ξ ∈βi Gi(xi; yi1, · · · , yin; y1i, · · · , yni)}. (10)

For convenience’ sake, let us introduce closed subsets:

G(0)
i (xi; yi1, · · · , yin; y1i, · · · , yni)
4
= Gi(xi; yi1, · · · , yin; y1i, · · · , yni) ∩ X(0)

i , φ.
(11)

Under this hypothesis, we have an important lemma on
the system of βi-level fuzzy-set-valued mapping equations:

xi ∈βi G(0)
i (xi; fi1(xi), · · · , fin(xi); f1i(x1), · · · , fni(xn)),

(i = 1, · · · , n). (12)

Lemma 1 For all i (i = 1, · · · , n) and for any βi-level, let
us adopt arbitrary points x0

i ∈ X(0)
i , and also fix all values

of fi j(x0
i ) and f ji(x0

j ), ( j = 1, · · · , n). Next, for every i, let
us introduce a sequence {xνi }(ν = 0, 1, · · ·), starting from
the above-adopted point x0

i , and with each xνi ∈ X(0)
i as

a βi-level projection point of xν−1
i ∈ X(0)

i upon the fuzzy
set Gi(xν−1

i ; fi1(x0
i ), · · · , fin(x0

i ); f1i(x0
1), · · · , fni(x0

n)). Then,
this sequence {xνi } (ν = 0, 1, 2, · · ·) is a Cauchy sequence,
having its own limit point x̄i ∈ X(0)

i , such that

x̄i ∈βi G(0)
i (x̄i; fi1(x0

i ), · · · , fin(x0
i ); f1i(x0

1), · · · , fni(x0
n)),

(i = 1, · · · , n). (13)

All limit points x̄i(i = 1, · · · , n) depend on their start-
ing points x0

i ∈ X(0)
i and common parameters fi1(x0

i ),
· · ·, fin(x0

i ) and f1i(x0
1), · · · , fni(x0

n), respectively. These cor-
respondences can be represented by single-valued continu-
ous mappings defined on each domain:

x̄i
4
= λi(x0

i ; yi1, · · · , yin; y1i, · · · , yni),
(i = 1, · · · , n),

(14)

where yi j
4
= fi j(x0

i ) and y ji
4
= f ji(x0

j ) ( j = 1, 2, · · · , n). Thus,
we can add natural properties on these mappings: for any
starting points x01

i , x02
i ∈ X(0)

i , let us denote

x̄(1)
i
4
= λi(x01

i ; y(1)
i1 , · · · , y(1)

in ; y(1)
1i , · · · , y(1)

ni ),
x̄(2)

i
4
= λi(x02

i ; y(2)
i1 , · · · , y(2)

in ; y(2)
1i , · · · , y(2)

ni ),
(15)

where y(1)
i j

4
= fi j(x01

i ), y(2)
i j

4
= fi j(x02

i ) and y(1)
ji

4
= f ji(x01

j ),

y(2)
ji
4
= f ji(x02

j ) ( j = 1, · · · , n). Then, we can assume that
there exist constants ξi ≡ ξi(βi) > 0 and ηi ≡ ηi(βi) > 0
such that

ρ(x̄(1)
i , x̄(2)

i )
≤ Hβi (Gi(x̄(1)

i ; y(1)
i1 , · · · , y(1)

in ; y(1)
1i , · · · , y(1)

ni ),
Gi(x̄(2)

i ; y(2)
i1 , · · · , y(2)

in ; y(2)
1i , · · · , y(2)

ni ))

+ξi

n∑

j=1

ρ(y(1)
i j , y

(2)
i j ) + ηi

n∑

j=1

ρ(y(1)
ji , y

(2)
ji ),

(i = 1, · · · , n).

(16)

From these inequalities, we can find that small val-
ues of ρ(x̄(1)

i , x̄(2)
i ) are suppressed by small values of

ρ( f ji(x01
j ), f ji(x02

j )) and ρ( fi j(x01
i ), fi j(x02

i )) ( j = 1, · · ·
n). Thus, by standard procedures common in the functional
analysis, from the complete continuity of mappings f ji and
fi j, the complete continuity of mappings λi are proved on
their own domains, i.e., on bounded convex closed subsets
X(0)

i , respectively. Therefore, again, by the Schauder’s type
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of fixed point theorem [4], we can know that these map-
pings λi have at least one fixed point x∗i in the respective
bounded convex closed subset X(0)

i , i.e.,

x∗i = λi(x∗i ; y∗i1, · · · , y∗in; y∗1i, · · · , y∗ni) ∈ X(0)
i ,

(i = 1, · · · , n),
(17)

where, y∗i j
4
= fi j(x∗i ) and y∗ji

4
= f ji(x∗j) (i, j = 1, · · · , n). These

relations imply that

x∗i ∈βi G(0)
i (x∗i ; fi1(x∗i ), · · · , fin(x∗i )); f1i(x∗1), · · · , fni(x∗n)),

(i = 1, · · · , n).
(18)

This result means that the solution set {x∗i } ∈ X(0)
i (i =

1, · · · , n) of the system of βi-level fuzzy-set-valued map-
ping equations (12) can be obtained in connection with the
set of limit points {x̄i} ∈ X(0)

i (i = 1, · · · , n) of Cauchy se-
quences {xνi } (i = 1, · · · , n) (ν = 0, 1, 2, · · ·).

5. Applications to Analysis of Mutually Connected
Blocks

As a result, this fixed point theorem can be applied to
analysis of nonlinear networks, which consist of n nonlin-
ear blocks originally represented by n mapping equations
(3), but undergone by some uncertain fluctuations so that
system dynamics are overcome by the system of βi-level
fuzzy-set-valued mapping equations (12). Here, bounded
closed subsets X(0)

i are understood as “available” ranges of
system behaviors {x∗i } (i = 1, · · · , n). Thus, we can ap-
ply this fixed point theorem immediately to “available op-
eration” of system behaviors that appear in every block of
general type of complicated large-scale network systems,
as a whole.

If there exists a set of βi-level fixed points {x∗i } in X(0)
i

(i = 1, · · · , n), which satisfy the system of βi-level fuzzy-
set-valued mapping equations (12), each x∗i can be con-
sidered as a βi-level likelihood behavior of the individual
block (i), being affected by uncertain fuzzy fluctuation,
(i = 1, · · · , n). Here, this βi-level likelihood behavior x∗i
can be found in a closed domain in which the membership
function µGi (ξi) has value larger than or equal to βi.

On the one hand, when the signal x∗i is found in a suf-
ficiently small preassigned closed subset V (0)

i ⊂ X(0)
i , con-

taining the desired behavior x(0)
i , x∗i can be considered as

“available”.
If we select βi ∈ (0, 1] sufficiently high, i.e., near to unity,

then the βi-level set Giβi

4
= {ξi ∈ Xi|µGi (ξi) ≥ βi} is so small

that Giβi ⊂ V (0)
i , and as a result, the solution x∗i becomes to

be available, as a βi-level likelihood behaviors of individual
block (i).

Thus, the fluctuation analysis of this type of networks
in connected blocks, undergone by undesirable uncertain
fluctuations, can be successfully accomplished at arbitrar-
ily fine-level of estimation, by immediate application of
the here-presented fixed point theorem for the system of

βi-level fuzzy-set-valued nonlinear mappings, with con-
sciously selected value of the parameter βi.
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