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Abstract– This paper describes an analysis of IP-

network traffic in terms of the time variation of self-

similarity. To get a comprehensive view in analyzing the 

degree of long-range dependence (LRD) of IP-network 

traffic, this paper used a self-organizing map, which 

provides a way to map high-dimensional data onto a low-

dimensional domain. Also, in the LRD-based analysis, this 

paper employed detrended fluctuation analysis (DFA), 

which is applicable to the analysis of long-range power-

law correlations or LRD in non-stationary time-series 

signals. Based on measurements in a real environment, we 

visually confirmed that the traffic data could be projected 

onto the self-organizing map in accordance with the traffic 

properties over time, resulting in a combined depiction of 

the effects of the LRD and network utilization rates.

1. Introduction 

Data set of recent network traffic measurements have 

shown that the traffic seen in actual IP networks are in fact 

self-similar, demonstrating fractal-like behaviors [1],[2]. 

The notion of self-similarity refers to the occurrence of 

the same patterns at different scales in finite-dimensional 

distributions of a time-series signal. Previous studies have 

revealed that aggregated traffic in the real-world network 

has long-range dependence (LRD), also known as long 

memory, in which a process is characterized by an 

autocorrelation function that decays with a lag time. 

Simulation-based studies have also shown that the LRD in 

the IP-network traffic can affect the network performance 

levels in terms of network link bandwidth and buffer 

responses [3]. 

Network traffic characteristics in real environments 

vary randomly over time; that is, the characteristics of the 

probability distributions of IP packet vary dynamically in 

the time domain. In [4], for example, Takayasu et al. 

pointed out that the network traffic behaviors change with 

the phase transition patterns in the time domain. 

Furthermore, when considering the effect of IP-network 

traffic on network systems, other factors, such as network 

utilization rates, must be taken into account. Namely, the 

degree of self-similarity is only one aspect of IP-network 

traffic behavior; we might expect that a higher LRD when 

network utilization rates are relatively low will have less 

effect on a network system than a lower LRD when 

network utilization rates are high. We thus need to 

develop methods that cover both the effects of LRD and 

other network factors as an appropriate basis for the 

analysis.

Incidentally, the previous studies presented so far have 

been based on the assumption that the target network 

traffic is stationary or wide-sense stationary. However, a 

time series signal is only regarded as stationary, if the 

mean, standard deviation, and higher moments, as well as 

the correlation functions, are invariant under time 

translation. This condition is often difficult to find in the 

real world. The detrended fluctuation analysis (DFA) has 

been introduced as a way of measuring long-range power-

law correlations or LRD of non-stationary time series 

signals [5], [6]. This method has been successfully applied 

to evaluate the characteristics of data such as DNA and 

economic indexes. 

This paper describes a DFA-based analysis of measured 

IP-network traffic in terms of the time variation of LRD. 

To take the possibility of multiple factors into 

consideration, this paper used a self-organizing map, 

which is an effective tool for clarifying the relative 

relationships in high-dimensional input data [7]. It lets us 

to depict the nonlinear statistical relationships in high-

dimensional data in a two-dimensional space, without 

losing topological relationships in the input data. Based on 

measured traffic data, this paper shows that the self-

organizing map is effective as a way of displaying how 

traffic conditions changes over time. 

2. Method of analyzing measured traffic 

2.1 Definition of detrended fluctuation analysis 

Self-similarity in time demonstrates the presence of 

long-range dependence (LRD), and can affect the 

performance of network systems. Here, simulation-based 

studies have indicated that the LRD of network traffic can 

lower the performance levels of network systems in terms 

of link bandwidth [3]. 

This paper employs detrended fluctuation analysis 

(DFA) [5],[6] to analyze fluctuations in the patterns of 

measured traffic in terms of LRD. As was stated above, 

previous studies have been based on the assumption that 

the target traffic is stationary or at least wide-sense 

stationary, conditions that are often difficult to establish. 

The DFA method was introduced as a way of measuring 

the long-range power-law correlations or LRD of signals 

that are not necessarily stationary.  
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Here, let x = {x(i); i = 1, 2, 3… N} be a one- 

dimensional stochastic process with time i ; we define the 

following integrated signal y(k): 

                            k

y(k) =  { x(i) – µ },                                              (1) 

              
i=1

where µ is the mean of x(i). Next, we divide the integrated 

time series y(k) into boxes of equal length n. We then find 

the least squares line that fits the data in each box of 

length n. After that, y(k) is detrended by subtracting the 

local trends yn(k) in the following way [5]: 

                                           N

F(n) = [ (1/N)  { y(k) – yn(k)}
2
]

1/2
.                      (2) 

                          
k=1

The above computation is repeated across a broad range 

of scales to characterize the relationship between the 

average root-mean-square fluctuation F(n) and the box 

size n. A power-law relationship between them indicates 

the presence of scaling given by F(n) ~ n , which means 

that the process obeys the scaling law characterized by the 

scaling exponent . When calculating the value of , we 

check a trend line in the double-logarithmic plot of F(n) 

against n. Then, the  value can be defined by the slope of 

the best fit line in the log-log plot. 

The fractal-like nature of the fluctuation is 

characterized by the scaling exponent , which represents 

the long-range power correlation or LRD of the signal. If 

the target process is similar to white noise, then  is close 

to 0.5. If the process is correlated or persistent,  > 0.5; if 

the process is anti-correlated or anti-persistent,  < 0.5. 

Namely,  values increasingly greater than 0.5 indicate an 

increasing degree of LRD for the target time-series signal. 

2.2 Analysis of measured traffic 

When performing a DFA-based analysis, this paper 

investigates the time variation patterns of network traffic 

conditions. In this analysis, the traffic throughput (=the 

amount of traffic data per second) is measured over time, 

and a value of  for measured traffic is derived from the N 

measured samples (one data set). Also, the overlap 

between the consecutive data sets is M. 

As stated above, focusing on LRD alone is not enough 

when we are considering the effects of fractal-like 

properties on network systems. Namely, we might expect 

that a higher LRD with limited network utilization rates 

will have less effect on a network system than a lower 

LRD with high network utilization rates. In this sense, it is 

important to check time-varying properties that 

significantly affect network utilization rates. Thus, in 

addition to the value of , this paper checked the average 

throughput of measured as described in section 3.

2.3 Training based on self-organizing map 

The self-organization algorithm can convert complex, 

nonlinear statistical relationships among multi-

dimensional data into simple geometric relationships in a 

low-dimensional domain [7]. It calculates multi-

dimensional parameters so that they optimally denote the 

domain in which the relationships of primary data are 

preserved topologically. In performing an LRD-based 

analysis, this paper employed a two-dimensional map to 

map the time variation patterns of measured traffic.  

The training of this map is initialized by assigning 

random values to the weight vector w of the units. After 

the presentation of input vector z, the Euclidian distance 

between the input vector z and the weight vector w is 

computed for all units in the neural network. Assuming 

that i is the unit number of the output layer, the unit with 

the smallest distance is marked as unit c: 

|| z – wc || = min{|| z – wi ||},                                  (3) 

                              
i

where wc is the winner, i.e. the unit that best matches z. In 

the next step, all units in some defined spatial 

neighborhood around unit c are updated through the 

following training process:

wi(t+1) = wi(t) + hc(x),i (z(t) – wi(t)),                      (4) 

where t is the regression step index, and hc(x),i is the 

neighborhood function. Here, the neighborhood function 

of the Gaussian type can be given by 

hc(x),i =a(t) exp{–|| ri – rc ||
2
 / 2

2
(t) },                     (5) 

where 0 < a(t) < 1 is the learning-rate parameter,  ri  R
2

and rc  R
2
 are the vertical locations on the grid, and (t) 

corresponds to the width of the neighborhood function. 

Also, assuming that T is the total number of training 

cycles, a(t) and (t) can be defined as

a(t) = a(0) (1 – t / T) ,                                         (6) 

(t) = (T) + { (0) – (T)}(1 – t / T).              (7)

The procedure of this training process is as follows:

i) initialize wi to a random value,  

ii) input variables to vectors z(t),

iii) calculate eq.(3) for all units, and find wc,

iv) calculate eq.(4) with the aid of eqs.(5) - (7), and  

v) repeat the process from ii). 

3. Case study: Analysis of measured traffic 

3.1 Measurement of IP-network traffic 

 In this measurement, IP packets entering the NTT 
R&D center (in Tokyo, Japan) from the Internet were 

measured via a router at the terminating point of a 17-

Mbps least line. Also, to measure the throughput of IP 

packets, we set the time resolution level of the traffic 
measuring device to 10 ms from 9:00 to 11:30 on Dec. 3,

2002. Then, in calculating  from sets of data, the number 

N of sampling points for one data set was 60,000 (10min.), 

which covered time period for evaluating network systems. 

Also, the sampling overlap M between consecutive data 

sets was 30,000 (5 min.). 

Examples of 1000-sample series of measured traffic 

throughput are shown in Fig. 1, where the amplitude of 

time-series data is normalized at the maximum peak level 

in this figure. We see that the bursty nature of IP-network 
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traffic is visible in the figure, indicating that seemingly

self-similar features are present in the fluctuations.

Fig. 1  Example of measured traffic.

3.2 DFA-based analysis of measured traffic

An example of a log–log plot of n vs. F(n) for measured

traffic is shown in Fig. 2. As is shown in Fig. 2, different

kinds of fluctuation characteristics are seen, which

demonstrates that different stochastic structures with

respect to scaling behavior are present in a single data set.

In the figure, two solid lines represent the best fit line for 

ranges of around log10(n) 2.2 and log10(n)  2.2 in this

figure, resulting in =0.82 and 1.01 for each range.

Here, when we checked other data sets in the

measurements, results confirmed that two  values can be 

derived from data sets in this case study, as shown in Fig.

2. Since our aim is to grasp the essential scaling

tendencies of traffic data and to simplify the DFA-based

analysis, the following discussion is concerned with 

values defined for different ranges of log10(n) as follows:

- 1: log10(n) is less than around 2.1 - 2.4,

- 2: log10(n) is more than around 2.2 - 2.5.

Fig. 2  Example of log-log plot of n vs. F(n). 

Relationships between the average throughput and

values for measured traffic are shown in Fig. 3, where the

average throughput was normalized at the maximum value 

in this measurement, and the order of the data set (= Data 

number) from the beginning is given for each

measurement ([ ] represents the order of the data set.). 

When we look at results in Fig. 3, we see that 1 values

ranged from around 0.70 to 0.89, while 2 values were in

the range from around 0.92 to 1.13. Namely, 2 values

tended to be greater than 1 values, corresponding to the

slopes in log-log plots of n vs. F(n) for each log10(n) range.

In addition, the results also show that the normalized

average throughput tended to increase with passage of

time, which suggests that network utilization rates tended

to increase over time in this period.
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 values.

3.3 Analysis using self-organizing map 

We applied a self-organizing scheme to the measured

traffic data and thus evaluated the time variation patterns

of IP-network traffic data. In this analysis, we used three 

parameters of measured traffic data: the 1 value, the 2

value, and the normalized average throughput. The 1

value corresponds to the degree of LRD in the lower range

of n in the log-log plots of n vs. F(n), so increases in this

value can lead to poorer network performance. The 2

value corresponds to the degree of LRD in the higher

range of n in the log-log plots of n vs. F(n), so increases in

this value also can lower network performance. The 

normalized average throughput refers to the bandwidth of
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the IP network; that is, increases in this quantity also lead

to loss of performance for the network system.

The data set in Fig. 3 was used in training a

topologically rectangular map, and the map size was set to 

10 10. Also, based on the quantization error defined by

the mean of || z – wc || [7], this paper set the total number

of training for the self-organizing map to 10,000. To raise 

the efficiency of training, we performed the training in

two phases [7]: in the first phase, with training number of

1,000, the initial value of the learning-rate parameter a(0)

was set to 0.5, while in the second phase it was set to 0.05.

In addition, parameters of the neighborhood radius were

also altered: the initial value (0) and final value (T) in

the first phase were set to 5 and 1, while the

corresponding values in the second phase were 2 and 1,

respectively.

Fig. 4  Visualization results of mapped data.

Figure 4 shows map results projected onto a two-

dimensional domain, in which the reference axes are set as

x and y, and the order of measured data from the 

beginning was set. In the map of the time-based sets of

traffic data, we see the following points.

• The 1 value tended to decrease along the x-axis, and the

upper-left part is equivalent to the domain where the value

of 1 was highest (resulting in the value of 23
th

 data being

the highest). On the other hand, the 2 value tended to

increase along the y-axis, and the upper central or upper-

right part is equivalent to the domain where the value of

2 was highest (resulting in the value of 21
th

 data being the

highest). The normalized average throughput tended to

increase along the x- and y-axes, with the values in the

upper- or right- regions being the highest of all. As a result,

we estimate that the upper-part (especially around 24
th

data) corresponded to the domain where the patterns of

measured traffic were most likely to affect the network

system in terms of both LRD and network bandwidth.

• The 12 or 13 sets of data starting from 9:00 tended to be

located in the lower-left part of the map along the y-axis. 

Therefore, the results visually demonstrate that the

normalized average throughput of network traffic in this

time-span was relatively low. The location point of

projected data tended to shift from the lower-left part to 

the other part especially after around 10:00 (around the

13
th

 or 14
th

 data from 9:00). Therefore, we see that the 

network bandwidth utilization rates after around 10:00

tended to increase.

We thus visually confirmed our technique’s ability to

projecting traffic data onto a two-dimensional domain in a

way that reflects their properties. Our method projects

data with multi-dimensional input parameters onto a two-

dimensional space, so that we can effectively evaluate 

effects of both the LRD and network utilization rates over

time.

4. Conclusion
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In analyzing fractal-based behaviors of actual IP

network traffic, this paper applied an integrated approach

to evaluating how the properties of network traffic change

over time. We measured the degree of long-range

dependence (LRD) of measured traffic by applying the

detrended fluctuation analysis (DFA), which can measure

LRD of signals that are not necessarily stationary. The

map produced by the self-organizing algorithm revealed

the effects of both the LRD and network bandwidth

utilization rates, so we can effectively check the changes

of network traffic condition over time.

Future studies will be concerned with analyzing the 

method’s adaptability and precision for various types of

traffic, how the LRD extracted by DFA affects IP

applications, and so on.
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