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Abstract — A new chaos-based technique for modeling the
diversity of approximately periodic signals is introduced and
exploited, combined with generalized chaotic synchroniza-
tion phenomena, for the solution of temporal pattern recog-
nition problems.

1. Introduction
The problem addressed in this paper is to establish black-

box models from real-word data, in our case from measured
time-series. This is an old subject and consistent literature
is available on it. In a classification context, the main diffi-
culty is to express the diversity of data that has essentially the
same origin without creating confusion with data that has a
different origin.

Normally, the diversity of time-series is modeled by a
stochastic process, such as filtered white noise, a Hidden
Markov Model, or a stochastic differential equation. Often,
it is reasonable to assume that the time series is generated by
a deterministic dynamical system rather than a stochastic pro-
cess. In this case, the diversity of the data is expressed by the
variability of the parameters of the dynamical system. The
parameter variability itself is then, once again, modeled by a
stochastic process. In both cases the diversity is generated by
some form of exogenous noise.

In this paper a further step is taken. A single chaotic dy-
namical system is used to model the data and its diversity.
Indeed, a chaotic system produces a whole family of trajec-
tories that are all different but nonetheless very similar. It
is believed that chaotic dynamics not only are a convenient
means to represent diversity but that in many cases the origin
of diversity actually stems from chaotic dynamics. However,
whether or not this is the case is not important for the classi-
fication task considered in this paper [1].

Since this approach explores completely new grounds, the
most suitable kind of data is considered, namely approxi-
mately periodic signals. In nature such signals are rather
common, in particular physiological signals of living beings,
such as the electrocardiograms (ECG), parts of speech sig-
nals, electroencephalograms (EEG), etc. are of this kind.
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Since there are often strong arguments in favor of the chaotic
nature of these signals, they appear to be the best candidates
for modeling diversity by chaos. It is repeated, however, that
this modeling approach is thought to be quite general and
whether or not a chaotic system has produced the signals un-
der consideration is not crucial for being able to perform the
classification task.

2. Classification Problem
For simplicity, we consider the case where two classes

of approximately periodic signals are given and we have to
find an algorithm that decides to which class a given signal
belongs. Such a classification problem can be easy or hard,
depending on:

• how “close” the two classes are;
• how the two classes are defined.

In our case, the classes are defined indirectly by a represen-
tative set of examples, in the form of a database of recorded
signals, labeled with the class symbol. From the examples,
a model for the classes has to be deduced. This operation
is called “supervised learning” [2]. In fact, the learning is su-
pervised, because for each recorded signal the class is known,
the “teacher” or “supervisor” tells us what the class is.

To fix the ideas, we give two examples. The first concerns
vowels in speech recognition. A database of 50 recorded and
labeled [a]’s and [e]’s is given and the task consists of dis-
tinguishing, in a given speech segment that is supposed to
represent either a spoken [a] or a spoken [e], which one of
the two vowels actually has been pronounced. An example of
a spoken [a] is represented in Fig. 1(a), and an example of a
spoken [e] in Fig. 1(b).

Since these signals are approximately periodic, they can
be decomposed into “pseudo-periods”. Since they are not
precisely periodic, the pseudo-periods are slightly different
and the signals within the various pseudo-periods also dif-
fer slightly, even if they are time-aligned. Averaging over
the time-aligned signals, one obtains a periodic “generating”
cycle for the [a] and for the [e] spoken vowels. The set of
time-aligned signal portions are represented in Fig. 2, with a
highlighted generating cycle.

The second example concerns electrocardiograms (ECG).
The first class of ECG signals has been taken from persons
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Figure 1: Spoken vowels: (a) – recorded [a]; (b) – recorded
[e].
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Figure 2: Spoken vowels: (a) – time-aligned pseudo-periods
of all 50 recorded signals [a]; (b) – time-aligned pseudo-
periods of all 50 recorded signals [e]. The generating cycles
are represented in bold.

that have a certain pathology. An example of such an ECG is
given in Fig. 3(a). They have to be distinguished from healthy
persons. A corresponding ECG is given in Fig. 3(b).
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Figure 3: Recorded ECGs: (a) – from a person having a cer-
tain pathology; (b) – from a healthy person.

Again, both healthy and pathological ECG’s are approxi-
mately periodic signals. The pseudo-periods can be normal-
ized, time-aligned signals can be computed and correspond-
ing waveforms within a pseudo-period can be superposed in
order to illustrate the time-variability within a single signal,
or the variability among different signals (Fig. 4). Also, a
periodic generating cycle can be computed.

3. Modeling by Nonlinear Dynamic System Identification
Instead of modeling a signal class by a stochastic process,

we use a single dynamical system as a model for the whole
class [3]. The diversity of the different signals is represented
by the attractor of the system. The attractor of a dynamical
system may be very simple, such as a closed curve or a torus,
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Figure 4: Recorded ECG’s: (a) – time-aligned pseudo-
periods of all 20 recorded pathological ECG’s; (b) – time-
aligned pseudo-periods of all 20 recorded healthy ECG’s.
The generating cycles are represented in bold.

or rather complicated such as a chaotic attractor. In our ex-
amples, the diversity of the classes is such that apparently a
chaotic attractor is needed for modeling.

We chose a Lur’e system as a reference model (upper part
of Fig. 5). Its ring structure composed of a nonlinear static
dynamic and a linear system has distinct advantage for the
modeling process. For computational convenience, we re-
strict the nonlinearity to be one-dimensional. If it were not for
this constraint, the Lur’e systems would actually represent the
most general class of finite dimensional nonlinear dynamical
systems. To be precise, the 1-dimensional nonlinear function
we use is a piecewise linear function composed of 5 pieces,
whose angles have been smoothed to second order.
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Figure 5: Operating scheme of the Lur’e model based nonlin-
ear identification algorithm.

The model is established by an identification process, us-
ing the examples from the corresponding database. This
is also called supervised learning [4]. In the lower part of
Fig. 5 the identification or learning algorithm is represented
schematically. The loop of the Lur’e system is cut open and



a recorded signal is injected into an initial guess of the non-
linearity (fp(·)) obtaining the approximated input (û(t)) of
the linear dynamical system (G(z)). Afterwards, a paramet-
ric linear identification technique [5] is applied on the pair
(û(t), y(t)), obtaining an estimation (Ĝ(z)) of the linear sys-
tem and a measure of its quality (σ). Hence, the nonlinear-
ity parameters (p) can be adjusted, by a suitable optimization
method, to improve the identification quality. The procedure
is iteratively repeated until the best possible pair (p, Ĝ(z)) is
determined. A certain number of constraints has to be applied
to the identification process, however, in order to avoid that it
converges to the trivial solution, where the loop functions act
as the identity operator.

Profiting from the Lur’e structure, we have used alternated
linear and nonlinear system identification. Keeping the non-
linear function fixed, we adjust the linear dynamic part using
a standard algorithm. Inversely, keeping the linear part fixed,
we adjust the nonlinear function by a genetic algorithm. The
result of this identification procedure is shown in Figs. 6 to 9.
It can be seen that the synthetic signals produced by the Lur’e
systems resemble closely the recorded signals.
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Figure 6: Result of the identification of the acoustic signals
[a]: (a) – 3-dimensional projection of the attractor of the 5-
dimensional identified model; (b) – example of a synthetic
signal produced by the corresponding system.

−1.1

1.1 −1.1

1.1

−1.1

1.1

x
3

x
5

(a)

x
4

0 1.25 2.5 3.75 5
−1

−0.5

0

0.5

1

t

y

(b)

Figure 7: Result of the identification of the acoustic signals
[e]: (a) – 3-dimensional projection of the attractor of the 5-
dimensional identified model; (b) – example of a synthetic
signal produced by the corresponding system.

4. Classification by Synchronization
Having obtained a nonlinear dynamical system that au-

tonomously produces signals that resemble closely the
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Figure 8: Result of the identification of the pathological ECG
signals: (a) – 3-dimensional projection of the attractor of the
4-dimensional identified model; (b) – example of a synthetic
signal produced by the corresponding system.
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Figure 9: Result of the identification of the healthy ECG sig-
nals: (a) – 3-dimensional projection of the attractor of the
4-dimensional identified model; (b) – example of a synthetic
signal produced by the corresponding system.

recorded signals of the class it represents, we now add an
input and error feedback to the system (right part of Fig. 10).
This is done in such a way that the system synchronizes ap-
proximately with a signal that belongs to the class it models,
whereas synchronization does not take place for other signals.
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Figure 10: Master-slave configuration for synchronization
controlling the slave by error feedback.

The idea behind this approach to classification is the fol-
lowing [6]. If we connect two identical nonlinear dynamical
systems in a master-slave configuration as shown in Fig. 10,
then by suitably adjusting the feedback coefficients the slave
system will synchronize with the master system. This syn-
chronization is caused by the output signal of the master sys-
tem alone, because no other information reaches the slave
system. Thus, if the output of the master system is recorded,
and later replayed at the input of the slave system, the latter
will still synchronize with the replayed signal. Now, if the
signal at the input of the slave system is only approximately
like an output signal from the master system, the slave sys-
tem will still approximately synchronize with the incoming



signal. Hence, if the master system (and thus the slave sys-
tem without input and feedback) models a signal class then
the slave system with input and feedback will approximately
synchronize with input signals from the class and not syn-
chronize with other signals.

It turns out [7] that even though the systems that were ob-
tained by our learning/identification process reproduce quite
faithfully the signals of their class in the autonomous mode,
they are not yet suitable for the classification process. The
reason is that their dynamics have a rather rigid underly-
ing approximate periodicity. If the incoming signal is out
of phase with the internal dynamics of the system, the feed-
back will not be able to lock the system onto this signal. The
remedy is to modify the system by carefully changing its pa-
rameters until it has a homoclinic loop. The presence of the
homoclinic loop introduces phase-slips into the output signals
of the free-running system (Fig. 11). Even though the mod-
ified system in the autonomous mode produces signals that
are not so similar to the recorded signals anymore, the system
is much more flexible for synchronizing with a suitable input
signal.
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Figure 11: Modified system, to have a homoclinic loop, of
the acoustic signals [a]: (a) – 3-dimensional projection of
the attractor of the 5-dimensional modified model (with ho-
moclinic loop); (b) – example of the corresponding system
output signal, comparing with Fig. 6(b), the phase slips are
visible.

The feedback coefficients in Fig. 10 have to be set in such a
way that approximate synchronization takes place for the sig-
nals the class models, and no synchronization for the signals
of the wrong class. If the feedback is too weak, synchro-
nization hardly ever happens, whereas if the feedback is too
strong, the system will synchronize also with wrong signals.
The following idea helps to find the right feedback. The cru-
cial trajectories in the attractor of the autonomous system are
the periodic generating cycle and the homoclinic loop. They
are represented in Fig. 12 for a system that serves just for
illustration purposes.

Close to the generating cycle, the dynamics produce out-
put signals similar to those of the class the system models.
However, the trajectories of the free-running system explore
the whole attractor and therefore they cannot remain close to
the generating cycle forever. On the other hand, in the sys-
tem with input, when a signal of the right class is injected,
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Figure 12: Attractor with a generating cycle and a homoclinic
loop, highlighted in bold.

the feedback control should keep it close to the generating
cycle once it enters into its vicinity, whereas a signal of the
wrong class should not be captured by the generating cycle.
The corresponding feedback coefficients are determined by
periodic control theory applied to the system linearized about
the generating cycle. In Figure 13(a) the attractor of the mod-
ified system for the acoustic signals [a] with the right input
signal is represented. With respect to the attractor of the au-
tonomous system shown in Fig. 11, it is much thinner. In-
deed, it is concentrated around the generating cycle. In Fig-
ure 13(b), the attractor of the same system is shown, when
the input is a signal from the wrong class. It clearly fills out
much more of the state space and it does not stay close to the
generating cycle. The two situations are easy to distinguish,
either by checking the degree of synchronization of the sys-
tem output with the input, or by checking the “thickness” of
the attractor.

The classification results are given in Table 1 for the ex-
amples mentioned above. They are quite reasonable. Classi-
cal methods trimmed to the specific application can certainly
achieve still better results. However, we have been able to
show the feasibility of this entirely different approach. We
also have been able to classify EEG signals belonging to two
different sleeping states, where the learning procedure was
still much more difficult.

5. Conclusions
We have shown that the diversity of approximately peri-

odic signals found in nature can be modeled by means of
chaotic dynamics. Furthermore, we have illustrated how to
exploit this kind of modeling technique, together with selec-
tive properties of the synchronization of chaotic systems, for
pattern recognition purposes.
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Figure 13: Classification by synchronization for the acoustic
signals [a]: (a) – 3-dimensional projection of the attractor
of the 5-dimensional modified model that has approximately
synchronized with a signal from the class it models; (b) – 3-
dimensional projection of the attractor of the 5-dimensional
modified model with a signal from the wrong class as input.

in

∖
as P H

P 88.19% 11.81%

H 14.98% 85.02%

in

∖
as [a] [e]

[a] 85.33% 8.80%

[e] 6.05% 87.38%

(a) (b)

Table 1: Classification results, only the vectors not used for
learning are classified: (a) – ECG signals; (b) – vowels sig-
nals.
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