
International Symposium on Nonlinear Theory and its Applications
Xi’an, PRC, October 7–11, 2002

An Approach for Chaos Synchronization Based on Non-Continuous “Excursion-Orbit” Coupling

Shui-Sheng Qiuy, Chi K. Tse�, Yufei Zhou��, Xiaoan Zhouz and Xinguo Caiy

�Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hong Kong, China.
ySouth China University of Technology, Guangzhou, China.

zShenzhen University, Shenzhen, China.
�Anhui University, Anhui, China.

Abstract

In this paper an approach is proposed for synchronizing chaotic sys-
tems, taking the viewpoint of a special characterization of chaotic
attractors in which spiraling and excursion orbits are identified as
the basic constituents. The proposed synchronization method takes
advantage of the fact that a chaotic attractor is strongly character-
ized by excursion orbit segments, and hence synchronization can be
achieved by coupling only the excursion orbit segments. Further-
more, a multiplexing scheme can be applied to the drive signals.
Since the systems remain uncoupled for most of the time, the band-
width required for transmitting the drive signal can be very small.

1. Introduction

Chaos synchronization has been studied widely since Pecora and
Carroll [1] first demonstrated the possibility of making two chaotic
systems operate in synchrony. The potential application of chaos in
communications has catalyzed the research for practical and robust
synchronization of chaotic systems [2]–[4].

Our purpose in this paper is to propose a method for synchroniz-
ing two chaotic systems. The method is based on a special charac-
terization which essentially decomposes a chaotic attractor into two
constituent orbits, namely a spiraling orbit and an excursion orbit.
Since the excursion orbit strongly characterizes the chaotic attrac-
tor in question, it can be effectively used for coupling, giving rise
to a non-continuous approach for chaos synchronization. Since cou-
pling is not required for most of the time, only a small bandwidth is
needed for transmitting the drive signals.

2. Review of Characterization of Chaotic Attractors

Recently, the chaos producing mechanism has been studied from
the viewpoint of hybrid attractor which arises from interaction of
a saddle periodic orbit and a saddle focus [6]. This viewpoint is
an extension of Shil’nikov’s theorem [7],[8], allowing more con-
venient characterization of chaotic attractors. Essentially, the sad-
dle periodic orbit pushes away nearby trajectories which are then
attracted by the saddle focus. As trajectories approach the sad-
dle focus, they are again repelled away and attracted by the saddle
periodic orbit. The saddle focus is associated with a manifold on
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which trajectories “swirls” in a spiral-like motion, whereas the sad-
dle periodic orbit is associated with a manifold on which trajectories
make large-amplitude excursion before falling back onto the other
manifold where spiral-motion resumes. Thus, the chaotic attractor
“glues” together oscillatory spiral motions and large-amplitude ex-
cursions, with the spiral motions defining the natural oscillation fre-
quency and the excursions characterizing the random-like motion.
In the following we formally summarize this theoretical viewpoint.
Details are found in Qiu [6].

We consider the autonomous system:

dx

dt
� f�x� for x � R� (1)

where f � R� � R
� is p-times differentiable (p � �) with con-

tinuous derivatives. The equilibrium point xe is determined by
f�xe� � �. The linearized system of (1) is

dx

dt
� Df�xe�x (2)

where Df�xe� is the Jacobian of f evaluated at xe. Suppose � and
�� j�� are the eigenvalues of Df�xe�, where �, � and �� are real
numbers and �� �� �. We call xe a saddle focus if

�� � �� (3)

This saddle focus is associated with a stable manifoldW s�xe� and
an unstable manifold W u�xe�. A saddle periodic orbit (SPO), L,
also exists (see [6]). Again, associated with it are a stable manifold
W

s�L� and an unstable manifold W s�L�, as depicted in Fig. 1.
A segment of the trajectory in the manifold is a combination of a
spiraling orbit and an excursion orbit. Let the trajectory be denoted
by

x � xe � �xd�t� � �xs�t�� (4)

where �xd�t� and �xs�t� are the excursion and spiraling orbit, re-
spectively. Depending upon the relative magnitudes of j�xd�t�j and
j�xs�t�j, either excursion or spiraling dominates. Moreover, if excur-
sion dominates in the local stable or unstable manifold in the neigh-
bourhood of an SPO, we call such an SPO a singular SPO (SSPO).
In particular we consider a special kind of SSPO whose unstable
manifold contains dominated excursion orbit. A saddle focus and an
SSPO of this type constitute a hybrid attractor if the directions of
the manifolds are consistent with

W
u�xe� �W

s�L� and W
s�xe� �W

u�L� (5)
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Fig. 1: Hybrid attractor �xe� L� and circulating flow.

in some subspaces. Thus, there may exist a circulating flow in
the neighbourhood of the hybrid attractor. Sufficient conditions are
found in Qiu [6] for the existence of chaotic attractors.

From Fig. 1 we see that the chaotic attractor consists of many
excursion orbits, and there exists a countable sequence tn (where
n � ������) of times at which the nth excursion orbit starts to
appear. The dividing point of the nth excursion orbit and its preced-
ing spiraling orbit near L can be found by inspecting �L which is
defined by

�L � min fjx� xLjg for xL � L� (6)

The dividing point is the point where �L is minimum. Note that
d�L�dt has a sharp turning point near the dividing point at which
the trajectory moves off rapidly from the basin of L. This property
can be used for computation of the dividing point. Likewise, another
dividing point, one between the nth excursion orbit and its succeed-
ing spiraling orbit, corresponds to the minimum value of �e, where

�e � jx� xej� (7)

In the next section we will use the aforementioned viewpoint to de-
rive an effective synchronization approach for chaotic systems.

3. Principle of Non-Continuous “Excursion-Orbit” Synchro-
nization

The viewpoint described above essentially looks at a chaotic at-
tractor as being composed of spiraling orbits and excursion orbits.
The fundamental frequency of the spiraling orbits is the natural fre-
quency of the associated linearized system, which is non-random.
Moreover, excursion orbits come into play “randomly”, characteriz-
ing the chaotic dynamics of the attractor. Furthermore, the excur-
sion orbits already contain the spiraling motion as small-amplitude
oscillations. It can therefore be conceived that two chaotic systems
will be synchronized if the randomly varying excursion orbits of one
system asymptotically approach those of the other. Hence, we need
only to send the excursion orbits as drive signals in order to achieve
synchronization.

We consider the error-feedback implementation [9], which can be
described in terms of the following drive-response system:�

	x� � 	�x� � x� � f�x���
	x� � x� � x� � x�
	x� � �
x�

(8)

and �
	y� � 	�y� � y� � f�y���� k�kb�y� � x��
	y� � y� � y� � y� � k�kb�y� � x��
	y� � �
y� � k�kb�y� � x��

(9)

where f��� defines the characteristic nonlinearity in the Chua’s sys-
tem [10], k�, k� , k� are the coupling gains, and kb is equal to 1
when excursion orbit appears, and is 0 when spiraling orbit ap-
pears. Suppose the nth excursion orbit appears in the interval
tn � t � tn � �nb, i.e., the trajectory takes its nth excursion for a
duration of �nb starting at tn. Note that tn and tn � �nb correspond
to the dividing points discussed in Section 2. Then, we have

kb �
n
� if tn � t � tn � �nb
� otherwise.

(10)

Note that the above method of coupling requires simultaneous
transmission of all three drive variables x�, x� and x�. Moreover, it
is possible to derive an alternative simpler coupling scheme, where
the three drive variables are transmitted one at a time. In this case,
we need only one transmission channel and the drive variables are
effectively being multiplexed into one drive signal. The state equa-
tions for the response system can be written by replacing (9) by�

	y� � 	�y� � y� � f�y���� k�kb��y� � x��
	y� � y� � y� � y� � k�kb��y� � x��
	y� � �
y� � k�kb��y� � x��

(11)

where kbi, for i � 1, 2 and 3, are defined by

kb� �
n
� if tn� � t � tn� �

�nb
�

� otherwise
(12)

kb� �
n
� if tn� �

�nb
�
� t � tn� �

��nb
�

� otherwise
(13)

kb� �
n
� if tn� �

��nb
�

� t � tn� � �nb
� otherwise

(14)

From the foregoing, we see that the synchronization method in-
volves finding the times for the dividing points between spiraling
and excursion motions. However, in practice, we may simplify the
procedure by an approximate method for locating the times for the
dividing points. Specifically, since synchronization does not neces-
sarily requires the exact whole excursion orbit to be sampled, we
may use the magnitude of one of the variables to determine the di-
viding points. For example, as shown in Fig. 2 (a), we can sample
the excursion orbit segment when x� satisfies

m� � x� � m� (15)

for the case where the excursion goes between the neighborhoods
of two saddle foci. Moreover, when the excursion returns to the
neighborhood of the same saddle focus, we may use

x� �m (16)

for locating the dividing points. See Fig. 2 (b).

4. Example: Synchronization of Chua’s Circuits

In this section we apply the proposed synchronization approach
to the Chua’s circuits. Fig. 3 shows two Chua’s circuits forming a
drive and response system pair. The state variables are vS�, vS�
and is� for the drive system, and vR�, vR� and iR� for the response
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Fig. 2: Locating the dividing points by measuring amplitudes. (a)
Excursion orbit traverses between neighborhoods of two saddle foci;
(b) excursion orbit returns to neighborhood of the same saddle focus.

system. The system of equations can be written as vS�, vS� and iS�
for the drive system, and vR�, vR� and iR� for the response system.
The system of equations can be written as

	vS� �
�
vS��vS�

R
� f�vS��

�
�C�

	vS� �
�
vS��vS�

R
� iS�

�
�C�

	iS� � �vS��L

	vR� �
�
vR��vR�

R
� f�vR��

�
�C� � k�kb��vR� � vS��

	vR� �
�
vR��vR�

R
� iR�

�
�C� � k�kb��vR� � vS��

	iR� � �vR��L� k�kb��iR� � iS��
(17)

where subscripts S and R denote drive and response system vari-
ables respectively, k� , k� and k� are the coupling gains correspond-
ing to the three variables, and kb�, kb� and kb� take either 1 or 0
according to whether the drive signals are sent or not sent. The func-
tion f��� that defines the nonlinear conductance is

f�v� � Gbv�
�



�Ga �Gb��jv �Ej � jv�Ej� (18)

where Ga � �����
 mS, Gb � ���
��� mS and E � � V.
Two sets of simulation are performed, corresponding to the fol-

lowing two coupling arrangements:

1. All three drive variables are simultaneously transmitted during
the excursion intervals. In this case, kb� � kb� � kb� � kb,
and kb is as defined in (10).
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Fig. 3: Chua’s circuits. (a) Drive system, (b) response system.

2. The three drive variables are transmitted successively one at a
time during the excursion intervals. In this case, kb�, kb� and
kb� are given by (12) to (14). Note here that only one signal
has to be transmitted in practice.

In both cases, the excursion intervals are determined using the
amplitude measurement method discussed in Section 3. The circuit
parameters are: C� � �� nF, C� � ��� nF, L � �� mH and
R � ���� k�. The initial conditions are set at �vS�� vS�� iS�� �
��������
� ���� and �vR�� vR�� iR�� � ���
� ���� ����. Results are
shown in Figs. 4 (a) to (c) for the case of simultaneous coupling,
and in Figs. 4 (d) to (f) for the case of successive coupling. In both
cases, we verify that synchronization can be achieved using this non-
continuous excursion-orbit coupling approach.

5. Conclusion

This paper describes a novel approach for chaos synchronization,
in which the drive signals are transmitted only for very short inter-
vals of time, leading to large saving in transmission bandwidth. The
method is based on the viewpoint that the chaotic orbit is composed
of a “spiraling” orbit and an “excursion” orbit, and the attractor is
strongly characterized by the “excursion” orbit. Thus, synchroniza-
tion can be achieved by coupling only the ‘excursion” orbit.
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