電子情報通信学会 研究会発表申込システム
講演論文 詳細
技報閲覧サービス
技報オンライン
‥‥ (ESS/通ソ/エレソ/ISS)
技報アーカイブ
‥‥ (エレソ)
 トップに戻る 前のページに戻る   [Japanese] / [English] 

講演抄録/キーワード
講演名 2014-11-17 17:00
[ポスター講演]Importance-Weighted Covariance Estimation for Robust Common Spatial Pattern
Alessandro BalziPoliMi)・○Florian YgerMasashi SugiyamaUniv. of Tokyo
技報オンラインサービス実施中
抄録 (和) (事前公開アブストラクト) Non-stationarity is an important issue for practical applications of machine learning methods. This issue particularly affects Brain-Computer Interfaces (BCI) and tends to make their use difficult. In this paper, we show a practical way to make Common Spatial Pattern (CSP), a classical feature extraction that is particularly useful in BCI, robust to non-stationarity. To do so, we did not modify the CSP method itself, but rather make the covariance estimation (used as input by every CSP variant) more robust to non-stationarity. Those robust estimators are derived using a classical importance-weighting scenario. Finally, we highlight the behaviour of our robust framework on a toy dataset and show gains of accuracy on a real-life BCI dataset. 
(英) Non-stationarity is an important issue for practical applications of machine learning methods. This issue particularly affects Brain-Computer Interfaces (BCI) and tends to make their use difficult. In this paper, we show a practical way to make Common Spatial Pattern (CSP), a classical feature extraction that is particularly useful in BCI, robust to non-stationarity. To do so, we did not modify the CSP method itself, but rather make the covariance estimation (used as input by every CSP variant) more robust to non-stationarity. Those robust estimators are derived using a classical importance-weighting scenario. Finally, we highlight the behaviour of our robust framework on a toy dataset and show gains of accuracy on a real-life BCI dataset.
キーワード (和) / / / / / / /  
(英) Covariance estimation / Common Spatial Pattern / Brain-Computer Interface / / / / /  
文献情報 信学技報, vol. 114, no. 306, IBISML2014-40, pp. 41-48, 2014年11月.
資料番号 IBISML2014-40 
発行日 2014-11-10 (IBISML) 
ISSN Print edition: ISSN 0913-5685  Online edition: ISSN 2432-6380

研究会情報
研究会 IBISML  
開催期間 2014-11-17 - 2014-11-19 
開催地(和) 名古屋大学 
開催地(英) Nagoya Univ. 
テーマ(和) 情報論的学習理論ワークショップ(IBIS2014) 
テーマ(英)  
講演論文情報の詳細
申込み研究会 IBISML 
会議コード 2014-11-IBISML 
本文の言語 英語 
タイトル(和)  
サブタイトル(和)  
タイトル(英) Importance-Weighted Covariance Estimation for Robust Common Spatial Pattern 
サブタイトル(英)  
キーワード(1)(和/英) / Covariance estimation  
キーワード(2)(和/英) / Common Spatial Pattern  
キーワード(3)(和/英) / Brain-Computer Interface  
キーワード(4)(和/英) /  
キーワード(5)(和/英) /  
キーワード(6)(和/英) /  
キーワード(7)(和/英) /  
キーワード(8)(和/英) /  
第1著者 氏名(和/英/ヨミ) Alessandro Balzi / Alessandro Balzi /
第1著者 所属(和/英) Politecnico di Milano (略称: PoliMi)
Politecnico di Milano (略称: PoliMi)
第2著者 氏名(和/英/ヨミ) Florian Yger / Florian Yger /
第2著者 所属(和/英) 東京大学 (略称: 東大)
University of Tokyo (略称: Univ. of Tokyo)
第3著者 氏名(和/英/ヨミ) 杉山 将 / Masashi Sugiyama /
第3著者 所属(和/英) 東京大学 (略称: 東大)
University of Tokyo (略称: Univ. of Tokyo)
第4著者 氏名(和/英/ヨミ) / /
第4著者 所属(和/英) (略称: )
(略称: )
第5著者 氏名(和/英/ヨミ) / /
第5著者 所属(和/英) (略称: )
(略称: )
第6著者 氏名(和/英/ヨミ) / /
第6著者 所属(和/英) (略称: )
(略称: )
第7著者 氏名(和/英/ヨミ) / /
第7著者 所属(和/英) (略称: )
(略称: )
第8著者 氏名(和/英/ヨミ) / /
第8著者 所属(和/英) (略称: )
(略称: )
第9著者 氏名(和/英/ヨミ) / /
第9著者 所属(和/英) (略称: )
(略称: )
第10著者 氏名(和/英/ヨミ) / /
第10著者 所属(和/英) (略称: )
(略称: )
第11著者 氏名(和/英/ヨミ) / /
第11著者 所属(和/英) (略称: )
(略称: )
第12著者 氏名(和/英/ヨミ) / /
第12著者 所属(和/英) (略称: )
(略称: )
第13著者 氏名(和/英/ヨミ) / /
第13著者 所属(和/英) (略称: )
(略称: )
第14著者 氏名(和/英/ヨミ) / /
第14著者 所属(和/英) (略称: )
(略称: )
第15著者 氏名(和/英/ヨミ) / /
第15著者 所属(和/英) (略称: )
(略称: )
第16著者 氏名(和/英/ヨミ) / /
第16著者 所属(和/英) (略称: )
(略称: )
第17著者 氏名(和/英/ヨミ) / /
第17著者 所属(和/英) (略称: )
(略称: )
第18著者 氏名(和/英/ヨミ) / /
第18著者 所属(和/英) (略称: )
(略称: )
第19著者 氏名(和/英/ヨミ) / /
第19著者 所属(和/英) (略称: )
(略称: )
第20著者 氏名(和/英/ヨミ) / /
第20著者 所属(和/英) (略称: )
(略称: )
講演者
発表日時 2014-11-17 17:00:00 
発表時間 180 
申込先研究会 IBISML 
資料番号 IEICE-IBISML2014-40 
巻番号(vol) IEICE-114 
号番号(no) no.306 
ページ範囲 pp.41-48 
ページ数 IEICE-8 
発行日 IEICE-IBISML-2014-11-10 


[研究会発表申込システムのトップページに戻る]

[電子情報通信学会ホームページ]


IEICE / 電子情報通信学会