通信工学通俗叢書

鐵道編

第一卷

鐵道信號保安全裝置

電信電話學會
鐵道編
第一巻

鐵道信號保安装置

編輯担当者
(いろは順)
岩瀬鐵次郎
丹羽保次郎
上條清志
中上豊吉
村上元紀
山根幸知

道田貞治
石井直
小川一清
堀井剛
中田末廣
淺見親

牛田光久
小野孝
武中貞津雄
村田善
木村多志
鈴木壽次
第一章 緒論
第二章 関塞装置
 1. 関塞方式
 2. 通信関塞方式
 3. 通票式
 4. 票券式
 5. 通票関塞器式
 6. 双信関塞器式
 7. 聯動関塞式
第三章 信号装置
 1. 信号機の種類
 2. 頭木式信号機
 3. 色絵式信号機
 4. 燈列式信号機
 5. 各種信号機の比較
 6. 頭木式信号機の種類
 7. 機械信号機の構造
 8. 電気機械信号機の構造
 9. 電気信号機の構造
 10. 色絵式信号機の構造
 11. 燈列式信号機の構造
第四章 軌道回路
 1. 緒論
 2. 自動信号機の原理
 3. 直流軌道回路
 4. 交流軌道回路
 5. 軌道絶電器
 6. 軌道絶電器の迴轉力
<table>
<thead>
<tr>
<th>章目</th>
<th>小目次</th>
</tr>
</thead>
<tbody>
<tr>
<td>第五章 自動閉塞装置</td>
<td>1. 自動閉塞式</td>
</tr>
<tr>
<td></td>
<td>2. 信號現示</td>
</tr>
<tr>
<td></td>
<td>3. 重複閉塞式</td>
</tr>
<tr>
<td></td>
<td>4. 運転時間の短縮</td>
</tr>
<tr>
<td></td>
<td>5. 單線路に於ける自動閉塞装置</td>
</tr>
<tr>
<td>第六章 隔離装置</td>
<td>1. 意義</td>
</tr>
<tr>
<td></td>
<td>2. 隔離</td>
</tr>
<tr>
<td></td>
<td>3. 第二種隔離装置</td>
</tr>
<tr>
<td></td>
<td>4. 第一種隔離装置</td>
</tr>
<tr>
<td></td>
<td>5. 電気隔離</td>
</tr>
<tr>
<td></td>
<td>6. 電気（電枢）接觸機</td>
</tr>
<tr>
<td></td>
<td>7. 電気（電空）隔離装置の特長</td>
</tr>
<tr>
<td></td>
<td>8. 列車運転集中制御装置</td>
</tr>
<tr>
<td></td>
<td>9. 自動隔離装置</td>
</tr>
<tr>
<td>第七章 電気接続</td>
<td>1. 綱柵接続</td>
</tr>
<tr>
<td></td>
<td>2. 表示接続</td>
</tr>
<tr>
<td></td>
<td>3. 通路接続</td>
</tr>
<tr>
<td></td>
<td>4. 通路分離接続</td>
</tr>
<tr>
<td></td>
<td>5. 接近接続</td>
</tr>
<tr>
<td></td>
<td>6. 隔離接続</td>
</tr>
<tr>
<td>第八章 電源設備</td>
<td>1. 直流式</td>
</tr>
<tr>
<td></td>
<td>2. 交流式</td>
</tr>
<tr>
<td></td>
<td>3. 停電事故防止</td>
</tr>
<tr>
<td>第九章 自動列車制御装置</td>
<td>1. 意義</td>
</tr>
<tr>
<td></td>
<td>2. 調整式</td>
</tr>
<tr>
<td>目次</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td></td>
</tr>
<tr>
<td>3．連続式</td>
<td>50</td>
</tr>
<tr>
<td>4．キヤブ・シグナル</td>
<td>51</td>
</tr>
<tr>
<td>5．連続式速度制御法一列</td>
<td>51</td>
</tr>
<tr>
<td>6．将来の傾向</td>
<td>52</td>
</tr>
<tr>
<td>第十一章 路切道電気保安装置</td>
<td></td>
</tr>
<tr>
<td>1．意義及種類</td>
<td>52</td>
</tr>
<tr>
<td>2．旋盤式警報機</td>
<td>52</td>
</tr>
<tr>
<td>3．閃光式警報機</td>
<td>53</td>
</tr>
<tr>
<td>4．警報機制御回路</td>
<td>54</td>
</tr>
<tr>
<td>5．警報機設置</td>
<td>59</td>
</tr>
<tr>
<td>6．警報機電源</td>
<td>59</td>
</tr>
<tr>
<td>附 録</td>
<td>61</td>
</tr>
<tr>
<td>信號諸線法</td>
<td>61</td>
</tr>
<tr>
<td>信號警報標準信号及符號</td>
<td>62</td>
</tr>
</tbody>
</table>
鐵道信號保安装置

第一章 緒 論

鐵道信號保安装置は列車運転の安全を図り、運輸効率を増進する目的を以て、列車を整理し制御する施設であって、共範囲は各信號装置、聯動装置、閉塞装置、自動車制御装置及び踏切等々装置等の諸設備に亘ってある。

鐵道信號保安装置は在に電気を應用する様になり、長足の進歩発達を遂げ、現在に於ては列車又は電車運転とは離るべきからざる関係に在り線路や車両の設備を全能力を発揮して遺憾なく運用する為には全くべきからざる要素となった

市街の路面電車の様に速度の低い、重量の軽い列車を運転するものにありては、前後の危険を知覚して直ちに制動停止せしむる事が出るからして、之等のものに則しては、何等の保安設備も要らないが、そうでないものに則しては列車運転の態度となるにつけ、車両重量の増大するにつけ、列車速度の高くなるにつけ、制動機を益々完全にするたは勿論、それ以上に信號装置の充実を計らばねばならん。

第二章 閉塞装置

1. 閉塞方式

単線区間は勿論複線区間でも速度の高いものでは、追突などの事故を避ける為め閉塞運転として先行の列車と後続列車との間に又一定時間又は一定距離を設けて運転を禁止することが必要である。最初は此時間と距離で運転するタイム・インターバル・システム（時間間隔法）を採用して居た。而して之は途中に於て先行列車が後続を超して停止してゐる様な場合には顕著な危険である。従って我國では現在此式は低速度の路面電車の様なものを除いてはほとんど使はれねばならない。現今用ひられてゐるものは、すべて一定距離を隔てて運転するスペース・インターバル・システム（空間間隔法）である。共一定距離を "閉塞区間" という普通停車場間も閉塞区間に指定してゐる。従つて此場合にはいくら遠くとも一停車場間には一列車より運転出来ない。

閉塞運転をするには次に述べる様に色々の方法があるが、何れの方法でも両端停車場に閉塞器を設け、それを電気的に関係をつけ、相手の承諾を得て閉塞器を取扱ひ列車を運転させる事が出来る様になっている。
2. 通信閉塞式

閉塞区間の雨幕に電話器又は電話器を装置し、相互打合の上列車運転を掌るもので、最も簡単な方法であるが他の区間閉塞が故障を起した場合、一時通信の用に依る以外には途轍用ひられない。従此装置では必ずしも通信の途轍なときを止むを得ず時間外発行に依り、徐行運転をせしめる事がある。

3. 票券式

単線区間に於てのみ使用せるる一方式で、一般に「スタッフ」と称する丸棒を供へ、此間を運転する列車は、此の「スタッフ」を携帯する事に依り、運轉する事が出来る。但し此式では列車は常に交互に運轉しなくてはならぬ。

4. 票券式

票券即ち「スタッフ」とそれに依り取り出す事が出来る通票を使用するもので、軽行列車の場合には、通票に依り通票を鈎内から取り出し、先行列車に通票を渡し、軽行の最後の列車が初めて通票を携帯するものである。従って通票を携帯した列車が出発した後には、有程便利等で軽行列車に出す事が出来ない等の不便がある。

5. 通票閉塞器式

本方式は閉塞区間の雨幕停止場に附けられた閉塞器に通票（タブレット）が数枚宛静められ、双方何れか一方の閉塞器より、一枚の通票を取り出すときは、何れかの閉塞器に共通票を納入した後でなければ他の一枚を取り出すことが出来ない仕組になっているもので、即ち一枚の閉塞器より取り出し得る通票は常に一枚に限られてゐるから、一方閉塞区間の一列車外運転を許されない。而して何れの駅からでも通票は取り出すことが出来るからして現在述べた通票又は票券式
の不便を補うたるまい。

通票は第一図の着色図の基準及中央の孔の形状の異なるものが四種類指定されて居る。此れは隔壁区分のもとと区別し置く為である。又通票を閉塞器に納入すべき上部引手には共区間の通票切餅にのみ吻合する突起部を具へ異区間通票誤納の虞がない様にしてある。

今上駅より列車を運転せしめんとするときは先づ右側の送信電鍵を押して電鍵合図を乙駅に送る。次に乙駅よりの駅長を待って、再び送信電鍵を押へる。乙駅にては左方の受信電鍵を押下して垂直線輪に電流を通じ、下部引手を右手にて半開の位置にする。此の場合下部引手は半開位置まで外引き出す事は出来ない。下部引手は半開にし絞つたならば下部引手は右位置に於て閉鎖せる。次に乙駅にて送信電鍵を押下し甲駅にて受信電鍵を押すべく、水平線輪に電流を通じ、下部引手を右手にて全開の位置にし、通票を閉塞器より取り出す事が出来

即ち甲駅にて全開となり、乙駅にて半開となり、其位置にて何れも閉鎖させられる。之等を定位に復する為には垂直線輪に電流を通じてはならぬ。而るに垂直線輪に電流を通ずるには相手の閉塞器は定位であることを要する。此場合何れもが定位でないから、再び電気的に垂直線輪を働きして閉鎖を解き閉塞器を定位に復する事は出来ないのである。従つて一旦通票が取り出された場合、又は取り出される状態となった場合、再び通票を取り出す事は出来ない。然るに列車が乙駅に到着すれば、列車より通票を受け取り、上部引手より
通票を納む。此際通票の重みに依って電気的に垂直線輪に電流が通ったと同じ状態に鎖鉄を解き、下部引手を定位に戻す事が出来る。次に甲駅に送電されば、甲駅に於ては左方の電鍵を押下す事に依り、垂直線輪に電流を通じ鎖鉄を解き下部引手を定位に戻す事が出来る。

6. 双信閉塞器

通信閉塞器に除いては、以上の式は総て单線区間にのみ用ひられてゐる。
が、複線区間に於ては、閉塞の間違へに依り単線区間程重大事故を起す事がないから通票様のものを列車乗務員に携帯せしめる必要はない。此趣味に依り案出せられたものが信頼密接器で之は複線区間にのみ用ひるゆえもので装置も簡単である。

本方式は信頼密接器を両端の停車場に装置し、一組を以て上下線に使用し、図の如く表示機が左右二箇あって、左側は赤色、右側は緑色である。赤色表示機は當該停車場より通過する列車に対するもので、列車が送電に依って始めて関作し、自駆の方で作用せしむることは出来ない。緑色薬は當該停車場に向って進行し来る列車に対するもので、轉換器の把手と機械的に連絡し、轉換器の把手の轉換に依って表示機を上下させるものである。今自駆に於て列車を受くる準備整ひたる場合には轉換器把手を轉換し、緑色表示機を水平とせしめ、把手を乙に送信すれば赤色表示機は電気的に水平となる。此れに依り乙駅より列車を出発せしむ事が出来る。

7. 購動閉塞式

停車場には出發を指示する出発信號機を設けて、前記閉塞装置に依って列車運転に対する打合を行い、出発信號機を操作して之に出発書を表はし乗務員に指揮を與へる事にする。而るに前記閉塞装置は何れも信號機
と聯鎖関係がないから、駅員が誤って出発合図の打合せに出発合図を奥へた場合には、一関塞間に二列車を運転させるとなる場合が起るから完全なる閉塞運転方式とは謂えない。信頼機と閉塞器を併用し、出発信号機を操作し、出発合図を奥へ列車が一旦出発した後は、該列車が相手駅に到着しただけならば、再び出発信号機に出発合図を奥へする事があらゆる機動閉塞式と謂ふてる。此れは単線にても複線にても採用され、通票機を手振る機保存せざる必要はない。

第三章 信号装置

1. 信号機の種類

停車場には前に述べた出発を指示する出発信号機、停車場へ進入を許可する場内信号機、各前方にありて之等の信号機の状態を指示する遠方信号機等を設ける。出発信号機の遠方信号機を特に通過信号機と称する。其他列車を低速度にて誘導する誘導信号機、入換を要する列車又は車両に対して、其通行の可否を指示する入換信号機がある。此等の信号機の信号信号を腕木の形状並位置に依って示す腕木信号機、扇の色に依って示す色電式信号機及び扇の並列に依って示す灯列式信号機がある。後の二つを総称して電光式信号機と云ふことがある。

2. 腕木式信号機

腕木式信号機は第四図に示す如く長方形板の腕木を柱上に取付け、其間は腕の形状着色及位置に依って信号を現示し、夜間は腕木に取付けられた電気を通じて電光の色に依り信号を現示するもので、場内、出発信号機は其表面赤色にして腕木は方角と腕端に近い白色線をめたしてある。腕の背面前は黒い白色にして腕端には黑色平行線をめた。通過信号機は矢状形の代りに線形として場内信号機の下部に附けておる。誘導信号機、入換信号機は場内信号機と同形のものにして小形である。

此の信号機は腕木の動く方向及び位置に依り上向二位式、上向三位式、下降三位式及び下降三位式の種類に分る。五国に於ては上向三位式及び下降三位式が使用され前者は後に述べる自動閉塞区間に於て、後者は他の困難に於て在来から採用されている。
第四図A 各種信号機信号現示
二位式にありては腕が水平、夜間は赤色なる時は列車停止すべきを意味し、腕が下向45度夜間は緑色なるときは、列車が信号機を超えて進入し得る事を意味する。前者を停止信号現示と謂ひ、後者を通行信号現示と謂ふて居る。遠方信号機及通過信号機に限り腕が水平、夜間は橙黄色を示し、之を注意信号現示と謂ふ列車は次の場内又は出発信号機まで遠方信号機を超えて進入し得る事を意味する。腕が下向45度にありては夜間緑色を現示し、之を通行信号現示と云ふ事は前と同様である。場内、出発信号機は停止信号現示を定位とし、遠方、通過信号機は注意信号現示を定位として居るが、誘導信号機に限り信号を現示せざるを定位としてある。

三位式にありては腕が水平、夜間は赤色、腕が上向45度、夜間は橙黄色、腕が上向90度（垂直）、夜間は緑色と三通りに信号を現示し、夫々停止、注意通行信号現示と謂ふて居る。停止現示は列車停止すべきことを意味する二位式の場合と同様である。注意現示は次の信号機に於て停止すべき豫定を以て進入し得る事を意味する事遠方信号機の場合と同様である。通行現示は列車は無条件にて全速度にて次の信号機まで運転する事が出来るといふことを意味して居て、之が二位式の場合の通行現示と多少意味が異なるて居る。遠方信号機及誘導信号機には三位式の信号現示はない。

3. 色 燈 式 信 號 機

色燈信号機は垂直に（稀に水平なる事もある）緑色、橙黄色、赤色の順に色燈を配置し、之が點滅に依って信号を現示する。丁度腕信号の夜間の現示と同様である。

4. 燈 列 式 信 號 機

之は二つ以上の白色燈が水平の位置に點して居るか又は傾斜の位置にあるか垂直になっているか等、點滅の位置に依って信号を現示するもので其の配置は腕の位置と同様である。吾国にては入換信号機又は誘導信号機として二個の無色燈のものを使用してある。

5. 各種信號機の比較

腕本式信号機は車内最も多く使用せられているが、信号現示が晝夜同然なる為め、即ち晝間は腕の位置に依り、夜間はそれに取かれてたラップの色に依り現示する為め、日出前の黎明、日没の薄暮等に於ては、腕と燈との兩者に
依り信號を認識することとなるけれども燈の光が弱い為め、其透視が顕る困難である。仏曆天氣は雨天の際とか、背景とかに依っては非常に其透視が悪い事がある。燈光式信號機にあつては空間日光直射の場合でも昭示距離に於て前者に透色がなく以上の場合には特に信號現示が明確である。

腕木信號機は腕が柱から突出してゐる為に建築限界とか又は種々の障害物に支障させることが多い。特に電気運転區間では架空電車線、其支持物等に依って信號の透視を妨げする場合が多い。燈光式信號機は此場合制合狭い場所でも信號機を設けることが出来、架空電車線及電柱等の障害から比較的容易に信號の現示を認め得る。

腕木式では降雪地方で降雪の為め腕の動作がだるくなり又色滑子は雪がつくと信號現示が不良となるけれど共、燈光式では胎の構造等で此等の影響を少なくすることが出来る。

腕木式電気信號機に於ては、機能部分が複雑であるから機械的及び電気的故障が起こり容易に保守が容易でない。信號動作するに相関時間が掛る。體光式信號機は単に電燈の點滅に依るのであるから保守は容易に信號の現示が変わるのに要する時間は瞬間的である。此の信號現示に要する時間は、運転が特に頻繁なる場合には運転時間に対して相当影響を有するものである。

以上は體光式信號機の腕木式信號機に比して長所となるところではあるが、共短所としては電力消費量が大なる為め交流電力の得られ難いところでは不向なるので、交流電力のみに依ってゐるところでは電源供電の際腕信號ならば水平の位置を取り停止現示をなすが此式に於ては無信號の狀態となることである。

此後體光式信號機の特徴的缺點としては、レンズ焦點調整の困難と、透視距離が極限され易る事、赤色と橙黄色の區別が幾分困難なると、電球認識したる場合無信號となると、日光直射の場合幾分錯誤現示を起こし易いといふ様々な事である。體光式信號機は数個の燈の配置に依り（吾国では入換信號機を除いた外の信號機には未だ此式を使用してゐないが、欧米では此式が相当多数に用いられた燈數は三燈以上で、普通三燈が用いられてゐる。信號現示をなすものであるから以上の缺點を完全に防止してゐる。只場所を専有すること大であるから、建物に困難な場合が多い。

6. 腕木式信號機種類

之を大別して次の六種とする。
1. 機械信号機
2. 電気機械信号機（或はスロット信号機とふるさている）
3. 電気信号機
4. 電空信号機
5. 電気瓦斯信号機
6. 電磁石信号機

以上の内、在来最も多く用いられているものは機械信号機で電気信号機、電気機械信号機に次ぎ、電空、電気瓦斯及電磁石信号機は吾国にては殆んど用いられた事はない。

7. 機械信号機構造

信号機は一般に離隔した場所から操作するもので、機械信号機は機械信号鉄子（名を信号リーパーと称ぶ）を用ひ、共動作を繫合又は繫合に依って信号鉄に附へ、鉄子を操作することに依り信号機の操作をなすものである。

下図に示す如く信号鉄子を引けばカウンター・ウェートのついて駄る様が

第五図 機械 信 號 機
持ち上げられ、エスケープメント・クランクを動かし、腕金物に取りつけられたアップライド・ロッドを引き上げて腕木が45°だけ倒下する様になって居る。突子を定位に復すか又は鎖索が途中で切断した場合には背面鏡の重みと、カウンター・ウェイトとにより腕木は水平位置に復する。

信号機と信号突子との間は相当の距離があるから此間の鎖索が、温度の影響をうけて相当に伸縮する。出発信号機や場内信号機の様に信号機と突子との間の近いものは鎖索の伸縮の量が多いから比較的容易に調整が出来るけれども、遠方信号機の様に遠距離から操縱するものでは、二條鎖索式として自動的に伸縮の調整をする。図面の様に安全装置を設ければ万一操作鎖索が切れても、信号腕を自動的に定位にすることが出来、鎖索が長いために摩擦等に依って素線が途中にかぶり、信号腕が完全に定位に戻らないと云ふ様な事故を完全に防ぐことが出来る。

E. 電気機械信号機の構造

機械の信号機を電磁石の中部に依り之に電流を通じて突子を引きへ信號腕は降下するが電流を通じない場合には降下しない様に組立てられた信号機を電気機械信号機又はスロット信号機と謂ふ。信號腕軸にカッティングをする事もあれば或はアップライド・ロッドに装置する事もある。第六図は腕軸に装置された一例である。軸及び金物のみ腕と同一動作をする。電磁石が緊密されれば、B図の様に於て軸に力を傳へ、C図の如く途に腕が45°降下する。電磁石が緊密されなければ腕に力を傳へずD図の様になる。一旦信号腕が降下した場合電流を断つも同様である。即ち信号腕は直ちに水平位置を取る。

同一柱上に取りつけられた数取の信号腕木を操縱するには各別個の突子及び素線が必要である。然らに此の

第六図 A 電気機械信号機
第六図 B 電気機械信号機説明図

スロット信号機を使用すれば以上の如き多数の信号腕を上下するに至る一組の信号検子にて操作することが出来る。故にこのスロット信号機構を信号検別器と呼ぶ事がある。

次に信号検子を轉換し、スロット信号機を降下する後、列車進入して、軌条接觸器を装置せられた或イ地點に来れば、列車重量にて軌条接觸器は一定時間開放され、スロット信号機の電磁石の回路は断たれ、信号検子は反位なるに拘らず、信号機は直ちに自動的に停止提示に復する装置をなすことが出来ることに依り、斯様の事を、自動復帰器と称することがある。

9. 電気信号機の構造

腕本式信号機に動力を應用したるものにては此種のもの最も多く交流のものあり、直流のものあり、交流の場合には分解強制電動機又は反復電動機を用ひ直流の場合には直撃電動機を用ふる。電動機取付け位置も柱上に装置せられ、信号柱の下部に装置せものである。前者は腕を動作するにクラック・ロッド
他の媒介物を要せず取扱容易なるも、後者は腕軸に関係をつくる為ロッド等相営機構に複雑を来す。然れども保守としては柱に一々上る必要なきを以て特に築設等には有利とせられても居る。

第七図A U.S.S 会社製
T 2 型 電気信號機構
現在吾国に於て用ひられて居る主なるもの
のは
1. U.S.S. 会社製 T 2 型、交流三位式 柱上型
2. G.R.S. 会社製 2 A 型、交流三位式 柱上型
3. H.S.S. 会社製 F 型、直流二位式 地上型
4. 和製 A 型、直流二位式 柱上型
である。

10. 色燈式信號機の構造
色燈式信號機は始め地下鐵道又は隧道等にのみ用へられたが、後電化区間等にて信號腕の現示が電車線、鶴電線等の為め確認する事故困難となった為め次第に発達して迄
距離より透視し易い様レンズ及び電灯球に種々研究が重ねられ、現在にては見透距離に於て、すべての場合を備信號を凌駕する様になった。保守の便利と容易な事は可動部分がないから勿論の事である。

共構造は種々あるが現在吾國に於て使用されて居るものには貫直の様に二枚の組合段付レンズを用ひて居る。即ち内部には着色された外段付レンズを外部には無色透明の内段付レンズを用ひ、組合せた焦点に恰度電球の絶縁を一致せしめている。従って放射角は左右へ僅か外開いて居らないから、特に曲線のとよにには、カーブド・レンズを用ひて偏光させている。電球は瓦斯入螺旋型絶縁を使用し、絶縁の断経の為無信號となるを防ぐ為絶縁を二重としてある。後は生活を永くする為め低圧電球を使用して居る。此種の信號
機には幻影現示（太陽光線の全反射に依り点灯させられるレンズが輝くこと）を避ける為め反射レンズを用いない。特種の場所では「サーチライト」型又は単管型として三面の電燈の代りに一個の電燈を装置し色レンズを動かし、三面に信號を現示するものが用ひられている。

11. 燈列式信號機の構造

数個の無色燈の配置に依り信號を現示するもので、吾國にては交換信號機又は誘導信號機として二面の無色燈のものを使用して居る。レンズは乳白色若しくは無色のものを使用し主信號機（主信號機とは場内、出發及び遠方信號機の如きものを云ふ）に使用するものには反射鏡を用ひて居る。米國の一部にては色燈列式信號機と謂ふて電燈の色と配列位置に依り信號現示をなすところもある。

第四章 軌道回路

1. 緒 論

以前は車輪と信號機とは自動的に何等連鎖關係を有しなかったが西展 1872年米國のウィリアム・ロビンソンと云ふ人が始めて軌道回路と云ふて、列車が走る両軌条に電流を通じ、車輪の車軸、車軸に依って軌條電流を短絡し、両軌条につなげる繼電器の動作に依って、該區間に列車又は車輪があるかないかを区別する事を発見してから、鐵道に於ける信號保安全置と云ふものは著しき発
2. 自動信號機の原理

第十図の様に軌道回路を構成し、受信側に装設された電報器（之を軌道電報器と呼ぶ）の接点の開閉に依り信號機を動作せしむるときは、機間に車幅がある場合、軌條切損又は軌條を取外せる場合、架線所線等電気回路に故障を生じた場合等には常に信報機は赤色（R）を現示し、他の場合は緑色（G）を現示する。其の間安全装置を列車進入するも差支なき事を示す。

第十図 軌 道 回 路

前に示したものは単に二段に信報機を動作せしむるものであるが、之を三通りに動作せしむる様とするには、軌道電報器の三様の接点を作るものを用うる。即ち電流の有無及び電流の方向を依り三通りに動作せしむるものを作うる。電流の方向は前方の信報機の腕に取りつけられた接觸器（腕木式の場合）又は緩動電報器（色燈式の場合）の動作に依て転換する。第十図は腕木式信報機第十二図は色燈式信報機の結線図である。

3. 直流 軌 道 回 路

軌道回路を流る信報用電流として、直流を使用する場合と交流を使用する場合とある。何れも障接軌條は導線にてつながり他の機間とはファイバーの如きものを以て絶縁をなして居る。

直流軌道回路の電源には主として電池御又は二次電池等が用ひられ、二次電池を用うるときは倫理電池充電器を充電して置く。從って直流軌道回路を用ひる場合には停電の慮がない。然しながら次の様々な大きな缺點を有して居る。即ち電流の影響を受ける。電源の保守に多額の費用を要する。軌道電報器は残業磁力に依り隙障を起こし易い。軌條を誤線として使用した電気装置には特別の場合を除き採用困難である。等である。

4. 交流 軌 道 回 路
交流電流回路については第十三図に示すが知り線路に沿って信號用高圧配電線を張り、變壓器（線路変壓器と謂ふ）に依りて100 ヴォルトに低下し、更に軌道変壓器に依りて15 ヴォルト内外に下げられる。列車に依り軌道回路が短絡された場合の短絡電流を制限する為めと、一方交流軌道導電器の位相を調整し其変動力を増す為めとの理由に依り、軌道抵抗子又は軌道リアクティブが用ひらる。之はタップの附着又は磁心間際の増減に依り、リアクタンスの値を変へることが出来る。

電車電流は少なく、区間が余り長くない電気鉄道では、単連結式軌道回路と云ふて片軌線に電車電流を通じ、片軌線を短絡して此れに信
電車電流を通ずることが出来る。然しながら此式に於ては車軸に依り軌道を短絡したる場合直流電車電流の軌条抵抗に依る電圧降下の為めに軌道軽電流の兩端に直流電圧を生じ、直流が軽電流に流通し、動作に影響を与ふるが故に、之を防止する為め、軽電流側に並列にイムピーダンス・コイルの插入をするとか、変圧器並コイルに鐵心間隔を設けて激変の変化を少なくするとか、諸種の防止方法を講じてはならぬ。

電車電流が大となると、共影響も大となるから单軌条式軌道回路に依ることは困難である。単に軌条従る絶縁しなくてはならぬ。此場合に於ては電車電流を通ずるため図の如く「イムピーダンス・ボンド」と称するものを設置する。斯くする時は電車用電流は次の区間へ自由に流通するけれど共軌条用交流は其中性點接続されるとを以て次の区间へ流通しない。両股軌道へ流る電車用電流は両方の軌条へ均分
第十五図 2 交 流 形 型 軌 道 繼 電 器

第十五図 3 交流電動機形軌道綫電器

せらるものが理想であるけれども、実際には軌条ボンド等々陥泊の為め軌条抵抗の差がある。従つて電車電流の大小に依り信号用交流の拡散が非常に変化し、軌条回路が不安定となる。これを防止するため、イムピーダンス・ボンドにはすべて鋼心間に間隔を設けてある。但し交流電気鉄道に使用するイムピーダンス・ボンドにはその必要はない。

5. 軌 道 繼 電 器

鉄道に於ける電気信号保安装置の信頼度の如何と云ふ事は主として軌道綫電器
器の信頼性如何と云ふ事に帰する。軌道遮電器には二接点を構成するものと三
接点を構成するものとある。前者と二位式と云ひ、後者を三位式と云ふ。
直流軌道遮電器にありては二位式のものは只だ一個の普通の線輪で、三位式
のものは有極軌道遮電器になって居る。而して交流の軌道遮電器は特別の場合
を除き通例二種類の線輪を有する。軌道線輪と局部線輪と謂ふてある。軌道は
電気的に完全な電線路でないから軌道に高い電圧を供給し、大なる電流を送
る事は得策でないから、軌道線輪には僅かの電流を供給し且共方向を変へ、軌
道遮電器を三位に動作させむるために要する電力の大部分は局部線輪にて受け
て居るものである。

今日主とし製作せられて居る交流軌道遮電器には電動機型と異型とある。
何れも二線輪に流れる電流相互間の位相差系並電圧の有無に依て数次の接点を
開閉し、大々の接点の開閉に依って信頼を他に適当な作動をなさしむるもので
ある。

6．軌道遮電器の回轉力

軌道遮電器の調整と云ふことは受電機の軌道遮電器が區間開通してゐる場合
には充分満て居り、列車が區間に道入する時は完全に軌道遮電器が動作し
ない様にすることである。然るに軌道遮電器は二元型でも２線輪を有し共回転
は局部線輪磁束と軌道線輪磁束とが90°の位相差を生じたるとき最大であるか
ら次の式が成り立つ。

\[\tau = K\phi_1\phi_2 \sin \phi_1 \]

故で

\[\phi_1 \text{ 局部磁束} \]

\[\phi_2 \text{ 軌道磁束} \]

\[\phi_1 \text{ 局部磁束と軌道磁束との位相差} \]

而て

\[\phi_1 = \phi_2 - (\phi_2 - \phi_1) \]

故で

\[\phi_2 \text{ 局部電圧と軌道電圧との位相差} \]

\[\phi_1 \text{ 局部線輪力率角} \]

\[\phi_2 \text{ 軌道線輪力率角} \]

\[\tau = KEe \sin \{\phi_2 - (\phi_2 - \phi_1)\} \]

故で

\[E \text{ 局部電圧} \]

\[e \text{ 軌道電圧} \]

\[\phi_1, \phi_2 \text{ は遮電器に就て固有のものであるが、} \phi_2 \text{ は軌
道回路の状態に依って異なった角度である。$\sin \phi_1$ または $\sin \left(\phi_2 - (\phi_1 - \phi_2)\right)$ を回転力率と称し、$\phi_1 = 90^\circ$ のとき線機能の回転力最大となるから

$$\phi_1 = \phi_2 - (\phi_1 - \phi_2) = 90^\circ$$

ならびに $\phi_2 = 90^\circ + (\phi_1 - \phi_2)$

のとき回転力最大となる。此角を最大回転力率角と称する。

7. 線電器上及下電圧

直流軌道線電器に於ける上電圧とは其の電圧を零附近から徐々に高めて丁度接聴が接觸せんとするときの電圧を謂ひ、落地電圧とは再に之を高めて使用電圧に到り次に之を徐々に低下させしつつ、丁度接聴の離れるときの電圧を謂ふものである。落地電圧は如何なる場合でも上電圧よりも低く、此二つの比に依って可動部分の摩擦程度を知ることが出来る。

交流軌道線電器に於ては一元型のものには前記直流軌道線電器の場合と同様であるが、二元型のものには殆どは少し之と異なる。即ち回転力率を 100 % に保ち、局部電圧を定格値に保つ場合の軌道電圧に就て謂ふものである。

8. 軌道回路特性

軌道回路に於けるイムピーダンスと砂利漏洩抵抗力は、軌条の種類、接続状態や、道床の状態を以て相違するものである。特に砂利漏洩抵抗力は気候の変化、晴雨により著しく変化するもので、普通雨天の場合には晴天の場合に比し約半減する。之等の変動は軌道回路の調整上甚だ厄介なものである。

今圖に示す如く軌道回路の受電端に於て、軌条電圧（e）軌条電流（i）が流れているものとすれば共送電端に於ける軌条電圧（E）軌条電流（I）は通信線路に於ける一般式と同様次の如く表はされる。

$$E = e \cosh \sqrt{ZG} + i \sqrt{\frac{G}{Z}} \sinh \sqrt{ZG}$$

$$I = i \cosh \sqrt{ZG} + e \sqrt{\frac{G}{Z}} \sinh \sqrt{ZG}$$

而して之を展開すれば

$$E = e + Zi + \frac{Z}{2} Ge + \frac{Z}{3} G i + \frac{Z}{4} G Z i + \frac{Z}{2} G e + \cdots$$

$$I = e + G i + \frac{G}{2} Z i + \frac{G}{3} Z e + \frac{G}{4} Z G i + \frac{G}{2} Z G e + \cdots$$
第十七図　軌道回路ヴェクトル計算図
鉄道信号保安装置

 Castillo Z = 信号線路の誘導イムピーダンス
 G = 信号線路のコンダクタンス

之等の計算に此式を用ひてウェクトル図（第十七図）をなす、普通ウェクトル的に求められる。同時に信号線路の電気的位相角 Φ を求めることが出来る。図に示した如く電動抵抗子又は電動リアクトルの抵抗又はレアクタンスの値を変へて位相角を変へ遊転力率を調整することが出来る。又列車が区間内に進入した場合の電動電圧、位相角も図上により容易に測定し、従て列車の敏感度（列車車両支軸に依て電動を短絡した場合、電動線電器の接点が落下する程度に就て列車の敏感度の良否を謂ふて居る。）の良否も推定することが出来る。

第五章 自動閉塞装置

1. 自動閉塞式

自動閉塞式とは前述の如く電動電路を使用し、列車自體にて自動的に閉塞区間の両端にある自動閉塞信號機を動作させむるものである。此で電動信號機と謂ふたのは自動信號機で同時に閉塞機の役目をしてあるから斯く云ふので此場合には閉塞器を別に置く必要もなく、自身で空間を隔てを完全に施行して居るのである。前に述べた閉塞方式は何れも駅間に一列車を運転するに止むで居つつ二列車以上を運転するには中間に段々と信號所や停車場とある様なものを設けてなくてはならぬ。而らに本方式に依るときは自動信號機を増設することにより容易に列車同数を増加することが出来る。

自動閉塞式に斯のちは、次に述べる場合には、信號機は常に列車を停止すべき状態をも停止現象をなす様にせなくてはならぬ。

1. 何等かの事故が機械的又は電気的に起った場合
2. 列車又は車輌が閉塞区間にある場合
3. 軌條折損事故又は軌條交換等の場合
4. 山崩れ、土砂崩壊等の事故にて列車運転に事故を及ぼすが如き場合
5. 列車進入前後の緩衝器が充分に緩和されざるか、又は異方向に開通させる場合
6. 隣接線路の車輌が接続の虞ある場合

2. 信號現示

三位式信號現示は図の様である。前に述べた様に進行信號現示は列車は無条
電動滑車保安装置

三位現示

上部現示式

色信号

信號機

第十八図 信號機三位現示方式

件で全速度で次の信號機まで運転することが出来るとは云ふ事を意味し、注意信号現示は次の信号機に於て停止すべきことを意味している。従って信号機間の距離は列車制動距離以上離離して置かなければならぬ。

停車場端内の信号機は停止信号現示をしてある場合には遠方信号機を除いてのすべての信号機の下に光を照射して信号機の進行又は注意現示をなすか又は手合団がなければ進行する事が出来ないう。而るに自動閉塞信号機（自動の閉塞信号機とは自動閉塞式運転に於て閉塞区間の入口に設げられた自動の信号機で場内及出発信号機を除いてものを云ふ）の場合には運転の安全を計る為め停止現示の場合、列車は一旦停車の後定められた徐行速度にて進行を続けることが出来る。故に前後の機器等は信号機を絶対信号機と謂ひ、後者の機器は信号機を許容信号機と謂ふべること。之を區別する為め、許容信号機には尖頭楽が及様々な信号機を用ひてある（第四図参照）

上り勾配区間等にて列車が停止すれば再び発車をなすに困難なところでは徐行許容標と云ふ標識は白色線の帯をすべて、夜間は紫色標を用ひて、之を信号機に取り付け、其信号機を表す場合には之がたとへ停止現示をして居りても、列車は停止する事なく、定められた徐行速度にて速度を低下して進行する事が出来る様にしてある。（第四図参照）

3. 重複閉塞式

閉塞間隔が制動距離より短かき場合、自動列車停止装置を設備すべき場合、列車越走に対する保安設備をする場合等に第十九図の如き重複式とする事があ
第十九図 重複閉塞式

4. 運転時間の短縮

中間に自動信号機を設置することにより、列車回数を増加することが出来る
即ち運転時間は短縮することができる。最小運転時間は次のようにして計算される。

第二十図 中間に於ける最小運転時隔算出之図

\[T_R = 3.6 \times \frac{3S + L + C}{V} + t \] 重複制御の場合

\[T_R = 3.6 \times \frac{2S + L + C}{V} + t \] 普通の場合

\(T_R \) 停車場間を走行する列車間に保たるべき最小時隔（秒）
\(S \) 閉塞区間の長さ（米）
\(L \) 列車の長さ（米）
C 信号機を認識するに要する最小距離 (米)
V 列車速度 (単/時)
\(t \) 信号機の動作に要する時間 (秒)

停車場構内に於ける最小運転時隔は次の図の如く従って次の式によって表は
さる。

第二十一図 停車場に於ける最小運転時隔算出之図

\[T_A = t_B + t_A + t_S + t + \frac{3.6 + (C + B)}{V} \]

故で \(T_A \) 停車場に発着する列車間に保たるべき最小運転時隔 (秒)

\(t_B \) 列車の前部が場内信号機に入り初めてより出車するまでの時間
(秒)

\(t_S \) 停車時間 (秒)

\(t_A \) 列車が出発してより後部が出発信号機を通過し止めるまでの時間
(秒)

一般に中間に於ては簡単に中間に信号の増設に依り運転時隔を短縮するこ
とが出来るが、停車場構内に於ては、発着に際しての列車速度の低減並に停車
時間等に依り列車行程運転時隔を短縮することは出来ない。

運転時隔を短縮する為には列車長の短くなること、制動力の大なること、
加速度の大なること、信頼性の信頼性を要する時間の短くなること（色燈式信
号機の如き）並に停車時間を小さくすること等は最も必要な事柄である。信列
車速度に制動距離を短縮するが故に停車場構内に於ては進入速度に依り
前車の信号機の信頼性を減少せしめ、後続列車を先行列車に出来るだけ接近
させし、運転時隔を短縮することができる。之は時差積電器を或る一定時間の
通過に依り接点の開閉をなすものを利用することに依りなされる。

5. 單線路に於ける自動信号装置

複線路に於ては列車は常に同一方向に運動されるのであるから、従って
鉄道信頼保安装置

上記述べた様に自動信頼設備も簡単ですむが、単線運休区間では対向列車をも
防護しなくてはならぬから、多少設備も複雑となる。共設備の方法にも色々あ
るが普通は図の様に総行列車に対しては全然機織区間同様に動作し、対向列
車に対しては避開に列車がある場合信頼機を停止機示する様動作させるもの
である。

第二十二図 單線間区自動閉塞式

従来単線路の場合には二つの間隙間に於ける運転時間は列車が共の区間を
往復するに要する時間で定まるものであるから、複線区間の様に列車回数を増
す事は出来ないが総行列車は信頼機の数に依って多数増減する事が出来る。尚
本方式に於ては勿論通票の携帯を必要としないから、閉塞器通票の申請に要す
る時間等を省き、取扱も簡単で駅員の労務を減ずる事が出来、運転能率上至大
の効果がある。

吾国に於て最も普通に採用せられて居る方式は、一種の自動閉塞式とも称す
るもので、運転方向検子と称する電気検子を雨幕信頼所又は駅に装置し、之を
各出発信頼機に関係させ、該検子は共線路に列車存在させる場合に限り当合
せ動作させ得べきもので、共検子の定位又は反位接点に依りて各中間信頼機
に装置せられた塩別用繼電器を各方向別に接別して、中間自動信頼機を動作
せしむるものである。勿論出発信頼機及び場内信頼機は該検子に機械的聯鎖関係
を保って居る。かくの如くにして運転方向検子に依り列車運行の方向が定めら
れた以上、共方向の自動閉塞信頼機は複線区間に於ける自動閉塞信頼機と全く
同様の動作をなし得る事となり総行列車運転をなし得るものである。

第六章 聯動装置

1. 意義

停車場には列車の進入、進出に対する出発信頼機、場内信頼機がある事は前
に述べた通り列車の入換、轉線をせしむる為め鉄道線路の分岐には転轍器を装
信号機・轉轍器・聯勤

第二十三圖 第二種機械聯動装置
置する。而して此等の轉轆器と信號機との間に有する關係を保たしむる事が必要である。此等の關係を保たしむる装置の事を聯動装置と云ひ、此の聯動をなす機械を聯動機と云ふて居る。

2. 種類

聯動装置を型式より大別して次の二つとする。

第一種聯動装置
第二種聯動装置

荷物を動力方面より分ければ

機械聯動装置
電氣機聯動装置
電気聯動装置
電気聯動装置

3. 第二種聯動装置

簡易の停車場に於て一般に在来装置されて居るもののはすべて機械的で即ち轉轆器是場に於て取扱ひ、信號機は導線に依り電誌場電長室附近に於て操作され御往の際電気係は轉轆器の附近に於て電の如くたされて居る。即ち信號機を一旦等下させしめた後は轉轆器は動かす事が出来ない。従て列車進入前途に於て信號機を元に復される限り轉轆器換え不可能にて誤扱に依る事故を防止する事が出来る。故くの如き設備をなしたるものを第二種機械聯動装置と謂ふ。

然らに信號機操作の難易、見当の良否、信號現示の確実等の理由とか又は自動閉塞区間に於て信號機を電氣信號機にする場合には、導線を除去機械括子の代りに卓上電気括子と謂ふものを用ふる。
て転轆器との間の電気間節係には器具
の転轆挺子電気電子部
部を有するものを
取りつけて電気的
につなぐ。卓上
電気挺子は図の様
なもので転轆器と
種々の連動関係を
保つ為、セグメン
トに切欠を有し、
数個の接続部を附
してある。此種の
連動装置を第二種
電気連動装置と謂
ふて居る。

4. 第一種連
動装置

前に述べた第二
種機械連動装置の
ものにありて是転
轆器が各所に散
在して居る様な場合には転轆器は現場で取扱ふ為其取扱に多數の人員の配置を要
することとなりるから之等を信號挺子と同一箇所所謂信號挺所に配置し人員費を
省く事が必要である。此場合には信號機と転轆器との連絡係係は挺子相互間に
於て個別的になさる。此れを機械連動機と謂ひ、之を用ひたる連動装置を
第一種機械連動装置と云ふて居る。

第二種連動装置に於て述べた如く信號機は色々の理由で電気信號機を用ひら
る場合が多い。此場合には信號挺子は電気挺子としなくてはならぬ。第二
六個の上部に取付けられて把手が前後に廻転する様になったものが電気挺子
である。機械連動機の一部に電気挺子を用ひたるものを電気機連動機と云ひ
之を用ひたる連動装置を第一種電気機連動装置と云ふて居る。電気機連動機
に用ふる電気掲子も卓上電気掲子と同様セグメントに切断を有し、多数の接触部を持て居る。

向轉捲器が遠距離で操捗困難なるもの、又は使用頻繁のものに取扱の容易と保安の確実と云ふ點から電気轉捲器に取り代へる事がある。共場合には該轉捲掲子も軸上掲子と同様電気掲子になりす。

重要な停車場で入換作業等の頻繁のところ又は電車運行などで列車何数が多数転換機、轉捲器等の取扱が非常に数多くあるところでは、すべての転換機、転捲器が動力化されなければならない。従て掲子はすべて電気掲子となり、電気駆動型の場合に比較して遜かに小型となる。斯かる転換機を電気駆動機と云ぶ。此場合で掲子相互の駆動關係は普通は機械的になさるも此電気機と同様である。第二七圖の上部水平に置かれてあるのがそれである。

転換器、転捲器が電気式とされた場合には此の駆動装置を第一種電気駆動装置（又は全電気駆動装置と云ぶ事もある）と謂ひ、転捲器を電気式として電動機を動かす代に電圧空気を動力として動かす事がある。此場合では此の駆動装置を第一種電空駆動装置と謂ふ。

5. 電気掲子