通信工学通俗叢書
電話編
第十三巻
オッシログラフ

社 関 法人 電信電話學會
電話編
第十三卷

オッシログラフ

電話編既刊の分
電話編第一巻 測定用交流発生器
電話編第二巻 市外電話ケーブルの架荷及び不衡言容電量の平衡
電話編第三巻の一 自動電話交換（共一）
電話編第三巻の二 S.II.式自動交換機回路
電話編第四巻の一 電話中継器（共一）
電話編第四巻の二 電話中継器（共二）
電話編第四巻の三 電話中継器（共三）
電話編第五巻 電話交換機取扱
電話編第六巻 電話加入者宅内装置
電話編第七巻 通話能率測定器及び電話測定器
電話編第八巻 自動局手動局相互接続装置
電話編第九巻 電話トランスミッション
電話編第十巻 磁石式電話交換機
電話編第十一巻 減損償却と経済比較
電話編第十二巻 手動局監査及び観測
電話編第十三巻 オッシログラフ

編輯 擔當者

岩瀬 銀次郎
小川 一澄
梶井 剛
中田 末廣
木村 幹次
鈴木 義次

（いちはら順）

牛田 光久
小野 孝
武中 貞治
山根 幸知
道田 貞治
大森 丙
上條 清志
中上 豊吉
深見 親
飛山 昇治
オシログラフ

目次

I. 概説 .. 1

II. ジーメンスハルスケ会社製オシログラフ ... 1
 1. 概要 ... 1
 2. 構造及び動作 .. 2
 3. 接続及び調整 ... 11
 4. 使用方法 ... 15

III. 横河電機製作所製可搬オシログラフ .. 17
 1. 概要 ... 17
 2. 構造及び動作 .. 17
 3. 接続及び調整 ... 21
 4. 使用方法 ... 22

IV. ウエスタン電気会社製小型オシログラフ .. 23
 1. 概要及び原理 ... 23
 2. 構造及び接続 ... 27
 3. 操作 .. 29
 4. 應用例 ... 32
オシログラフ

I. 概 説

交流、振動電流他過渡現象の如き極めて迅速に変化する電圧、電流に就て其の変を記録し其の形を決定するにはオシログラフの應用に倣たるべきならぬ。動作原理によってオシログラフを分類すると大體次の五種になる。

可動線輪型オシログラフ
可動磁片型オシログラフ
熱線型オシログラフ
静電型オシログラフ
陰極線オシログラフ

就中最も普通に使用するのは可動線輪型と陰極線型とであって、通信工学方面に使用する目的に対しては此の二種で充分であるから、以下其の代表的製品に就て詳述する。

II. ジーメンスハルスケ販社製オシログラフ

1. 概 要

智識ジーメンスハルスケ販売製可動線輪型オシログラフは、直流電流の強力な電磁石の狭小空隙内に磁線型振動子を置き、共の磁線の中央に跨って反射用小鏡を固定したもので、其の平行磁線条に夫々反対方向に測定せんとする電流を流す。磁線条に電流通ずるときは、磁場によって其の一磁線条には前方に他磁線条に後方に向かつ力が作用する故、結局振動子は電流に比例する抵抗力を受けて、磁線条自身の制御指針を反動して或る角変位を生ずる。従って周期的変化をする電流に対しては小鏡は動揺することになる。

此の小鏡の振動を観測撮影するために、直流弧光燈の光束を経路を通じて振動子の小鏡に投じ其の反射光線を更に観測装置又は撮影装置に導く。曲線を書きあるためには光線の運動と直角の方向の第二の運動を必要とし、このために観測装置又は撮影装置を光線の運動と直角の方向に廻転せしめる。

第一図は本器の保護外箱を除く概観を示し、第二図は送話器振動板に対して音を発音したときの電話回路の電流のオシログラフを示す。
第 一 圖

第 二 圖

2. 構造及び動作

(a) 弧光燈 弧光燈は附属の直列抵抗を通じて 110 ヴォルト又は 220 ヴォルトの直流電源に接続され、弧光電極 55 ヴォルトに対して電流 8 アメラを流す。電極は互に直角に置かれた炭素棒で、水平炭素棒を正極 (+)、垂直炭素棒を負極 (−) とする。弧光と並列に常磁電磁 55 ヴォルトの電磁石が接続されて、弧光長増大して電圧上昇の起った際に動作し、時計仕掛けと相俟って自働調整をなし水平炭素棒の火坑を常に同位置に保つ。風の外壁には垂直炭素棒調整用の樫管がある。弧光燈はピンで支持板に固定され、二個の螺子で水
平及び軸直角方向に動かし得る。

（b）振動子及び分流器

振動子の主要部は一つのガルヴァノメーターで

第三図に示す如く強力な磁極間の狭小空隙中に細小の金屬線

線を張ったものである。環線の両端は下方の二個の金属棒に

鍛着し共の中央を象牙小滑車に窓けて、磁極の上方に於ては

鋼柱、下方に於ては象牙柱に渡して弾線で張り、環線の中央

に小反射鏡を貼付けてある。弾線の張力によって振動子は大

きな制御力と高い振動数をとをとれる。前記二個の金属棒

は夫々導線で振動子保護管内筒上部の二個の接続端子に導か

れてある。磁極の上にも保護筒が設められるが、之は制動用

の油壺で底部に油注入用のネジ孔を有する。この筒の反射鏡

に面する部分には平凸レンズを嵌めた窓があって空気も油も

洗らね様にしてある。

<table>
<thead>
<tr>
<th>型</th>
<th>感度（アムペア/安）</th>
<th>固有振動数（秒）</th>
<th>抵抗（オーム）</th>
<th>許容電流（直流アムペア）</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3×10^{-3}</td>
<td>6000</td>
<td>1</td>
<td>0.1</td>
<td>標準型</td>
</tr>
<tr>
<td>2</td>
<td>5×10^{-3}</td>
<td>12000</td>
<td>1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3×10^{-3}</td>
<td>3000</td>
<td>1.1</td>
<td>0.1</td>
<td>投射用</td>
</tr>
<tr>
<td>4</td>
<td>4×10^{-3}</td>
<td>3000</td>
<td>2.5</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7×10^{-3}</td>
<td>2000</td>
<td>4.5</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7×10^{-3}</td>
<td>600</td>
<td>4.5</td>
<td>0.004</td>
<td>大型反射鏡</td>
</tr>
</tbody>
</table>

振動子には表に示す様々な種類があって夫々異なる目的に使用される。投射用の
振動子は稍大型の鏡（1×2 安）を有し、非常に高い
固有振動数のものは小型の
鏡（0.5×0.5 安）を有す
る。表中の感度はフィルム
ドラム上の光点の振れ1 安
に対する直流アムペアの値
である。

分流器は第四図に見られる如
く 10 本の抵抗線から成り栃木を燈して自由に組合せ、振動子と並列に接続して
0.12 アムペアから 5 アムペア迄の電流にに対して調整出来る。許容電流は 1 番
から 4 番迄の線では約 0.25 アムペア、5 番から 10 番迄の線では約 0.75 ア
ムペアで、抵抗は前者が約 2 オーム、後者が約 1 オームとなつてある。主電
流の強さに従つて之等を或は並列に或は直列に組合せて使用する。
(c) 電磁石及び軸線用固定鎖 電磁石は二個の捲線を有し給與電咖に従
って共の接続を異にするもので、特に一端の蓄電池で動電したい場合にに対して
は両捲線を 2×3 捲線に分けて作る。電磁石は充分調和させているから電圧変
動を 10% 程度とする。電磁石
の磁的線は第五図に示す如く
負極極で包まれた線模様のもので、振動子を二個有するか
三個有するかに従つて大々二
個又は三個の互に独立に水平
軸の周りに巻線出来る線模様
の極片によって振動子を保
持する。而して振動子は鉛直撓
螺旋で水平軸の周りに、水平撓
螺旋で鉛直軸の周りに姫撓出来る
のであるが、此際他の振動
子に磁気的影響を與へること
の無い様に磁路を完全に作っ
てある。
曲線の観測撮影の際に零線
を直かしめる軸線用固定鎖は
二個の振動子を有するオッシ
ログラフでは電磁石の磁極前に固定された金屬環に取付けられた腕金に備へて
ある。金屬環の二個の加減満子のうちの下のもので水平方向に、上のもので鉛
直方向に姫撓出来る。振動子三個を有するオッシログラフでは共の中の何れか
一つの振動子の反射鏡を以て軸線用固定鎖に代用する。
(d) 電動機及び減速歯車 第六図の上半は電動機の接続図である。電動
機は直流及び 15 乃至 60 サイクルの交流に用ひられ、整流子電動機と四極の無
捾線鐵電動子を有する同期電動機とから成り、共通の固定子と軸を有する。前者は直流又は単相交流に使用出来るもので共の二極の縦界は直流と交流とに対して一つ宛の捾線を有し、直流に対しては分極電動機、交流に対しては直流電動機の接続になる。交流連続のときは電動機は直列抵抗なしで電源に接続され、電壓 120 ヴォルトで自ら同期に入つて 50 サイクルの時電分 1500 回転をする。直流連続のときは同期電動機は接続を断つと直列抵抗子電動機の界磁捾線は直接電源に接続されるが、電動子同路には分圧器的接続の可変抵抗器が入る。全電圧をかけて 110 ヴォルトで毎分 1750 回転をする。
220 ヴォルトの電源に対しては交流ならば変圧器を用ひ、直流ならば第七図に示す如き 220/110 ヴォルトに特殊変圧器を用ひる。

電動変圧器とオシログラフ軸との間に速比 1:1, 10:1 及び 100:1 の変圧器装置が附いて、四つの変圧器を有し板彈線の位置を変へて速比を変へる。1:1 のときは変圧器は使ふず、10:1 のときは二対、100:1 のときは四対の変圧器が二輪を結ぶ。仮変圧器装置とオシログラフ軸との間に可動軸として螺旋弾線を結ぶある。

c) 観測装置

第八図に於て弧光灯から出る光線は収斂レンズ 1 及び細

際 S を通り反射鏡 2 で反射され振動子の小鏡 3 に投じ、更に彎倒鏡 7 及び反射鏡 8 に反射され、収斂レンズ 9 で総の方向にのみ収斂されて観測装置のスクリーン上に光点を結ぶ。細際 S は振動子と同数あつて、鉛直方向には調整出来ないが、その幅は螺旋で各独立に拡大又は縮小出来る。反射鏡 2 は把子で各独立に鉛直軸の周りに迴転し螺旋で鉛直方向に傾斜し得る。観測装置はアルキメデス螺旋形の切顔を有する二個の翼から成る迴転体で其の曲面がスクリーンになるってある

から、之を迴転すれば曲面上の軸に平行な各直線は第九図の點線で示す平面内を一定速度を以て順次一方に進行することとなり、光點は此の平面内を移動し空間に浮んで振動する曲線図形として現はされる。而して測定する交流の周波数で運転する
同期電動機で観測装置を運転するときには静止曲線図形となる。オッショグラフの保険外函の上面には鏡のついた斜に開く蓋があって、曲線図形を観測出来る。

充電現象、短路現象等の研究のために、電動車装置と弾性接続との間の軸上に多数の接触回路から成る接触装置を固定する。電動車装置の側に数枚支持片ラが用意され、接触回路と接することを観測しようとする現象がオッショグラフ軸の各接続回路に同生する様に装置して置く。この接触回路は研究に適合して特別に作り、電動機は直流で運転する。接触通路軸の各接続毎に現象は反射し電流の流入と還伝は常に同じ位置で起こる。観測装置上に曲線図形を生ずる。此際観測装置の連絡体は二翼であるため、曲線は二部分に分れて両部分は互に推重しつつ生ずるから、例へは電流線路の電路開閉の際の電流の変化は第10図(a)の如きものが同図(b)の如く見えるのであつ。軸上の振幅によって両部分の幅を比較の重要でない位置に移し得る。

(F) 撮影装置 曲線図形の撮影はフィルムドラム又は巻フィルムカメラで行ひ両者共オッショグラフ軸で運転する。第10図に於て軸倒鏡7を倒さざる振動子小鏡の反射光線は殆ど瞬間的に観測装置から撮影装置に至り、直接写真レンズ6を通過してフィルムに投げられる。

フィルムドラムを用むて周期的変化を“タイム”で撮影する際、フィルムの速さの大なる時は軸倒鏡を早く動きしてもフィルムは何途轍も個別露出する。この時間変化の周期と電動機の周期とが一致して居れば順次に於ける光像は相対して緩い曲線を生ずるのであるが、フィルムの速さの小なる時は曲線の重複によって混乱を生じ易く、分離して見分け難いので、露出時間の始末と終りを正しく選ぶ困難を伴ふ。次に後述の電磁シャッターの用ひるときはドラムの一迴転の間だけフィルムを露出させることができて薄い一筋の曲線像を撮影し得るし、又露出時間をドラムの一乃至四迴転の時間内で調節出来る。

巻フィルムカメラは開閉操作等の非周期的現象に対して、長さ5メートル数9軸のフィルムを用ひて連続的撮影をなすもので此際電磁シャッターは使用しない。主部は暗箱であって、電磁シャッターの付いたフィルムドラムの代りにオ
ツシログラフ軸の導線に従ってのする。暗箱中には三筒の円筒を挿し、上下円筒にフィルムを巻いたドラムを推し込みフィルムの始端を両端に突き出る中央円筒を渡して下部円筒の二の筒に固定する。中央及び下部円筒は専用で支えられた前軸がオツシログラフ軸から回転を受ける。下部円筒に巻かれるフィルムの直径は増し中央円筒の速度は変的の故に、摩擦抵抗を用い下部円筒の回転数を減らしてフィルムの破れを防止する方法を兼ねている。フィルムの許容最高速度は毎秒2mとしてある。

(g) 投射装置　観測装置に示される図形を説明のため多数の人に示すには第十一図に示す投射装置を用いる。振動輪eは振動光線に振動と直角方向の運動を與えるものであって、尖端で電動機軸と平行に支えられ車gで離心盤aと接する。離心盤は電動機軸に固定され軸の先端の回転の間は鏡の運動が電動機の回転角に比例し、回転の最後の所で鏡は速に原位置に戻るような形に作られてある。この回る間に光線を遮る目的で遮蔽bを置く。振動輪よりの反射光線はその上方の45度の両の第二の反射鏡mによって再び水平方向に反射されて二百米離れたスクリーン上に光点を結ぶ。スクリーン上に得られる図形は長さ1m高さ0.5mに達する。

この装置を取付けるには先づフィルムドラム及び電磁シャッターを取付した後振動輪の軸承を取り、導線に挿込んで物体fで緊縫、次に離心盤a及び遮蔽bの付いた割片kを盤の中央に押して電動機軸に挿込み尖端線子を軸の相営する孔に捻込んで固定する。振動輪に滑車gは弾性線で離心盤に引かれて、割片kは遮蔽bと共に軸の前方の捻込ナットcで固定される。反射鏡mは保持棒lによって保護外筒の蓋に固定した割片nに挿込まれる。最後に光線用円筒レンズを焦点距離大なる投射用レンズに換へる。振動子は勿論投射用の3型を使ふ。何支持eの束縛gを弛め滑車gの振動輪を直接に反射光線を間接的に照射するか、上方に反射される光線も反射鏡mの上任意の場所に投じ得る。装置の外側は先づ割片kを遮蔽bと共に取り次に
軸承を鏡と共に外す。

（h）電磁シャッター 電磁シャッターの主部は第十二図に示す所の光線

第 十 二 圖

通路に置かれる二個の滑動 S₁S₂ であって両滑動共撮影前にスキャッチ板の機械 G によって常規位置に置かれる。共の窓は互に推閉められ、フィルムドラムの外筒に固定された二個の電磁石 E₁E₂ の接極子に繋われる二個の釘で此の位置に保持される。電磁石の常規電圧は直流 110 ヴォルトで端子盤に共の端子を有するが、共の回路には仮設車を緩むで 4:1 の速比の回転を軸から受ける所の回転連続器がある。此の回転連続器の主部は両側に互に動移し得る突起 B 及び C を有する中央滑動環 A で、此の両突起は各一線の滑動環に絶縁されて埋込まれ、各環を滑動する三個の刷子によって電路を閉けるのである。尚フィルムドラムの外筒の上部に軸を有する一個の偏心軸より成る所の刷子引上装置があり連続滑動に基する刷子の摩耗を防ぐ。即ち軸の一端には矢印のついた偏心軸にあり、この矢印を上向きにすれば刷子は引上され右向に延せば刷子は滑動環に押へ付けられる。電磁シャッターを挿込ポールトにて挿込める際に刷子が側線を受けて破損せんと様刷子を引上げて置くことに特に注意を要する。

写真撮影の場合には軸側鏡を倒下して光線をシャッターに送ると同時に軸側鏡の接点 K が閉じる。そこで初めて +K から軸側鏡の接点 K、端子 F₁、電磁石 E₁ 及び短絡導線 U₁ を通り、回転連続器の回転によって突起 B、滑動環 A 及び端子 F を通して － 号に至る回路が完成する。従って電磁石 E₁ の
接続者は先端を鈎が外れて滑柵 S_1 は機械的張力によって下方に達することがないように引下げされシャッターが開く。同時に U_1 の接点が開くので試験遮断器が更に開絶して後者は引きされることなく、滑柵 S_1 の落下後不必要に変を発するのを防ぐ。

開閉器盤にあるシャッター用タムブラー開閉器を "Zeit" の位置に置けば、
接点 D は開けて居ても $+M$ から出る第二の回路は遮断されているから再び
轉倒錠を起す迄の時間で任意の露出を與へ得る。之に反しタムブラー開閉器を
"Moment" の位置に置けば $+M$ から M、端子 F_2、短絡弾線 U_2、接点 D、
電磁石 F_2、接觸突起 C、滑動環 A 及び端子 F_2 を通って $-$ に至る回路が完
結して滑柵 S_2 が落下するのでシャッターが開ける。即ち轉倒錠を倒させば必ず
前部の滑柵が最初に落ち其後に後部の滑柵が落ちることになる。U_2 の接点の
役目は U_1 と同様である。

遮断器の刷子引上装置は又遮断器を全く回路から除いてシャッターをフィルム
の回転数と無関係にする機能を有する。即ち刷子の他端を共通の接觸面に呑
付けて三個の刷子を短絡し滑柵を外部から望む時間を利用して動作させるので、こ
の目的で $+$ 端子は $+K$ と $+M$ とに分けてある。$+K$ と $+M$ との間の接
合を取除いて例へば $+K$ 端子と $-$ 端子との間に電圧をかければ前部の滑柵
が先ず落下するし、開閉器が M の方に開けてある時は $+M$ から $-$ に至る
第二の回路に加へられた電圧で後部の滑柵が落下し然も望む時間で行ひ得るこ
と明かである。

(i) 振動子迴轉装置 側々の周期で僅かな差異のある様々な周期的変化を
測定する場合の如く、相次いで起こる曲線図形を重複させずにずらせて互に區別し
易く撮影するのに此の装置を用ひる。之は迴轉を與へたい振動子の一端を聯結
する一個の桿杆で他端は保護外露の側面に有目篭薄から突出して外部から動
かし得る。取付に際しては先づ振動子を水平桿薄から自由にして桿杆の一端を
振動子極に緩く繋げ他端を上記目篭薄の中央部を通じて桿薄を捻込んで然も振
動子はその反射光線をフィルムドラムの中央に投ずる様な位置に定めて後端を
桿薄に緊付ける。目篭薄の目盛は略フィルムドラム上の光點の位置を示
す。"タイム" 撮影の時は桿杆端の桿薄は先づ目篭薄の観測装置寄りの端に置
き、轉倒錠倒下後端の全長に亘って適当の同じ速度で移動させる。撮影した軸
線はドラム上に螺旋を描くことになる。

此の装置には同時に自動迴轉装置を備へてある。フィルムドラム外筒上にあ
る螺旋を切った軸は適當の速比の摩擦輪を介してオシログラフ軸から駆動されるのであるが振動板の端をこの軸上を動くナットにて振動子に遮軸を與へる。

3. 接続及び調整

（a）弧光灯　端子盤には弧光燈に対する接続端子はないので所定の抵抗器と直列にし水平炭素棒を並列として 110 ヴォルト又は 220 ヴォルトの直流電源に接続する。先づ弧光燈外周の加減螺子を右に迴して兩炭素保持器を共の終端位置に置き、負極炭素棒移動用指桿を其の中央位置に置いて炭素棒を挿入し、次に加減螺子を左に迴して兩極を 3 乃至 4 素の距離にて近接させて開閉器を入れる。所要電流は約 8 アメラで直列抵抗は製作の際に調整してあるから共の便でよい。弧光長は自動的に規定の長さに調整されるから一般に手で加減する必要はないが、若し調整の必要な場合には加減螺子で兩極共に又指桿で負極のみを動かす。何正極火瓶の光束が細細の所のレングに完全に當る様に二個の加減螺子で縦横に調整する。

（b）振動子及び分流器　先づ電磁石の磁極の無いことを確認してから振動子を磁極板の間に注意深く位置せしく述に挿込み、振動子縫の横の突起を水平螺子のそれに依るもの。次に振動子縫の端端子を電磁石側方の端子に接続する。

第 十 三 圖

図 a、b、c
後者は端子盤の振動子用端子 "Messschleife" に接続されているから、測定せずとする電圧又は電流を端子盤で接続して開閉器盤のタムスレーキ開閉器を "Ein" 侧に倒せば振動子は始めて相応する値を示さするのである。電圧の測定には第十三図に示す如く振動子は電圧 300 ヴォルトまで充分な直列抵抗 \(R_2 \) と並列に接続し、更に高い電圧では同図 (b) に示す如く測定用変成器を使用して共の二次側に普通の抵抗と並列に接続する。但しこの変成器によって交流に含まれる直流部分が消失することを注意を要する。倘電動機を同じ変成器に接続するとその反作用が変成器を出る波形に影響することから、之を防ぐには直接に直流電源に接続するか或は特別の変成器によって接続すべきである。電流の測定の場合 0.12 乃至 5 アムペアに対しては第十三図 (a) に示す如く振動子は分流器 \(R_1 \) と並列に接続する。即ち電流値に相当して第四図の分流器の適當な抵抗線を絞り並列にし、\(b'e' \) 間の抵抗を補込んで主電流を端子 a 及び \(e' \) に接し、振動子は端子 a 及び b に接続する。第 11 番の線は共振器 から接觸 S で得た電位を振動子を通じて並列電流を絞り並列を振動子の焼損を防ぐべきである。最小の組合せは 9 番と 10 番とを並列にしたもので约 0.5 アムペア以下の電流に対しては抵抗線は直列に用ひる。共際には主電流は端子 a から入る接觸 S、端子 \(b'e'c'd' \) ……を絞り端子 g から出るが状況に応じて g より前の他の端子から取出して差支えない。此の接続で振動子は主電流に並列となり更に接觸によって 10 番及び 11 番の抵抗線を直列に挿入するから、この 2 オームの範囲で振動子電流の正確な調整を行ひ得る。全抵抗線を直列に挿入して約 15 オームにすれば最小電流 0.12 アムペアで振動子は最高電流 0.1 アムペアを流す。0.12 アムペア以下の電流に対しては分流器なしで振動子 1 型を使用する。上述の分流器に 5 對 50 アムペアの抵抗線を並用すれば極限電流 50 アムペア迄流せる。50 アムペア以上の電流に対しては更に 150 ミリボルトの電圧降下を生ずる抵抗を並列に接続するか、又は第十三図 (b) 及び (c) に示す如く適當な変流器を使用して共の二次側に先づ \(R_1 \) を接続し之に並列に振動子を接続する。電圧電流同時の測定には第十三図に示す如く両振動子の相関を二端子を共通に結ぶ他は同様であって、只両振動子間に 50 ヴォルト以上の電圧が現れる様に注意を要する。先づ第十三図 (a) に示す直接後流に於ては \(R_1 \) の右端子を両振動子の共通點に接続し、次に同図 (c) に示す牛直接々流に於ては変流器
の二次線を其の一二次線と結んで振動子の共通線を作る。最後に回図（b）に示す間接A線に於ては共通線は地線で貫へる。

(4) 振動子には大抵の場合に制動油を充すが、油中の光の屈折によって像の偏れは油を入れぬ場合より約30%も大になる。

(5) 電磁石 給與電圧が110 ヴォルトか220 ヴォルトかに従って電極線は牛々並列又は直列に接続する。振動子用可動片の側にある切替開閉器の所で二個の垂直な銅片を試せば並列となりP形の銅片を試せば直列となる。20 ヴォルトの蓄電池で助電するには電池は2×3 接線に分けられて共の端子は端子盤の側に取付けた開閉器に導かれる、此處で直列に並列にも接続出来る。電源は端子盤の端子“Mag”に接続し開閉器盤の迴轉開閉器で開閉する。 (第六圖)

(6) 電動機 第六圖に於て交流電源は端子6 及び7 に、直流電源は端子8 及び9に接続し端子7及び8 は地線に接続される。電動機基盤にある五極切替開閉器で並列所要の電源を給與出来る。回路は振動子を二個のオシログラフの場合には開閉器盤の迴轉開閉器により、振動子三個のものでは同位置にあるタムブラ開閉器によって開閉する。

(7) 電磁シャッター 電磁シャッターの電磁石に対する電源は端子盤の端子に接続し、第六圖に見られる開閉器盤のタムブラ開閉器によって“タイム”撮影に対する“Zeit”の位置から“Moment”の位置に切换へられる。

電磁シャッターの迴轉開閉器の接觸突起Bの位置は露出が略フィルムの初めに来る様にすべきで、遮蔽器の整定後露出の初めがフィルムの他の部分に来たならば商車を緩め異なる順位位置を試みて正しい点を発見する。遮蔽器についての商車はオシログラフ軸の速さの1/4 の速さで迴轉する故オシログラフ軸の4 迴転の時間差は撮影出来るので、接觸突起BとCとを絡付けてある四角ナットNを緩め突起を互に移動してフィルムの露出時間を調整する。

(8) 光線通路 光線通路の調整は最も熟練を要する重要な部分であるから第八図に就て特に詳述する。オシログラフ保護外箱を取除き室内を暗しして白紙片を以て光線の通路を透る。

弧光燈から振動子まで。先ブレンズ1の前の細隙Sの幅を調整するが、普通の寫真撮影の際には0.5乃至1ミリの幅にすれど細い明瞭な像が得られる。観測装置上に明るい像を出すとか非常に迅速に変化する現象を撮影す
オシログラフ

るとかいふ場合にはは再び幅を拡げる。正極火坑からの光線は反射鏡 2 に反射さ
れて振動子のレンズ 3 を通過して小反射鏡 4 に投射するが、火坑の位置の正し
いのに拘らず上述の様になる時は鏡 2 を共の横杆及び横枠で調整し、且つ之
と振動子との間で光線は互に交叉せしめる。從って振動子三箇のオシログラフ
では中央反射鏡 2 は中央振動子に光線を反射することになる。細隙及び反
射鏡の調整後正極火坑の変化の為に光線が移動した場合には、弧光燈の二箇
の加減螺子で再び正規の位置に調和する。

振動子から撮影装置まで。先づ縦倒鏡 7 を倒して、振動子の小鏡で反射さ
れた光線が果して同高さで直線レンズ 6 に完全に投じてあるかどうかを試み
る。縦倒レンズの前に軸子を固定して見て、鉛直方向の傾きのある時は鉛直横
螺によって振動子を傾斜させて除き、又水平横螺によって振動子を傾斜して各
反射光線がフィルムドラムの同じ點に投射する様に水平方向の調和を行い撮影し
た曲線が同じ軸線を有する様にする。軸線を適當せるには振動子二箇のオシ
ログラフに於て軸線用固定鏡を共の二箇の調和螺子で調和し、その反射光線
が共の振動子小鏡の反射光線の像の正確に貫上に 0.5 乃至 1 色の所で像を結
ぶ様にする。振動子三箇のオシログラフに於ては共の中の一つの振動子小鏡
を以て軸線用固定鏡の代用とし、三箇の光線の像が悉く相重なる如く調和すべ
ばよい。縦倒レンズを通過する光線の細線が正確に鉛直で且つ縦倒レンズとフ
イルムドラムとの距離が適當な場合に限って明瞭な光点を得るものであるから
縦倒レンズの軸をドラムの軸と平行に保ちながら共の距離を調節する必要があ
る。副反射鏡 2 に反射された光線の一端はレンズ 3 に反射されて、可成明か
に観のついた像を縦倒レンズの保持器に生ずるもので、之は放置してよいが撮
影する光点に含んでゐてはならぬ。此のレンズによる反射は明瞭に焼きつけられ
た像の周りに必ず年を生ずるので判別出来るが、何れの光點が正しいもので
あるか疑問の場合には振動子を動作させて光點の運動を見よば分かる。

振動子から観測装置まで。軸倒鏡 7 を起せば振動子からの反射光線は鏡
7 及び 8 を経て縦倒レンズ 9 を通過し観測スクリーン上の一直点として収斂
する。観測装置上的像はフィルムドラム上の像よりも幾分高い位置に生ずるか
ら軸倒鏡 7 及び反射鏡 8 は稍傾斜させ、然も像の遠近のためには鏡 8 によ
って反射された光線は縦倒レンズ 9 に鉛直に投ずる様に調和せばならない。先
づ軸倒鏡の側面の加減螺子で全體の傾斜を加減し、細隙 8 の像が観測装置前
面の水平間隔と同じ高さで反射鏡 8 に投ずる様に反射鏡 8 の前に水平間隔と
同じ高さに紙片を置いて調整し、次に反射鏡Sを水平及び亜直方向に傾けて共の反射光線を水平間隙の中央に導く。面して荷重によって、振動子二個のオシログラムにあつては、転倒鏡の右の部分を裏面の振動板で傾斜しながら調整し、紙片を除いて亜直スクリーンの平面部を鋭角直に立てた際の水平方向に於て各像が一致せぬときは転倒鏡の左の部分を裏面の振動板で水平方向に亜直する。振動子三個のオシログラフにあつても同様に転倒鏡の三部分によって調整を行う。最後に図面レンズを移動して亜直スクリーン上に明瞭な像を結ばせる。

4. 使用方法

開閉電動にて先づ“Elektromagnet”と記す亜直開閉器を入れ次に“Messschleifen”と記すダムナー開閉器を“Ein”側に入れる。直流現象の際には光点を一側に寄せ交流現象の際には、建換點を特に明瞭に示すために細密なる光線を生じめる。光点の偏れは観測撮影何れの場合にも振動子特性に於いて検索電流に相当する値（±4）を超えてはならぬので、直流又は蓋列抵抗を入れて調整し適當の偏れを生じしめる。測定中振動子の偏れの方向を変へるには、振動子筒頂の端子を交換する。

次に電動機の五極切替開閉器を電源に相当する方向に入れ開閉電動の“Motor”と記す亜直開閉器を入れる。交流の時には特に共の周波数に対応する同期を得るが、直流の時には先づ加減抵抗器を全部入れて置いてから之を加減して亜直開閉板を調整する。波線の生成は亜直に調整筒であるから普通装置又は撮影装置上の光点の位置及び明瞭度を制御する為でよい。

観測には大抵撮影を伴ふから先づ保護外線を前面の揚蓋を揚げたまえオシログラフに被せしみかちに止めた接撚鏡を下して読み止める。次に保護外線の上面の小揚蓋を立って裏面の鏡によって亜直スクリーン上の曲線を観測する。此際電動機の速度を普通にすれば静止曲線が見られる。振動子の一つに電流を、一つに電流を用へ共の接縫方向を正しくすれば両曲線は正しい位相関係を示すが然らざる場合には一方の振動子の接縫方向を変へればよい。曲線は右から左へと示されて見えるから之を念頭に置けば位相関係は明瞭に分る。

撮影の際には先づ暗室に於て塩板の上でフィルムの両端を折曲げる感光面を外に向けてドラムに當て緊密装置で固定する。此際ドラムの裏面にある小突起にフィルムを押つけて孔をあけ後に曲線の方向を知る符號とする。此のドラムを
オツシログラフ

電磁の押しつけた力を下にして光の透るねの内に納め口を固く織る。次に暗室を出て囊の入口の挿込口金をオツシログラフに固定して共の織を解き、囊をしに電磁を掴んでドライムをオツシログラフ軸に推込み、暗中探索で挿込口金の導溝を探して軽く勧め留める。囊は囊の外側から垂れ下がってにして置く。

又々撮影の前に今一度観測装置で光点の具合を見るが、振動子からの撮影装置の距離は観測装置の距離よりも短いため前者上の偏れは後者上の偏れよりも稍小することに注意を要する。挿開関器盤に於てタムプラ開閉器を“Moment”側に倒しておいて調倒鏡用の把手を押下げると調倒鏡は倒して所要露出時間に調整された電磁シャッターの回路を閉ざる。ドライムを通路する同期電動機は四極の故に一周期に半週回をするからドライム上には二周期が入ることになる。三周期以上の露出を望む“Time”撮影の際には電磁シャッターの作動せる様タムプラ開閉器を“Zeit”側に置き手で調倒鏡を倒して起すことによりて露出時間を定める。撮影後にドライムは再び囊の中に引抜いて囊の口を織め挿込口金を縫めて取出し暗室で現像する。

附記。振動子の制動には一般にパラフィン油を使ふが特に強い制動の必要なる場合には厚厚な無色レジン油を用ひる。使用前に1時間乃至2時間待って油が反射鏡全体に粘着する様に注意せぬと不明瞭な像を生ずる。制動の具合は振動子に周期的に繰返する直流を與えて曲線の昇降を観測又は撮影する。第十四図の例に見る知く開閉の瞬間の差は僅かに偏れ過ぎてゐるが、良好な制動の下ではこの偏れ過ぎを認めない。然しその完全な制動は開閉操作の様な急激な変化の場合にのみ必要なので、純粋の周期的変化に対しては所謂半開制動を適當とし共の偏れ過ぎは僅か4乃至5%でパラフィン油を用ひる。極めて正確な研究には油の粘性及び温度を考慮する必要がある。パラフィン油は長時を打つて差支えないが、レジン油は三箇月毎に新にする必要がある。前一旦油を充した振動子を油なしで置くのは禁物であり、油なしで使用したい時には中を空にしてペンジンで清浄に洗ふ。又オッショグラフの翅曲部分の車軸用脂肪は純良無酸のものを用ひて時々新にし、反射鏡及びレン
III. 横河電機製作所製可搬オシログラフ

1. 概 要

横河電機製作所製の可動線輪型オシログラフは基本原理に於てジーメンスハルスケ会社製のものと同様であるが、構造及び取扱に相違点があるから其の大體に就いて述べることとし、振動子三個を有する三エレメント型と振動子六個を有する六エレメント型であるが、後者は三相発電機等の三相の電圧電流の研究等に用ひるもので通信工学方面に於ては必要を認めないから、専ら前者のみに就いて記述する。可搬オシログラフの名の示す如く、全體を数部に分けて携帯に便利な形としてある點が特徴である。

2. 構造及び動作

三エレメント型は次の三つの主要部分から成る。

光学器械箱

振動子箱

加減抵抗器箱

上記三部を第十五図に示す如く附屬の底板上に置き、永久的設置の場合には其

第 十 五 圖

の底部に沈めたナットで緊付ける。底板上の中央の箱は加減抵抗器箱で、其の

向って左右にある箱は夫々光学器械箱及び振動子箱である。他に携帯用蓄電池

及び電動機等を備へてある。

(5) 光学器械箱　光学器械箱は光の発生、調節並びに波形の観測及び撮
影を司る部分で、本函の内部には下段に収録レンズ一個、プリズム三個、細隙三個及び電磁器を備へ、上段に円筒レンズ及びシャッターを有する。本函の外部に於ては側面に調整車、迴轉四面鏡、撮影装置及びカム等を取付ける腕金並びに接続端子、開閉器等、背面に電鍵取付腕金、前面に第十五圖に見る如くシャッター軸前端の回盤、引外し電磁石及接続端子を備へる。第十六図は側面の端子及び開閉器を示し、第十七図は函内の電気的設備を示す。
光源にはマツダ瓦斯入自熱電球（6-8ボルト50度光）を用ひる

第十六図

第十七図

函内に電磁器の二次電圧12ボルトで閃光用抵抗を通じて点火する。此の抵抗は撮影の際の瞬間光力を有するため電鍵を閃光させるに用ひられる。卸ち引外し電磁石上の横桿L1が引きされるとき、接點C1が開けて抵抗の全部又は半

A.C.100V
LAMP
MOTOR
FLASH MAIN S.
分を略するのである。接點 C₂ は後述の凸転接触子が廻転につれて離れても
引外し電磁石の勧磁を続けて時々を保つ役のものである。

シャッターは磁線によって二段に動作し、一回毎に手で操縦す。今第十八図に
於て右方の円盤はシャッター軸の前端に固定された円盤、左方の円盤はカム、
C.R はカムロッド、L は引外し電磁石の接続子 L₂ に連続する腕とする。シャッター動作前は同図（a）で示されるが、引外し電磁石が勧磁さればその
瞬間に爪 B が腕 L を外れ同図（b）の如くで第一段の動作を了する。此
の引外し電磁石は第十七図の同路に示す如く、始動開閉器を入れた直後廻転接
触子の開く瞬間に振針の二次線によって廻転接触子、自動開閉器、始動開
閉器等を経て勧磁される。又第二段の解放は更にこの直後カムの底 p にカム
ロッドの P' が接続した剣剣に起るもので、爪 A がカムロッドの先端を外れ
てシャッター開き第十八図（c）の如くなる。然もカムと廻転接触子とは互に
前進で喫合った二軸上に装置され、後者は前者に対し一廻転の範囲内を微分
角前進を與へ得る時差制御器の構造になって居る。又寫真が必ずフィルムの繰
目をシャッターの窓に面せしめる様にドラム軸とカム軸を接合してある。

次に二重写しを防ぐためシャッターがドラムの一廻転の間欠開け様に、爪 B
は押されば其の位置に移動残存する所の摩擦の大きい滑動爪になって居るか
ら、カム軸廻転するに従ひ爪 B がカムロッドに依つて押込まれカムの頂點を
越えてカムロッドが後退し再び第十八図（c）の位置に達すると、爪 B はカム
ロッドの端を外れシャッターは電磁石の力によって同図（d）に示す如く急速に廻
転して閉じる。撮影終ればシャッター前端の内側の接觸子 C₂ が開路して引外
し電磁石の励磁磁気 C\textsubscript{1}C\textsubscript{2} と共に開路する。

(6) 振動子電
振動子は金属筒に蔵いられる第十五図に見る如く三箇相並んで、6 ヴォルト携帯用蓄電池によって 3 アメベアで励磁される電磁石の飽和磁気回路中に装置され、共の主部である環線は特殊の合金製で抵抗極めて少なくパラフィン油中に浸して居る。振動子座の後方には振動子緊付螺子一個及び調整螺子二個を有する。振動子は共の感度や固有振動数によって次表の如き烈を区別し、容易に取換へ得る構造に於て居るから用途に応じて適當に選ぶ。

<table>
<thead>
<tr>
<th>型</th>
<th>感度（アメベア/箱）</th>
<th>固有振動数（毎秒）</th>
<th>抵抗（オーム）</th>
<th>許容電流（ミリアメベア）</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2×10^{-2}</td>
<td>6000</td>
<td>1</td>
<td>250</td>
</tr>
<tr>
<td>B</td>
<td>5×10^{-3}</td>
<td>12000</td>
<td>1</td>
<td>250</td>
</tr>
<tr>
<td>C</td>
<td>20×10^{-3}</td>
<td>20000</td>
<td>0.7</td>
<td>250</td>
</tr>
<tr>
<td>D</td>
<td>2×10^{-4}</td>
<td>160</td>
<td>8.5</td>
<td>1</td>
</tr>
</tbody>
</table>

（c）加減抵抗器電
加減抵抗器電には電圧測定用として三経のダイアル抵抗、電流測定用として三経の倍動抵抗があつて、前者の接続は第十九図に示す如く振動子と直列に用ひるもので0乃至10,000 オーム迄次第に変化することが出来、接続弦上の数字は共の抵抗値を示し電流 60 ミリアメベアに堪へる。後者は 0.5 オームで1 アメベアに堪へ分巻器式に接続され、共の動子の位置によって適當な電圧降下を振動子に與へる。別に5/25/100 アメベア等に用ひられる外附分流器を附属する。

其他振動子用端子、電圧用端子、電流用端子を夫々三対づけ依へ、三個の切替開閉器を有する。
3. 接続及び調整

先づ振動子電の電磁石陰極用の蓄電池を接続し、其の開閉器を切って置て振動子壳の後方の緊急鶴を弛めて振動子を注意深く取付ける。次に振動子の両端線を加減抵抗器電極（第十九図）の振動子用端子に結び、測定せんとする電圧及び電流を夫々電磁用端子及び電流用端子に接続する。又光学顕微鏡に於て引外し電磁石の下方にある“REMOTE S”端子にシャッターを始動させる叉形開閉器を接続し、波介現象撮影の場合には更に直列に自動開閉器を加へる。第十六測の三對の端子には夫々交流電源 100 ウォルト、光源の自熱電球及び電動機を接続する。

接続を終ったならば第十六図に示す主幹開閉器“MAIN S”を入れて電燈を点火し、細隙を全開いて尋常三重の光帯を振動子の箱に投ずる。振動子底の光線の通路は第二十図に示す。電球の細隙は収斂レンズに対して 45°の傾斜の位置が適當である。収斂レンズの焦點距離は電球線条の像を振動子の反射鏡上に結ばせる設計になってるから、プリズムを其の三側の屈折で調整すれば像を各振動子の反射鏡面に生ずることが出来る。

次に振動子の後側から見て右側の調整螺子 A.S₁ によって振動子を油壺ぐるみ鉚直より多少上方に仰向けば其の反射光線は光学顕微鏡の上段に入りて収斂レンズに向ふ。此の反射光線は振動子の前方 10 種位の所で高さ約 4 種、幅約 1/2 種の鮮明な矩形となるから紙片でそれを通路に通し得る。尚振動子の後側から見て左側の調整螺子 A.S₂ で振動子を左右に屈曲して光線が収斂レンズの適當な位置に投げる様に加減する。尚光線の形は長さ 35 軸位が最も良好であり、電球を収斂レンズに対して近付けば長くなり遠さなければ短くなり得る。若し光線が矩形にならずに梯形になるときは其の原因のプリズムの左右の傾きを直す必要がある。斯くしてシャッターを開けば電球四面鏡直面の暗線子面に横に細長く良好な光線を得る。光線の長さは細隙を調整して変へるがこの細隙の幅の大小は鮮明度には関係ない。只急速な変化を測定する際は幅を大にすれば明瞭な記録を得られる。
次に前節に述べた時差調整装置によってシャッターの二段の解放の間の時差
を自動調節器に電流を通す瞬間からシャッターの開く迄の時間を任意に調
整出来る。因を過渡現象を生ぜしめる為に用ひられる自動制御機械が高速度開閉器
のときには、シャッターの開くと同時に接点を閉げるシャッター接続線路
（之は第十七節に見る如く、シャッターの先端にある接続線の図路で其の端子は
引外し電磁石の右側に於る）を共の高速度自動開閉器の引外し回路に直列に結
べば過渡現象の撮影に便利である。周期的変化の撮影には周轉接続線の位置に
無関係に端子 "REMOTE S" を短絡する様に開閉器を用ひればよい。

光の程度はドラムが毎分 400 周閉以上の時には第十六回の切替閉閉器
“FLASH”を上方に倒して抵抗全部を短絡し、之以下の速度に対しては下方に
倒して抵抗の半分を短絡する。

電動機は観測又は撮影装置の軸と滑車を用ひて連結するが細かい調整は十
六回の摺動抵抗器による。

振動子の感度は上方の螺旋弹簧線子で調整出来る。

4. 使用方法

観測を行うときはシャッターの位置を第十八図の如くして、カメラを廻
転しててもシャッターの開かない様にカメラロッドを緊束し、光学機械付の左壁に
ある撮影工具に廻転四面鏡を挿入し、駆動器が共の軸とカメラ軸とを連結して電
動機を廻転する。振動子駆の電磁石の開閉器及び主幹開閉器を入れ、加減抵抗
器を充分に入して置いて切替え閉閉器を電圧側 "Y" 又は電流側 "A"
に倒せば、摺動子上の摺動光点は廻転鏡上に時間軸を得て電壓又は電流の波形
を表す。電動機の速度を摺動抵抗器によって加減し、廻転鏡の速度が交流同
期速度の 1/4 乃至（ねは餘数）となるときは波形は鏡面上に静止する。然しその
他の速度では波は鏡面上を前後に走る様に見える。向加減抵抗器をのダイアル
によって光点の振れを加減出来る。

撮影を行うときは先に暗室でフィルムドラムを共のケースから取出してフ
イルムを描く。フィルムは "Kodak #118" 又は所謂手札の卷フィルムを用ひ
共の背紙を去り去った半截を感光面を表面としてドラムクリップの取付位置から
捲き出し、ドラムを一周して兩端をクリップで留める。之を再びケースに収めド
ラムの細隙を開けて暗室から出す。摺動子上の光点を以て電の調節を終
った後、廻転四面鏡をドラムに換へて銘でドラム軸を連結する。共處で光学器
機械の上部を閉じドラムの細隙を開けて始動閉閉器を閉ざれば、引外し電磁石が動作して露出が行われる。若し分離した個々の軸線を描く時には各振動子の電流を切り各細隙を締くして同様の露出を行い、共通軸線を描く時には一列の光点を挿し他は細隙によって消して行ぶ。之で撮影が済んでドラムの細隙を閉ざる。

振動子の固有振動数を知るには油を充て無制動振動子に低周波プザー（5サイクルズ以下）の電流を加へ、油を充たした振動子に適当な交流電圧（例へは電圧回路）を與へて時間波とする。フィルムドラムの廻転数を毎分約1060に近く、此の両波を同時に記録する。プザー電流を切るときは無制動振動子は第二十一図に見ると如く自身のも有周期で振動するから、其の振動数は時間波を比較して算出出来る。

IV. ウエスターン電気会社製陰極線オツシログラフ

1. 概要及び原理

陰極線オツシログラフは通常ブラウン管と稱し迅速な電磁気的変化を観測するのに用ひられるに冷陰極と熱陰極の二種がある。前者は数千乃至数万ボルトを要し、後者は300ボルト内外の低圧で動作する。此の低圧陰極線オツシログラフにウエスターン電気会社製224-A及び224-B真空管、東京電気株式会社製熱陰極ブラウン管等があるが、皆同様であるから此處にはウエスターン電気会社製224-A真空管に就て記述しき者は参考点のみを注意するに止める。

陰極線オツシログラフに於ては電子の流れが真空管の一端から他端の発光板に投げられて板上に集點を生ずるが、此の電子流れ電界又は磁界を作用させて従って発する電子流の偏倚によって集点の運動を起し、各図のその常規位置に対する位置で加へた電界又は磁界の方向及び強さを知る所以である。機械的のオツシログラフでは可動部分の慣性のために極めて迅速なる変化に従ふことが出来ないが、陰極線オツシログラフでは可動要素が電子流であるため慣性及び共振の影響は著しく無視出来るので周波数限界を少しともラジオ周波数にまで高
め得るものである。従ってその適用範囲は顕著にその一箇を次に示す。

正確な周波数の比較
電圧・電流の波形及び位相関係
三極真空管の特性
高周波電流の変調
共振線の決定
ヒステリシス損の測定
誘電体損の測定

以上の測定方法は後節應用例の所で述べることにして次に原理に移ることとする。陰極を発した電子流は後述の如く互に直角な二対の偏倚板の間を通過して蛻望板に達するのであるが、第一対の兩板の間を通過する際に両板の電位差

第二十二図
オシログラフ

によって生ずる電界に相当する量だけ正板の方へ傾倚する。次に第二対でも同様に先と直角の方向の傾倚を受けるから、電光板上の輝点のその常規位置からの方向及び距離は各瞬時にその瞬時に作用する電位差の傾倚力の合成値に相当する。若し両電界の強さの変化が周期的である周波数が簡単な整数比をなす場合には、低い方の周波数の各周期に於て傾倚の部位は同じであるから輝点は同一軌跡を反復して静止円形を生ずる。即ち此の図形は両電界的強さの関係を直交座標系に描いたものと考えられ、若し電界の一方の時間的変化が既知の場合には後の電界の時間的変化を知ることが出来る。

両電界的関係を示す曲線は両傾倚界の何れか一方の位相、振幅、周波数或は波形の変化に従って変化する。第二十二図の圓は電界の位相差が90°で振幅、周波数及び波形が共に相等しい場合の図形である。ある周期の始めでは第一電界は零（A0°）で傾倚なく、同じ瞬時に第二電界は極大（A1°0°）で電子流に最大傾倚を與へ、此の両電界の合成値によって輝点はA2の位置を占める。位相角が30°に達すると第一電界はBに増し第二電界はB1に減ずるから輝点はB2に生ずる。60°の時には両電界は夫々C及びC1に達しC2に

第 二 十 三 圖
輝点を生ずる。以下同様にして軌跡が円となる。次に第二幅圏は前述の円形の変化に若干因子を制御して生じた円形の变化を示すもので、各図に於て A は円形で B 及び C は偏倚界である。a, b, c 及び d は C の位相のみを変化し、e 及び f は C の波形のみを変化し、g 及び h は B と C とが位相を異なるとき B 及び C の波形のみを変化し、i 及び j は B と C とが位相、のとき B の振幅のみを変化し、k 及び l は B と C とが同相のとき C の周波数のみを変化した場合の円形の変化を示す。g 及び h は B 及び C の位相を同様に変化し、a 及び e は B と C とが同相のとき B 及び C の波形を同様に変化した場合に円形の変化を生じないことを示す。電界による偏倚の他に管外に永久磁石又は一対のソレノイドを置いてでも電子流は磁界に直角な方向に偏倚する。

電気的感度。輝点の偏倚 Y 及び偏倚板に加えられる電位差 P と磁気管の幾何学的定数との関係を示す理論式は次の如くなる。

\[Y = \frac{P \cdot L_1 \cdot L_2}{2 \cdot V \cdot D} \]

電に V は陽陰極間の電圧、D は一対の陽極板の間隔、L₁ は電子流の方向の偏倚板の長さ、L₂ は偏倚板の中央から蛍光板までの距離で単位はワット及び検するとする。224-A 蛍光管では L₁ = 1.27, L₂ = 20, D = 0.475 であって、使用電圧 300 ワットに於て輝点を 1 種偏倚させるに要する偏倚板間の電位差は 11 ワットである。偏倚板の周対の蛍光板からの距離は異なり偏倚板の間隔も正確に規定された値に近くならぬか、電流的の測定には較正が必要である。

磁気的感度。磁場 H ガウスの磁界を電子流が通過する距離を S 種とすれば輝点の偏倚 Z 種は次式で表される。

\[Z = \frac{0.3 \cdot H}{\sqrt{V \cdot S \cdot D}} \]

この理論式を実際に適用するのには磁界の不等的ため電気的偏倚の場合よりも不正確となるを免れないが大体の目安としては、直径 4.3 種の線輪二個を互に 4 種の距離で磁気シールドの両側に置くとき陽極電圧 400 ワットを加へて輝点の偏倚は線輪の 1 アンペア回路につき 1 磁である。

蛍光管の曲率に対する補正。蛍光管が曲率を有するため共れが平面の場合よりも偏倚は小となる。平面板上の偏倚を Y、曲率半径を R、偏倚板と蛍光
板との距離を \(L_2 \) とすれば共の誤差 \(\Delta Y \) 是次式で與へられる。

\[
\Delta Y = -\frac{Y^2}{2RL_2}
\]

224-A 塩空管では 2 R = 20 種、L_2 = 20 種であるから 4 種の偏倚に対する
曲率のための誤差は 1.6 種即ち 4% である。偏倚の小さな方が誤差を無視出
来る点から見て望ましい。

2. 構造及び接続

(a) 構造 224-A 塩空管の外観は第二十四図に示す如く口金に取付けられた長さ約 12 吋の西洋形像空管
で内部に動作部分を閉鎖し、前電子束
集射の目的で少量のアルゴンを充じる。
電子を放射する熱陰極は特別の構造に
して陰極から来る陽イオンの直接通路
外に置き、陽イオンの衝突に基礎陰極
の破壊を防ぐ。陰陽両端間に中央に小
孔を有する遮蔽管を置き陰極遮蔽を
保護させる。尚この金属遮蔽は一定の
電位に固定するために直接陰極に接続
するが、東京電気株式会社製のもので
は之に 50 ヴォルト以内の陽電圧を與
へ熱陰極から出る電子を管内に陽極に
達せるものである。之等の
要素は陰極の小筒子管と取り入れて共の頂
部に白金中空導体を置いて之を陽極と
し、之を通して電子流を射出せしめ
る。鐵条は口金のピン型電極に接続さ
れ陽極は口金の外殻に接続する。

真空管の端った上端の内面には遮蔽
物質を塗り、電子束はこの陰極板に當
って射出に居ても適常に相当温度の高い端面を生ずるのである。

電子流が陽極の陽極を通って陽光板に達する途中に互に直角な二門の非磁性
傾斜板を置き、その両板を鈍状小硝子管の頂に固定して互に平行させる。各対の両板の は陽極に接続して陰極電位に保ち、他は器具の電極に導かれてか々測定すべき電位に接続し得る様になっている。東京電気株式会社製のものでは真空管の中央部から側面に互に 90°の角をなして四本の電極が出て居り、之に小さな口金を附してクリップによって測定すべき電位に接続する。

(6) 接続 此の真空管を用ひる回路の大部分は後節に述べる如く目的に応じて変化するが、第二十五図に示す部分は永久的るものと見て差支えないものである。
先づ誘導線路加熱用の電源は直流電源に限り就中蓄電池がよい。交流電源では抵抗が変動して適當でない。
224-A 真空管の繊細流は約 2 ヴォルト以下の電圧で 1.2乃至 1.7 アムペアを消費するが、電流調整に可変抵抗器を用ひるから 6 ヴォルトの蓄電池を必要とする。倘
224-B 真空管の繊細流は 0.85 乃至 1.15 アムペアであり、東京電気株式会社製では 0.7 アムペア内外である。上記の抵抗器は 7 オームが必要で、電子流を集射するために繊細電流の精細な調整を要する関係上抵抗抵抗器又は充分細かい調整の可能な抵抗器でなければならない。尚繊細回路を開放する開閉器及び 2.5 オームの保護用抵抗を抵抗器と直列に用ひる。尚且つ測定すべき電位は陽極と傾斜板とに接続して繊細と他の部分との間に高電圧を生ずる様
になる故、線棒電池及び抵抗器は良好な絶縁を必要とするものである。

陽極電流としては 300 ゴットを必要とする。真空管は陽極電流 300 ゴットに設定されているが 250 乃至 400 ゴットの範囲に使用出来る。高電圧に対しては短絡が落ちるが、輝点の輝度は電圧上昇に従って急速に増加する。陽極電流はウエスタン電気会社製のものでは 1/2 ミリメートル、東京電気株式会社製のものでは 4/5 ミリメートル程度であるから、小さな乾電池又は蓄電池を用いれば充分であるが、直流発電機又は整流器によるときは濾波装置を要する。電圧の変動率は 1% 以上 2% を超えてはならぬ。高電圧には電流容量 5 ミリメートルの 2000 オーム抵抗を直接に接続して陰極間極間に弧光の生ずるのを防ぐ。然も真空管の寿命は主として陽極に電圧をかけた時間に依るから、測定の際にのみ電圧をかける様に電流又は開閉器を直列に入れる。

測定すべき電圧は図中に矢印をつけた端子間に與へるが夫々 1 メガオームの抵抗を並列に置いて漏洩電流とし、電荷の蓄積による偏倚効果を防ぐものとする。

3. 操作

(a) 電子流の集束 先づ繊縁回路の抵抗を充分に入れて電流を閉じ次に陽極の開閉器を閉じて陽極に電圧を與へる。電子流の集束は繊縁の温度及び電子放電の割合に依るものであるから、回路の抵抗を増減して繊縁電流を調節するものとする。繊縁電流を徐々に増して電子流の焦點を発光板上に結ばせて板上に現れる光を生じせめるのであるが、之以上に電流を増すと電子流は発光板に達する以前に集束して自らから輝点の面積が増大することになる。斯の如く繊縁の電子放電の変化は電子流の集束を動かすもので、輝点は繊縁電流の変化に従って質に敏感に共の面積を変化する。之に極めて注意を要することは繊縁及び陽極電圧間の開閉器を使用中以外は必ず開いて置き高繊縁回路の開閉器を入れた時の繊縁電流の小さい値に抵抗器を充分に入れて置いて以て真空管の寿命を長くすべく努めることである。以上の如くして生じた輝点の常態位置は地磁気他の作用で発光板の正中を外れるものであるから、真空管の外郭に相当遠れて薄い永久磁石を置いて輝点が正中心に生ずる様にする。勿論真空管は発電機等による強電磁界から出来ぬだけ遠方に置くべきものである。

(b) 電子流の偏倚 測定すべき電圧又は磁界は實際には共の強さのまま真空管に與へるものでなく適當な調整装置を插入するか或は測定せんとするも
のとの関係が既知な他の変化を測定するのであって、凡ての場合に偏倚力の大いさは便宜な偏倚を與へる様にする。例へば若し偏倚力が電位であるならば振幅調整装置を用ひ、即ち分圧器、抵抗、蓄電器又は変成器によって減じ、或は変成器又は増幅器によって増加させる。又偏倚板の何れか一対を遊ばせて使用しない時には必ずその両板を一緒に接続して、電子流が其の両板間を通過する際に偏倚を受けぬ様にする。

現象の変化を簡単に指示する方法は、現象に従つて変化する電位を偏倚板の一対に與へて熒光板上に発点の運動による直線を畫かせ、他の一対に時間的変化が既知な便宜の電位を與へて時間軸とする。若し測定する現象が周期的で時間軸変化の周波数と簡単な整数比をなす周波数を有するときは既述の如く靜止図形が得られる。次に時間軸軸間方法のニ三を知る。

第二十六図の回路には一定速度で回転する腕を有する分圧器を利用し、回転速度を自由に調整して測定する現象に時間を合せ得るものである。分圧器の歩
調が充分細かければ満足な結果を生ずるものであるが高速度回転に伴う騒の接觸が問題である。

第二十八図

第二十九図

第二十七図の方法は蓄電器の充放電によって時間軸を発生するものであるが又インダクタンスを流れる電流の昇降も利用出来る。この回路に於ては電鍍を閉じることによって周期的に蓄電器を充電し抵抗を通じて徐々に放電させるもので此の抵抗の値によって放電速度が定まる。今第二十八図に示す如く此の抵抗を三極管真空管で置換へ、其の電流が電圧に無関係となる様に線条温度を調整すれば、蓄電器の放電速度は理論的に一定となり殆ど直線的の時間軸を生ずる。

第二十九図に示す如く蓄電器の放電速度は理論的に一定となり殆ど直線的の時間軸を生ずる。
械的の接触子で蓄電器を充電する代りに真空管方式を用ひると便利な場合が多い。之は蓄電器 C 及び C' をプレート及びグリッド回路の四個の抵抗の間で用いる真空管 T 及び T' を対称的に結合した振動回路である。この結線法では回路の電流が不安定で、二個の蓄電器は交互に極めて急激に最大電圧に充電され、電流は一層徐々に漏洩するものである。蓄電器の一つ C は真空管 N を通じて放電し、この蓄電器の電圧は偏極板に加へられて時間軸を表す。真空管 N の極管電流のみを変へることによって時間軸の周期を変えて真空管 N を通じて変形する。

(6) 観測及び撮影 224-A 真空管を用ひる目的は多くの場合に螺点の位置を示し、広範にわたる様々な性質的分析であるが、その場合には肉眼で観ければ欠けたものである。精密を要する場合でも螺点が静止してある時は容易に、可成正確な読みを取るが肉眼による観測も大いに価値あるものである。螺点の運動の観察が困難であるが、その運動の速さを計るためには螺点の運動の加速を数え、螺点の速さが每秒 10,000 程程度の時には非常に微かに見えます。螺点の運動を観察するにあたっては座標目盛を施した紙又は透明セルロイドを発光板の前に置けば便利である。

発光板上に螺点を描画するには眼の視覚の印象よりも長時間を要するから、静止螺点が又は極めて遅く運動する螺点に限られ、露出時間は普通数秒乃至数分の程度である。発光板に生ずる光は青色に富むので感色乾板を用ひても何の利益もないから、普通の乾板又はフィルムが適用である。向大観の観察は暗室を用ひずにフィルムを発光板の紙に直接当てて撮影出来るが、撮影出来るが像が不明瞭になることを免れない。又発光板の裏面に薄いセクション紙又はセルロイド膜をあてて鉛筆で記録することも出来る。

4. 應用例

(6) 周波数の比較 周波数を精密に比較するには第230図に示す如く、比較すべき電源の交流電圧を夫々両対の偏極板の端子に接続する。両電圧の周波数が簡単な整数の比をなす時は同じ螺点が発光板上を反復して、静止した
リサジューの図形を生じて周波数比を確定する。この図形の相関する辺に切して直線を引けば、この直線が各辺の周縁の矢頭に切する切点の数の比は両電圧の周波数の比である。第三十一図はその数例を示すものであるが比が複雑になるに従って図形も益々複雑になる。

若し両周波数が上述の様な簡単な比から僅か異ってある時には両者の間の相関係が変化するため、リサジューの図形は発光板の平面に直角な平面内で徐々

第三十二図
に回転して恰も正面と背面とを有する如く見える。此の正面図形と背面図形を分離すると観測が容易となるから毎々第三十二図に示す回路を用ひる。即ち低い方の基準周波数の断に90°の位相差を有する両分を高々偏倚板の両端に加へて槽円を形成せしめ、高い方の周波数を槽円の短軸の方向の一対に加へる。槽中の22×2の-condor-の蓄電池は全図形を移動させるために置いてある。

図形の正面と背面とを分離する他の方法は特別な時間軸発生装置を用ひる。即も點離が一方向に徐々に移動するが他方向には肉眼に見え程度に迅速に戻る様に時間軸の波形を歪ませて単一図形を得るのである。

（b）位相差測定 周波数の等しい二つの正弦波電圧を偏倚板の各端に加へる時には合成図形は一般に槽円となるが、共の大きさは各電圧の振幅及び位相の関係に依るものであるから逆に槽円から振幅及び位相差を導き得る。第三十三図の槽円は次の如き二電圧の合成に成るものとする。

\[
\begin{align*}
X &= R \cos \omega t \\
Y &= A \cos \omega t + B \sin \omega t \\
&= \sqrt{A^2 + B^2} \cdot \cos (\omega t - \alpha)
\end{align*}
\]

第三十三図
A, B 及び R は図に示す截片で與へられ、之等はブラウン管の常数によって電圧の振幅に換算出来る。而して位相差 α は次式で與へられる。

\[\tan \alpha = \frac{B}{A} \]

平たい摺幅ではその長軸 2a 及び短軸 2b を測って便利な場合があつて、近似的に

\[A = \sqrt{a^2 - R^2} \]

\[B = \frac{b}{R} \]

となるから位相差は次式で與へられる。

\[\tan \alpha = \frac{B}{A} = \frac{b}{\sqrt{a^2 - R^2}} \]

\(\alpha = 0 \) のときは図は第一及第三象限の直線となり、\(\alpha = 180^\circ \) のときは第二及び第四象限の直線となる。

\(\alpha \) がある系統の電圧及び電流の間の相対角ならば力率は次の如くなる。

\[\cos \alpha = \frac{A}{\sqrt{A^2 + B^2}} = \frac{1}{\sqrt{1 + \frac{b^2 a^2}{R^2 (a^2 - R^2)}}} \]

(c) 三極管等管の特性　第三十四図の如くブレート電流をソレノイドに流し、ブレート電圧及ぶグリッド電圧を一對の偏倚板に加へ。開閉器 S を A

第 三 十 四 図
側に入れれば第三十五図（a）の如きプレート電流プレート電流特性を得
開閉器 S を B 側に入れれば同図（b）の如きグリッド電流プレート電流特性を得る。軸線は開閉器 S 及び S₁ を交互に関いて書く。

(d) 高周波電流の変調

第三十六図

波経流を低周波電流で変
調するには第三十六図の
様に三極真空管を結合し
高周波の方を一対に給與
し低周波即ち変調周波数
の方を他の一対に給與す
る。図形は第三十七図に
示す如く貫面積となって
生ずるが、低周波周期の
一端から右端に於て高周波の振幅は最大となり他端に於て最小となる。若し図
形の一端が圧縮すれば高周波振幅は変調周期の中の部分で零となる。此の図形
の圧縮しつつのある箇所の曲率によって高周波振幅が変調電圧の直線的函数であ
るか否か、又は歪みがあるか否かを知ることが出来る。

(e) 共損曲線の決定

第三十八図にて R は一定速度で迴転する腕 F を有する分極器で、AF 間の電流に相當して変化する電流を偏倚ソレノイド S に流して輝点に低周波運動を與へる。高周波回路 I に比較的強く結合された
回路 II には二個の並列に接続された蓄電器 C₂ 及び C₂' と自己インダクタンス L₂ とを有し、C₂' の可動荷板は腕 F と共に回転して F が A にあるとき C₂' は零となるものとする。今 F が AB の中央にあるとき回路 II が I に同調する様に C₂ を定め、同路 II の電圧を一対の偏導板に與へれば、F の回転に伴ひ C₂' が変化して回路 II の周期が変化するから第三十九図に示す如き面積円形を発光板上に生ずる。之の包絡線が即ち共振曲線である。

（※）ヒステリシス損の測定
定方法は第四十図に示す。試料の駆動束をソレノイドに入れ其の一端を管に向
第 四 十 一 圖

第二、電子流を偏倚させるに足る磁界を生ずる様な任意の周波数の交流を流す。此の磁界の弱さに相当する偏倚と直角方向の偏倚はソレノイドと直列の分圧器 P の電圧降下で興へられるが、電圧降下は電流即ち磁界と同様であるから合成圏形は第四十一圏の如きヒステリシス環線となる。軸線を覆くには先づ閉鎖器 S を開き、次に閉じてソレノイド及び試料を取り除けばよい。但しソレノイド端及び試料の極の減磁効果による磁界の不平等のために、ヒステリシス環線は単に近似的ものに過ぎない。

(g) 誘電体損の測定
測定する誘電体試料は第四十二圏に示す如く蓄電器の両極板の間に挿入し、変圧器によって交番電圧をかける。空気蓄電器分圧器によって偏倚板の一端に給電雑電圧を興へ、他の一端に試料を流れる電流を興へれば、合成圏形は第四十三圏の実線で示す様にとなる。若し試料を含む蓄電器を同容量の空気蓄電器に換へれば圏形は実線で示す様にとなる。圏形の面積は試料蓄電器の力率に比例し、空気蓄電器の力率は 1 であるから、両極間面積の比が試料誘電体の力率となる。

(4) 圓形の分解
周期的現象に対する時間軸として同じ基本波の正弦波電圧によって X 方向に生ずる偏倚を帯々用ひるが、之によって得た圏形を直線的時間軸に変換するには第四十四圏及び第四十五圏に示す如くする。第四十
第四十四図

第四十五図

基本時計軸となる偏倚が $R \cos \omega t$ と異なる既知函数の時、例へは蓄電器の充電の電圧又はインダクタンスの電流上昇によって生ずるものである時は上述の方法と同様にして行うことが出来る。
通信工学通俗叢書
電話編
(第十二巻)
オージログラフ
(不許複製)
(定価金二拾銭送料含)

編輯者
三重野貞彦

発行者
渡辺正雄
東京市京橋区本挽町三丁目五ノ一

印刷者
昭文社印刷所
東京市京橋区本挽町三丁目五ノ一

印刷所
東京市芝区愛宕町一丁目二十番地

発行所
法人電信電話学会
電話(43)三一○○番
振替口座東京三五三○○番
通信工学通俗叢書
本叢書は全編を電信編、電話編、無線電信電話編、線路編、電源編及電気材料編の六編に分ち、各編を更に細別し通信工学最近進歩の現状に基づき実理と実際を通俗的に解説したものであります、御希望の方は次へ御請求願います。

東京都芝区愛宕町一丁目二十五番地
電信電話学会
電話芝(43)三一〇〇
振替口座東京三五五〇〇

本叢書の抄本は本学会にて販売し、また同一書名のもの三十部以上取扱御注文下さいました場合には定価の一割引と致します。

<table>
<thead>
<tr>
<th>新刊書目</th>
</tr>
</thead>
<tbody>
<tr>
<td>底電信</td>
</tr>
<tr>
<td>音波周波摂送式多重電信法</td>
</tr>
<tr>
<td>自動局手働局相互接続装置</td>
</tr>
<tr>
<td>電話トランシミッション</td>
</tr>
<tr>
<td>磁石式電話交換機</td>
</tr>
<tr>
<td>滞留損償却と経済比較</td>
</tr>
<tr>
<td>手動局監査及観測</td>
</tr>
<tr>
<td>オシログラフ</td>
</tr>
<tr>
<td>真空管送信機</td>
</tr>
<tr>
<td>二二次電池</td>
</tr>
<tr>
<td>四六販 売</td>
</tr>
<tr>
<td>五三九二</td>
</tr>
<tr>
<td>四三五二</td>
</tr>
<tr>
<td>二五四三</td>
</tr>
<tr>
<td>一五四五</td>
</tr>
<tr>
<td>〇買錢</td>
</tr>
</tbody>
</table>

電信
通信工学通俗叢書既刊目録

電気材料編
第一巻 電信機械用紙類 10 錢
第二巻 測定用交流発生機 25 錢
第三巻 戸外電話ケーブルの敷設及び不平衛容電量の平衡 10 錢
第四巻 自動電話交換（共一） 25 錢
第四巻 自動電話交換（共二） 25 録
第四巻 自動電話交換（共三） 30 錢
第五巻 電話交換機取扱 25 錯
第六巻 電話加入者宅内装置 20 錢
第七巻 遠隔測定器及び現場測定器 25 錨
第八巻 自動局動局相互接続装置 50 錢
第九巻 電話トランスミッション 25 錢
第十巻 磁石式電話交換機 25 錨
第十一巻 線損信頼と経済比較 25 錢
第十二巻 手動局監査及観測 40 錯
第十三巻 オーディオグラフ 20 錢
無線電信電話編
第一巻 無線電信電話受信装置 30 錯
第二巻 無線電話 30 錯
第三巻 空中線及接地 25 錨
第四巻 真空管 25 錨
第五巻 真空管送信機 25 錯
電信編
第一巻 陸上手送電信 30 錯
第二巻 電信自動交換機 30 錯
第三巻 海底電信 30 錨
第四巻 電信周波遅送式多重電信法 40 録
線路編
第一巻 架空線路 30 錯
第二巻 海底電線作業 20 錯
第三巻 市内電話ケーブル線路 30 錯
第四巻 電気通信の漏洩電流及び其電気分解作用 15 錨
電源編
第一巻 一次電池 15 録
第二巻 二次電池 25 錯