情報・システムソサイエティ次期会長に就任して

ソサイエティ次期会長
村岡 洋一（早稲田大学理工学部）

この度、上記の仕事をお引き受けすることになりました。電子情報通信学会については、以前に編集担当理事として英文論文誌の活性化をお手伝いして以来のおつきあいになりますので、浦島太郎の気分ですが、どうぞよろしくお願い致します。

まだ様子もよく分からないのにお先走ったことを申し上げるのは恥ずかしいですが、過ちは後で正すとして、とりあげず現在気にしていくことをいくつか述べさせて頂きます。

(1) アイデアの発表の場

もし昔と同じなら、当学会の論文誌の査読基準の最大の特徴は「ひとつでもいいところがあったら採択する」というグラス指向が明確に設されている点だと思います。このために、なんだか言い方をすれば、論文誌は他学会よりも評価がよくなっていると考えます。

さてこれはこれでいいとして、昨今の情報通信の分野はさらに技術の進歩が速くなっており、これについていくだけのスピードが学会としても必要ではないでしょうか。

ご存じのように物理関係などではPhysical Letterという研究の速報のための出版物があります。わがわれの分野でも、このように研究のアイデアや結果などの速報ができるメディアがあるぼのでないでしょうか。このようなメディアがあれば、これまで以上にインタネット活用の技術交流の促進が期待されるのではないかでしょうか。

もちろん現在研究会がその役割を負っているという意見もあるでしょうが、現実はやはり研究会も研究成果指向だと思います。

(2) 電子メディアの活用

仮に(1)の考え方が進めると、いきつとところは分野ごとにそれぞれ最適化された出版形態ということにあるでしょう。学会としての論文誌や会誌は当然のことながら「多様性の最大」がいう観点で編集することが必須です。これに対して、それぞれの研究分野（それがソサイエティに対応するのか、またはもっと細分化されたものなのかは分かりませんが）ごとに適した情報発信の方針もあると思います。これを経済的に行うためには、電子的な手段の活用以外には考えられません。

ただ電子的な手段もよくあるようなポランティア任せでは、いずれ労働してしまいます。これを行う者の仕組みを考えませんか。

(3) 学会の交流の促進

今、国内には情報関連の学会でも、当学会に加えて、情報処理学会、日本ソフトウェア学会、人工知能学会など多数あります。しかし、いずれも活躍しているメンバーは同じ様な顧客で、おそらく経済的な問題をかかえているところが少なくはありません。

もちろん研究者から見て、活躍できる場が多様であり、また自由度が広がっているの良いこととはいうまでもなく、それを阻害する意志は全くありません。それを認めめた上で、事情の変化もある小さい協力して効果化できる道を模索はできないでしょうか。

例えば、話によっては医学関係でも沢山の学会がありますが、1年1回は全体が合同した医学会のような催しをもっているのだろうです。情報関連の場合、連合大会がない訳ではありませんが、非常に有意義な集まりというにはちょっと踏み出す。

学会間の交流という点では、いきつとところはIEEEないしACMとの交流でしょう。これでも入会会の相互同意などの施策が取られなければなりません。これをもう一歩進めるのは危険でしよう。例えば、IEEEやACM主催の国際会議を日本で開催した経験のある方は多いでしょう。そのときに繁雑なTMRFなどの事務手続きは日本国内でやってしまいました、と考えた方がおられますか。

以上、行き着くところはソサイエティの自治とはなにかというところで。単なる委員会運営の分野だけではなく、それぞれの分野が持つ特性に対応した学会活動を自治的に実現できることは大切ですが、自治には責任が伴います自治と責任のバランスをどうするか、学会の今後の発展の鍵です。そのために僕に立つよう努力致しますので、どうぞよろしくお願い致します。
網膜と皮質の不均一性を考慮した
注視点移動モデル

和文論文誌 DII 平成 7 年 9 月号掲載

青西 亨 (大阪大学基礎工学部, 写真右)
福尾 邦彦 (大阪大学基礎工学部, 写真左)

ヒトが物を見る場合、脳は網膜に写った情報
をすべて受動的に受け入れているのではない。
関心のある箇所に眼球を動かしたり注意を集中
したりして、自分が必要とする情報だけを能動
的に選択して処理している。このような能動
的視覚情報処理は、脳における情報処理機構の
解明という立場からも、工学的な視覚情報処理
システムの設計という立場からも、重要な研究
課題になっている。そこでわれわれも能動的視
覚情報処理に関する脳のいくつかの機能に注目
して神経回路モデルの構成を進め、選択的注意
機構のモデルや、結びつける問題（binding pro-
blem）を解くモデルなどを構成してきた。今回受
賞の対象となった神経回路モデルも、このような
研究の一環として構成したものである。

ヒトの網膜の中心部、すなわち中心窩の部分
は高い解像力を持っているが、少しでも中心窩
をはずれると視力は急激に減少する。このため
に眼球を動かし、見ようとする物体の像を中心
窩付近にもってくる必要がある。人間の被験者
に静止した対象や図形を呈示して、眼球の動き
to 鍛定する。図形の形、白黒の境界の部
分などに注視者が集まる。不均一な網膜を想
定して注視点のどのような分布を説明しようと
するモデルは従来からあった。これらのモデル
が、オン中心型やオフ中心型の受容野をもつ網
膜神経節細胞（網膜からの出力信号を送り出し
ている細胞で、入力パターンのコントラストを
抽出する働きをしている）の受容野の直径が、
中心窩から離れるにつれて大きくくなるように作
られている。このようなモデルに図形パターン
を与えたときの反応は図形の形の部分で大きく
なり、これが注視点の動きやすさを異なると報告されている。

ところで受容野のサイズの不均一性は、網膜
ものを見ているときの眼球の動きを調べると、動く物体をなめらかに追いかけていく成分（隨従眼球運動）と、跳躍的な動きの成分とがあることがわかっている。後者の眼球運動はサッケードと呼ばれ、動く物体を見ていっているときはこの2種類の眼球運動が起こるが、静止した物体を見ている場合にはサッケードだけしか起こらない。サッケードによって、重要な情報のあるところに順番に注視点を向けて外界の情報を獲得していくのである。

筆者らの今回の論文では、静止物体の観測を想定して、サッケードによる眼球運動機関をモデル化した。サッケードによる次の注視点の移動位置は、上丘（眼球の制御に関わっている神経核）を想定した細胞層（注視点決定機構）で決定する。ここには大脳皮質で抽出したエッジやその周辺の情報が送られ、その情報密度の最も高い箇所を側抑制による競合によって選び出し、そこを次の注視点とする。ただし、注視点が毎回同じ場所に繰り返して選ばれるのを防ぐために、過去の眼球位置を記憶する記憶ユニットを考え、注視点決定機構はその記憶ユニットからの抑制信号も受けるようにした。

脳は、このような眼球運動によって取り込んできた断片的な情報をつなぎ合わせて一つのまとまった外界のイメージを作り上げていく。その生理学的なメカニズムはよくわかっていないので、モデルでは以下のよう視覚情報統合機構を想定した。最初の注視点で取り込んだパターン（エッジ抽出細胞層などから送られてくる視覚情報）をひとまず一时的な記憶パターンとしてバッファに蓄える。その後注視点を移動させ、新しい注視点で取り込んだ情報を用いて、この記憶パターンを部分的に更新しながら解像度を上げていく。このとき、すでに蓄えられている記憶パターンと、新しく取り込まれたパターンとの位置合わせが必要になる。ところが心理学や解剖学の知見によると、視覚系には眼球位置の情報は必ずしも正確には伝えられていな。随伴発射などによって送られてくる眼球移動の情報は、大きさの位置あわせには用い得ても、細かい位置あわせに用い得るほど精度は高くないと考えられる。そこでモデルでは細かい位置合わせのために、新しく取り込んだパターンを、バッファー内の記憶パターンと比較して、類似度が最も大きくなる位置にシフトした後に、バッファを更新する機構を想定した。

しかしこの論文では視覚機構をかなり単純化してモデル化したので、今後は、今回省略した種々の機構を追加して、実際の脳により忠实なモデルを作り上げたいと考えている。たとえば、今回のモデルでは、入力パターンは白黒の線画だけを対象としていたが、エッジ抽出細胞などを導入して中間層（灰色）のある一般の画像も扱えるようにするための研究を現在進めてい。また、随伴的な随従眼球運動機構も導入して、動く物体を見る機構もモデル化したいと考えている。

図1 不均等な網膜皮質投射をもつ視覚系モデル
図2 モデルの特徴抽出細胞層の反応例
微小重力環境下におけるコイ小脳脳波の解析
和文論文集 D11 平成 7 年 4 月号掲載

曰井 弘文（豊橋技科大情報工学系, 右写真）
平田 豊（宇宙開発事業団, 左上） 萱原 克幸（三重大学工学部, 右上）
赤木 一郎（横河電機株式会社, 左下） 戸田 尚宏（豊橋技科大情報工学系, 右下）

1. はじめに
人類の宇宙への限らない憧れを乗せて、スペースシャトルや宇宙ステーションによる実験計画が進められている。こうした有人宇宙活動を進めていく上で、宇宙の特殊環境が脳に及ぼす生理的あるいは心理的影響に関して多くの未知部分が残されている。中でも、飛行中、吐き気、ふるいといった宇宙飛行士の約半数が悩まされる「宇宙酔い」は、宇宙空間における負荷による時間内での彼の活動能力を著しく低下させるものであり、その発症メカニズムの解明と対策策は本格的な宇宙時代に先駆けて是非とも確立しておく必要がある。著者らはこうした問題を解明するために、10 年以上を前から、電子・情報工学の立場から、ワントップ生体アンプの開発や信号解析の理論・手法の開発を続けてきた。

本論文は、当時の名古屋大学環境医学研究所の御手洗深洋先生によって提案され、その後、同研究所の森楋先生を代表者とするプロジェクトとして 1992 年、我国国際宇宙飛行士毛利利衛博士等によりんされたスペースシャトルによる第 1 次材料実験（FMPT）において測定されたコイの小脳脳波を解析したものである。本論文の目的は、地上と宇宙において脳波活動が異なるか否かを評価することとともに、コイの宇宙への適応過程が脳波に現れるか否かを調べることにある。本稿では、実験に至るまでに準備や解析法の確立、苦労話などについて述べてみたい。

2. コイの脳波計測・解析法の確立
神経細胞が活動すると電位を生じ、脳は膨大な数の神経細胞が集まって出来た器官であり、脳波はそれらの集団電位（mass potential）である。脳波は運動制御に関わっていると考えられており、これはコイでも同様であることがから、コイの姿勢制御に関わる何かの変化や、重力センサーである耳石系からの入力と視覚系からの入力の干渉が小脳波に現れるであろうと考えられる。無重力下では条件の違いによる変化が全く表れないかもしれませんが、さらに、環境の变化、特に今回の場合、重力の有無がコイ小脳脳波に影響を与えるという保証も無い。従って、我々が課せられた課題は「重力の有無及び、その環境へのコイの適応が小脳波の変化として表れるか否か、またそうであれば、脳波の何がどのように変化するのか」であった。

人間の脳波ではα波やθ波といった分類があり、様々な状況と発生する各波の因果関係が論じられている。しかし、コイの脳波にはそのような分類は無く、単純な雑音だっても良い波形であり、それを力学で診断できるエキスパートは存在しながら現在の所存在しない。雑音様の信号の性質の変化は一つ一つの波形に顕著するのではなく、何かの統計観を測定することによって、環境条件による変化を捉える事が可能となる場合が多い。一般的には、パワースペクトル構造の変化、即ち、信号の周波数成分を見ることの、が常套的な手法である。パワースペクトルの推定には観測モデル内、安定して扱い易い Burg のアルゴリズムを用いることとした。観測中のコイの小脳波をきちんと記録するため、ノイズに直接電極を埋め込むとし、頭部に多電極技術大学電気・電子工学系、故中村哲郎教授らと共同で開発した生体信号専用プロアングラ FIC を作製した。また、予備実験として 1983 年9月に、大气圏を用いて地上 5 km の成層圏からケイを入らせるカプセルを落下させることにより、無重力状態でも脳波が記録出来ることを確認した。さらに 85 年からは小型ジェット機を用いた短距離飛行による無重力実験に移行し、実際にシャトル上で行なわれるプロトコルに近い状況で実験を再現して無理返し、データ取得から解析までを走り無く遂行できるように予備実験、及び解析法の開発を行ってきた。

予備解析においては、本当にパワースペクトルのみで、信号の性質の違いを判断できるのかという疑問に対する検討も行なった。パワースペクトルは 2 次統計値であり、対象が正規変
であるならば、それだけで十分であるが、非正規信号であった場合、さらに高次の統計量に違いが現れる可能性がある。極端に言えば、2つ以上のパワースペクトラムが全く重なることも高次のスペクトルが異なるものが非正規信号には存在する。そうした場合、2つ以上の信号の性質は異なると証明することできない。著者らは、コイ脳波のスペクトル解析に先立ち、信号の正規性を確認しておく必要性を強く認識し、そのための方法をまず構築し解析にあたった。

こうした点を踏まえた上で、我々は、問題を地上宇宙の違い、および宇宙滞在日数による脳波スペクトル変動を統計的に評価することに締め解析を進めた。それぞれの比較において脳波が異なるかどうかを評価するには、統計的検定を行うことが考えられるが、通常の5%とか10%などといった上側の規則の決め方により、得られる結論が変わってしまう恐れがある。そこで、比較すべき各状態での脳波のサンプルが、ある周波数において正規分布で十分近似できることを確かめた上で、脳波スペクトルのサンプルに正規分布モデルを当てはめ、モデルのAICの差分を一つの統計量とみて、脳波スペクトルの違いを評価する方法を確立した。このとき、差分AICが、サンプル数などの条件に応じて、脳波スペクトルに差があるか否かの信頼性、あるいは、脳波スペクトルの差の大きさを表す量となることを数値実験により確かめ、差分AICの大小により脳波スペクトルの違いの評価が可能であることを示した。実際、これにより、統計的検定による評価では難しいかったコイの宇宙への適応過程の評価を合わせて行うことができる。そうした観点から、コイ脳波スペクトルを評価したところ、小脳脳波から得られたコイの状態変化は、本研究とは独立にされた背光応反の乱れに関する解析結果とよく一致した。

3．シャトル実験データの取り扱い

さて、実験が計画されてから本番の宇宙実験までは、チャレンジャーの事故もあって10年に及ぶ準備期間がおり、上記した解析手法はほぼ完成され、あとはそれを実験データに適用すればならなかった結果が得られるはずであった。ところが、依地データを受け取ってみると、地上にダウンリンクする際に生じたものと考えられるデータの欠損をはじめ、コイの体動に伴うスパイク状の雑音や背光反射を誘発するための光刺激によるものと考えられる視覚誘発電位（VEP）が脳波に混入しており、まずこれらを解析対象から除く必要があった。これは、実験時のビデオを何度も見直しながらコイの一挙手一投足（？）をチェックするという繁雑な作業であった。こうして得られたデータから、まず手始めにFFTでスペクトルを求めて見ると、ちょっと30Hz付近に鋭いピークが現れた。これは人間の脳波のα波やθ波に対応するコイ小脳脳波の特微的な成分という訳ではなく、フィードバック内の水勢を作るためのポンプの振動によるものであることが地上予備実験の段階でわかっていた。ARモデルのあてはめによるスペクトル推定では、こうした線状スペクトル雑音の影響を大きく受けることから、それを防ぐための手法も既に開発していた。さらに、このスペクトルには計測系の周波数特性、特に、トランスデコンフィルターとアンチエイリアシングフィルタの急峻なカットオフ特性が低域および低域に現れており、このままでは脳波自体の微細なスペクトル変化を線形予測法を用いて抽出することは困難であった（AIC等で線形予測モデルの次元を決定すると、これらアンプ系の特性を表現するのに適したモデルが選択され、その上に重畳する微細な脳波スペクトルの変化をノイズと見放されてしまう）。そこで、アンプ系の逆フィルタを生成し、これにより脳波データを校正した。その際、アンチエイリアシングフィルタのカットオフ周波数数以上では非常に小さな直での除算操作ため、校正後のスペクトルは不安定なものとなる。そこで、低域のスペクトル構造が変わらないよう、こうした高域を除去するための掛け引き処理をほどこし、解析用の“コイ小脳脳波サンプル”を得た。最終的に得られた各実験毎の小脳脳波のスペクトル変化は高々数dBであるが、開発した手法によって解析した結果は、宇宙滞在2日目と4日目頃に大きく変化していた。これはビレオドスペクトラリスの毛細管の宇宙生活における内訳ともよく一致している。こうして、一回限りの実験データから、その微細なスペクトル構造の変化を客観的に抽出でき、順応過程を明らかにできたことは非常に幸いであった。コイと人間では順応過程が異なると考えられるが、今回の結果に関しては地上に生きる者同士の連携感を強く感じさせるを得ない。人類が宇宙に初めて探求が先首となる時代に到来するのにはほど遠くない。そして地球上的生物が遠く銀河の果てまで繁栄していくことになるので
あろうか、本論文がそのための一助となれば、著者らの望外の喜びである
4．おわりに
本研究はわが国の宇宙医学のさきがけ的な試みであり、医学、計測工学、統計解析、宇宙実験技術などが複雑に絡み合った大型プロジェクトであり、そのどれ一つが欠けてもこうした成果は得られなかったと思われる。さらに、米国のスペースシャトル利用という国際協力の難しさなど、全てが未解の新しいことへの挑戦であった。結果に、本研究に携わられた宇宙開発事業団はじめ大勢の皆様に心より感謝する次第である。1998年にはニューヨーク展が計画されており、また、21世紀には宇宙ステーションの時代が到来する。科学宇宙センサーから錦帯を乗せて飛び立っていったシャトルの黄金の炎が腦裏に焼き付いて離れない。

写真
コイを入れた実験装置をつんだ MU-300 機内

木構造造者クラスタリングを用いた話者適応

和文論文誌 DII 平成 7 年 1 月号掲載

小坂 哲夫（キャノノ, 写真上）
松永 昭一（NTT ヒューマンインターフェース研究所, 写真下左）
織戸波 茂樹（NTT ヒューマンインターフェース研究所, 写真下右）

今回賞を頂いた論文は、筆者らが ATR 自動翻訳電話、および音声翻訳通信研究所に (織戸波が 90-93 年、小坂が 91-95 年、松永が 93-96 年) 出向していた時に研究したものです。ATR は京都と奈良の県境にあり、退任したときは、ずへと来てしまったという感じがしました。それにしても学研都市とは言えても、その頃は ATR がポツリとあるだけでした。しかし ATR の内部は大変活気があり、その中で音声情報研究室は精力的に音声認識の問題に取り組んでいました。外の研究所と大きく違うのは、ATR では ATR で雇ったいまゆるブローバの研究員は少なく、大部分がメーカーから出向してきた社員ということもです。また、外国からの研究者も多くこれからはいい意味で刺激になりました。研究者は 3 年程度で出向元に戻るため研究者の入れ替わりも頻繁で、その結果社長や室長以外は上下もなく本当にフラットな組織でした。また学会では
見知れていても、他のメーカーの研究者と親しむをもって研究するの研究者と親しむをもって研究するための貴重な体験だったと思います。

さらに、京都と奈良の環境というロケーションは、ちょっと出かけて名所を訪ねることができる、いろいろな伝統行事も見物することができるため、またATRの直近の自然環境もすばらしく、ここに住む環境は特別外国人研究者に好評のようでした。また日本人研究者でも庶民民でも伝統行事に詳しくなった人もいるので、筆者らもこういった環境を十分に堪能しました。

さて、この論文は、音声認識における不特定話者の問題について研究したもので、通常は、不特定話者音声認識については、多数の話者の特徴を平均的に扱う方法が取られます。しかし「不特定話者」という話者は存在しない、話者の個性をうまく表現したモデルの構成が、性能向上のカギと考えました。 かつては多数話者の音声データの入手が困難だったため、この種の研究はなかなか行なうことができませんでしたが、ATRでは約300名の大量の音声データベースの整備を行なっており、これを利用して音声の話者特性についてより調べたいと思いました。

そこで試みたのが話者のクラスタリングです。話者が音声特徴に基づきクラスタリングし、そのクラスターの特性を調べれば話者の特性が分かることではないかと考えました。実際クラスタリングしたところ、まず特性で二分され性格の影響が非常に強いことが分かりました。また、クラスターを分割するうえで、ある特定の収録場所で収録したデータが1クラスに分類されるクラスターが一つだけあったため不思議に思い音声を聞いたところ、それはまるで逆風呂で発声しているのか、ナルタキマイクでも使っているように聞こえました。これはどうも残響の非常に多い部屋で収録されたデータであることが分かりました。つまり話者クラスタリングしたものが収録環境の極端な違いで、収録環境でクラスタリングされていたクラスもありました。

このような検討を経て、階層的クラスタリングの過程から話者クラスターを考慮して、音声の特徴とそれにクラスター分割を行なえば、単純な話者選択より意味のある話者適応が定めるのではなく、音声適応は認識対象話者の最少の発声データを扱い、モデルを作成し、音声の適応を向上させる技術です。より少ないデータでより認識率を向上させる方向で研究が進められています。

この話者適応の技術のひととして、これまで話者（または話者クラス）を入力特徴により選択し、その選択された話者のデータにもとづいて作成されたモデルを使用する、話者選択型の話者適応が検討されてきました。話者選択における方法では、複数の標準話者のモデルから特定の話者のモデルを選択し、それを使って認識する方法が基本ですが、しかし発話空間は非常にスペースです。そのため、ひとりの話者を選択しても入力話者と特徴がずれている場合が多く、適応後も性能はそれほど向上せず、選択の話者は少ない場合は認識率が低下することもあります。この問題を解決するには、単純な標準話者の数を増加させるという方法が考えられます。しかし、話者適応の効果を出すためには非常に多くの標準話者を必要とし、現実的には言えません。

クラス数の増大という問題に対して、クラスタリングによる対処法が考えられます。この例としては標準話者を男女の2クラスに分割し、男女別で別のトリガーを設定するという方法がありますが、この方法は、現在世界でトップクラスの認識性能を示しているシステムでは、一般的に用いられている方法です。しかしこの方法は、クラスの分類が性別というヒューリスティックを必要としているもので、2クラスとするクラス数の選択は、本システムにおける特徴を示す、ヒューリスティックを用いない、入力話者に合わせて動的に設計される必要があると考えました。話者クラスを考慮を考慮し、その各クラスタから話者クラスを選択する方法は、この動的な設計を近似的に実現しています。

構造には一部上の階層が多段階の平均的特徴を表し、最下層が特定話者の個別的特徴を表しています。入力音声の特徴をもとに被構造を上層から下層へと伝えると、その話者に一番よく合った話者の特徴を持つクラスを選択します。このクラスに該当する話者の話者群で作成されていたモデルを用いると、話者の個性が一致し、認識の精度を向上できます。この方法の概念図を示します。一部上の階層は、トライセグメントされた話者（a,b,c,d,e,f,...）全員の特徴を表します。これに対し最下層に該当する話者クラスはそれぞれ（a,b,c）のひとりの話者特徴から成り立ちます。階層の上下ではサブクラスの関係性によって

情報 - システムサイエンティフィック誌第1巻第2号 おめでとう論文賞

9
おり、階層を上から下にたどると、話者の特徴空間が除々に狭まっていくよう設計されています。この多層のクラスから入力話者に最適なクラスを1つ選択するわけです。

普通は入力話者の特徴がクラスタリングされた話者のどれか一人ほったら合うことは稀なので、複数の話者の特徴が入ったクラスタが選ばれることも多いようです。

現在ではこの適応手法をもとに、さらに進んだ適応法の研究がＡＴＲで行われています。木枠構造話者クラスタリングで話者がクラスタを選ばことにより、入力話者に大幅に近づくことができますが、話者ごとの微妙な違いを含む適応できません。そこで話者クラス選択後、入力特徴のパラメータを補間と内挿により直接モデルに反映させることにより、さらに詳細に適応します。話者クラス選択により大別的な特徴の適応を行ないで、さらにパラメータの反映により局所的な特徴の適応を行なうことにより、少量のデータで高い適応性能を得ることができます。

この話者適応システムは関係者の努力のおかげで、現在ＡＴＲでデモをすることができるようになっています。後で聞いた話ですが、ＡＴＲのある研究員がこのデモシステムを試みると必ず一人の話者が選択されるので不思議に思ったり、その話者の音声を聞いてみたところ自分の声にそっくりビックリする思い当たるようであったので資料を見たところ、それは数年前データベース作成のために発声した自分の声だったそうですね。データベース作成に協力した心当たりのある方は見てみると面白いかかもしれない。

実は、この研究に至るまでは、筆挿りを含む多数のＡＴＲの研究者が長い道のりがありました。コンテキスト（前後音素等）に依存した音楽の変形の解析とクラスタリング（音楽環境クラスタリング1987）を出発点とし、HMMの研究の中で、特徴話者の隠れマルコフ網（HMMnet1991）へと発展しました。これがおもにベクトル場の平均化（1991）により話者適応できるようになり、さらに話者適応した多数の話者モデルを混合してHMMnetを作ること（話者モデル1991）により精度の高い不特定話者モデルが作られました。それらの話者混合重みを学習するのは「柔らかい話者選択」により、教師付き高速話者適応（1992）も可能になりました。しかし、どの話者も学習データ中のどれかの混合要素の話者にビックリしては限度にとどまるとここに話者クラスタリングの必要性を強く意識するようになりました。しかし、非常にスペースな話者空間をどうやって扱うか？その後、話者の個性を不特定話者から個別話者まで階層的に扱う木枠構造に至った経緯はすでに書いた通りです。

このような研究ができるのも多数の方々に由来したＡＴＲの研究の流れと、優れた研究環境によるところが大きいと思いますＡＴＲという研究の場を作り支えられた方々、研究の議論をして下さった方々や研究環境の整備をして下さった皆様に深く感謝します。
研究発表の場の充実につとめる
フォールトトレランスシステム研究会
委員長 藤原 秀雄（奈良先端大）

1 はじめに
この研究会だよりが、フォールトトレランスシステム（FTS）研究会としては、サイエンティフィックに掲載される最初ということですので、
FTS研究会の研究分野とこれまでのミニ歴史・活動を紹介させていただき、そのあと最近の研究会の活動紹介として昨年の活動と今年の活動計画を紹介したいと思います。ほとんどデータを羅列する形になりましたが、それらの情報からこの研究会を知っていただければ幸いです。

2 研究分野
FTS研究会で発表討論される研究分野は、
学会誌の会告と重複しますが次のようになっています
フォールトトレランスシステム（アーキテクチャ、分散システム、計算機ネットワーク、オペレーティングシステム、データベースシステム、設計方法論／ツールなど）、
フォールトトレランスソフトウェア（プログラミング、データ構造、プロセス間通信と同期、例外処理、プログラム検証／テスト、プロトコル検証／テストなど）、フォールトトレランスハードウェア（故障予防、故障マスク、故障検出・診断・再構成、機能回復、フェールセーフ、切り替え／訂正符号、設計検証など）、信頼性・性能評価（解析モデル、シミュレーション、計測、評価方法論／ツールなど）、テストと診断（テスト生成、テスト容易化設計、自己テスト、自動診断など）、応用（通信ネットワーク、トランザクション処理、スーパコンピュータ、リアルタイムシステム、プロセス制御、ロボティクス、FA、OAなど）」

4. これまでに主催・共催・協賛した
主な国際会議
FTS研究会ではこれまでに多くの国際会議を主催・共催・協賛しています、IEEE Computer Society と共催や協賛することが多く、主なものを挙げますとつきのようなものがあります

(1) The 18th International Symposium on Fault-Tolerant Computing (FTCS-18), June 27-30, 1988, Tokyo, Japan (共催)
(2) The 1989 Joint Symposium on Fault Tolerant Computing ('89 JFTCS), July 17-19, 1989 at Beijing, China (共催)
(3) Pacific Rim International Symposium on
Fault Tolerant Systems September 26-27, 1991, Kawasaki, Japan (主催)

(4) The First Asian Test Symposium (ATS’92), November 26-27, 1992, Hiroshima, Japan (協賛)

(5) The Third Asian Test Symposium (ATS’94), November 15-17, 1994, Nara, Japan (協賛)

(6) The Second International Workshop on Responsive Computer Systems, October 1-2, 1992 at KDD R&D Laboratories (共催)

5. これまでの論文特集号

F T S 研究会から編集委員会に提案して企画された論文特集号として下記のものがあります。最近では年に1回のペースで発行に論文特集号が企画される多くの優れた論文が掲載されています。

(3) Special Issue on Responsive Computer Systems, IEICE Trans. on Information and Systems, November 1993.

(4) Special Issue on Verificatin, Test and Diagnosis of VLSI Systems, IEICE Trans. on Information and Systems, July 1995.

6 平成７年度の活動

定例研究会は例年通り6回行われました。開催月、場所、テーマは下記の通りです。

4月 新潟大学, VLSI プロセッサ及び新アーキテクチャL S I 技術
6月 機械振興会館、招待講演／一般
8月 別府コンベンションセンター、

並列・分散・協調とフォールトトレランス
10月 奈良先端大、設計とテスト
12月 中央大、セキュリティとF T／一般
2月 機械振興会館、一般

8月のソサイエティ大会、3月の総合大会では多くの一般講演の発表がありました。先の総合大会では一般講演の他にシンポジウム講演（テストシンセシス）とチュートリアル講演（医療システムとディペンダビリティ）を企画しました。また、情報理論とその応用シンポジウム（SITA93）、情報システムにおけるF T国際ワークショップ、多価論理とその応用研究会（第2種研究会）、ソフトウェア信頼性シンポジウム、実時間処理に関するワークショップ、などの協賛を行いました。

7. 平成8年度の活動計画

今年度はつづきの日程で6回の定例研究会を開催いたします。

4月25-26日 岡山（ICD, CPSY 共催）
6月1日 機械振興会館
8月26-29日 秋田（SWoPP ’96 の一環）
10月9日 三重大
12月6日 神奈川
2月13日 東工大

また、今年はF T S 研究会がIEEE と共催するThe 26th International Symposium on Fault-Tolerant Computing(FTCS-26)が5月25～27日に仙台で開催されます。来年、秋田で開催されるIEEE主催のAsian Test Symposium(ATS’97)にも協賛をしています。また、現在つづきの2つの特集号が進行しています。

(1) テストリング技術特集号、和文誌(D-1), 平成8年12月号

社会・環境・人間への影響を重視
人工知能と知識処理研究会

委員長 山崎 晴明（山梨大学）

１ はじめに

人工知能と知識処理研究会は、いわゆる人工知能と呼ばれる分野に関連する要素技術、あるいは知的な行動を示す各種の応用システムといった基盤理論から応用までのきわめて広範な領域を研究の対象とする幅の広い研究会です。

ただし、本学会の他研究会、ならびに他学会の同種研究会との連携を図るため、また電子情報通信学会の研究会であることを理解するため、通信システムとその交差領域を重視しており、特に企画することで重点研究領域を設定しております。

特に、最近取り上げています研究課題としてはマルチジェネバージョンモデルや協調型問題解決技術の通信ネットワークやヒューマン・インタフェースシステムへの適用といった技術課題があります。

また本研究会では、これらのシステムや技術が広く社会・環境・人間へ及ぼす影響といった視点も重視しており、知的生産活動支援、マルチジェネバージョンによる避難・防災シミュレータ、福祉対応システム等の応用分野についても特集等を企画していきたいと考えています。

２ 研究分野

本研究会で扱われる主たる研究分野は、たとえば次頁の参考図に示すように大きく、社会・環境的視点、システム的視点、および基盤的な技術的視点という3つの視点で論じることができます。

それぞれの視点について、特にネットワークやヒューマン・インタフェースとの関わり合いを重視していこうとするのが本研究会の基本的な指針です。

以下の研究会で扱う主な研究分野を列記します。

1) 社会・環境的視点
 - 組織行動・組織活動支援
 - バーチャルコミュニケーション
 - 遠隔教育 / オンラインユニバーシティ
 - エレクトロニック・コマース / バーチャル・カンパニー

2) システム的視点
 - モーバイルエージェント /
 インテリジェントエージェント
 - やわらかいシステム
 - 協調分散型問題解決システム
 - 群知能システム
 - 協調分散データベース
 - ネットワーク / エージェントセキュリティ
 - グループワーク / 知識共有システム

3) 基盤技術的視点
 - マルチジェネバージョン・モデル
 - ジェネバージョン言語
 - 協調・分散・並列計算モデル
 - 協調プロトコル
 - 情報フィルタリング
 - 自律分散・複雑系モデル
 - 知識獲得 / 学習モデル
 - GA/A-life
 - 感性情報処理
 - マルチメディア情報通信モデル

いずれの研究課題も非常に新しい技術であり、また学際的でもあります。最近でこそ内外の学会、研究機関で、特集論文や国際会議で頻繁に取り上げられ、注目されるようになりましたが、未だ体系化されがでていない領域であり、本研究会では、こうした技術の育成とそれを担う若手研究者の支援の場としての役割を果たしていきたいと考えております。

３ 研究会活動の展開方向

本研究会は、定常的には、年間6回を予定しております。また特に地方の研究者との交流の活発化を指針としており、開催研究会の約半数年間3回は地方開催とする方針でおります。

また若く、学際的な研究分野ですので、共催や共同シンポジウム、あるいは講習会を通じ、他研究会との研究課題の共有や発掘を、ま
た密度の濃い意見交換や暖かく懐の高い議論の場を可能な限り設けることで若手研究者の育成にも意を用いたいと考えております。
マルチモーダル情報の統合を目指して

言語理解とコミュニケーション研究会

委員長 石崎 俊（慶応義塾大学）

1. はじめに

自然言語は人間が情報を交換する最も手軽な手段ですが、コンピュータに捉わると最も手
だてない情報の一つであることはよく知られていると思います。

特に、意味や文脈を扱う分野で難しい課題に直面しています。文脈によって語の意味が異な
る多義性の問題や、文脈によって表現の仕方が微妙に変化する問題です。これは、少しでも人
間の言語能力に近づけるようとするならば避けて通れない課題です。

一方では、インターネットなどのネットワーク技術の発展と普及に伴って、マルチモーダルな
インタフェースの要素として自然言語が重要な役割を担っています。ここでも、人間とコン
ピュータの対話を扱う時に、会話文の解析、理解、生成は難しい課題を含んでいます。従来は
書き言葉を中心に研究してきたので、会話における自由な文の構文解析の難しさばかりで
なく、会話における省略や照応、焦点を扱う問題、話者の態度を扱うモダリティもこれから
の課題です。

そこでは、ネットワーク上での情報交換における画像や音声とのネットワーク的な情報
の統合や、手軽な機械翻訳などのニーズが注目されています。

このような観点から、本研究会では自然言語処理の基礎的な研究をしっかりと進めていく面
と、画像や音声なども考慮した新しい自然言語コミュニケーションの研究、さらにネットワーク
上の自然言語処理技術の開発などの分野を対

2. 研究テーマ

NLC研究会という略称は、Natural Language Understanding and Models of Communicationという英文名称から取ったもので、具体的には下記のような研究テーマを扱っています。

- 複合メディア（音声、画像など）上での自然言語コミュニケーションに関する研究
- 電子メール、Net News、WWWなどの情報ネットワーク上のシステムにおける自然言語処理研究
- だれも思いついていない、新しい自然言語処理に関する研究

自然言語処理の研究はコンピュータに発展される後1950年代から始めています。長
い歴史にもかかわらず、実用化という面ではコンピュータと人間の対話や、機械翻訳にしても
まだ十分とは言えないと思います。

しかし、最近のコンピュータネットワーク技術の進歩と普及、マルチモーダル情報の用いた
コミュニケーション技術の進歩によって、これから目覚ましい発展が期待されています。

3. 研究会活動

今年の5月から本研究会の委員長に新たに就
任しました。幹事に松下電器の杉村敦一氏と
NTT基礎研の堂坂浩二氏、幹事補佐に九州大
学の富浦邦彦氏が前年度から引き続いて就任
し、約35名の専門委員会委員の方々が中心に
なって研究会活動のまとめ役に当たります。こ
の研究会では、私は6代目の委員長に当たります
が、10年以上にわたってこの研究会を引っ
張って来た歴代の委員長を始め幹事、専門委員
会の委員の方々の努力で、年3回開催する研
究会には多くの論文が発表され、幅広い内容の
論考が展開されています。

例えば、最近の活動を振り返りますと、平
成6年度には15回の研究会に対して発表件数が
50件で、研究会の他に、「会議に基づく自然言語処理」という講習会（参加者46名）
と、「自然言語処理における学習」（参加者58名）というシンポジウムを開催しました。
このシンポジウムでは、一般発表が19件で、ショート発表が8件、チュートリアル2件でした。パネル討論では、「自然言語処理における学習研究の現状と今後の研究」がテーマになりました。また、コンピュータ向け会話として会話の能力を競う「Dialeague」が初めて提案されました。

平成7年度には、5回の研究会発表件数が82件ありました。講習会には「マルチモーダルコミュニケーションと自然言語処理」（参加者55名）、シンポジウムは「自然言語処理における文脈」（参加者37名）でした。このシンポジウムでは、一般発表が13件で、パネル討論は、「自然言語処理の再構築」と「対話リーグ戦をめぐって」でした。

毎年の研究会では、画像工学研究会と音声研究会にお願いして、この四分野の研究者の方たちと一緒に研究会をもち、交流を深めています。このような活動によってマルチモーダルな情報処理の発展に貢献できることを希望しています。また、情報処理学会の自然言語処理研究会と音声言語研究会とも共催で研究会を運営しています。

4. 平成8年度の計画

5月　大阪大学
7月 18-19日　豊橋技術科学大学
（情報処理学会自然言語研究会と共催）
主なテーマは、言語データからの知識獲得と応用、言語データに基づく言語処理、対話、翻訳など22件の発表を予定しています。
10月 11日　九州大学
発表申し込みの締め切りは8月20日です。
12月 12-13日　早稲田大学
（音声研究会、情報処理学会音声言語情報処理研究会と共催）
平成9年3月　東京（開催場所は未定）

また、9月には言語データと知識所有権に関する講習会を予定しています。11月にはソフトウェア科学会と共催でシンポジウムを例年どおり開催する予定で、テーマについて現在検討しています。

国際会議関係では、PACLING (Pacific Association for Computational Linguistics) は第1回を1993年にカナダで開催しました。これにより太平洋地区の計算言語学国際会議で、アジアの言語処理など従来ない特徴をもった国際会議です。第2回を1995年にオーストラリアで開催した後、第3回は1997年に日本で開催する予定です。

5 研究発表の申し込み

研究会文書の富浦洋一氏（九州大学工学部情報工学科）宛に電子メールかファックスで申し込んでください

電子メール: tom@lang.ai kyushu-u.ac.jp
ファックス: 092-632-5204

6. 研究会のホームページ

NLC 研究会のホームページは、
http://www.ieice.or.jp/jis/iss/nlc
/nlc-index-j.htm

です。ここに、今年度の詳しいスケジュールや研究発表の申し込み方法などが書いてありますので、参考にしてください。今後の研究会のスケジュールや内容、講習会、シンポジウムについても、決まり次第、このホームページに載せますので、最新情報は学会誌やソサイエティ誌以外にも、ここから得ることができます。

記事募集案内

編集委員会では、会員の皆様からの記事を募集しています。内容は、

・会議・講演会・セミナーの案内
・論文投稿案内や特集企画案内
・会議・セミナーへの参加報告
・研究会・研究室の紹介
・ソサイエティや各種委員会への要望
などです。このうち特に、会議や各種セミナーの開催案内および論文誌特集企画や論文投稿案内などにつきましては、簡単な情報でも結構ですので編集委員会にぜひお送り下さい。お送りが事務局へは面紙で、ソサイエティ誌第3号は11月初旬頃（原稿締切8月中旬頃）、第4号は来年2月初旬頃（原稿締切11月中旬頃）に発行する予定です。
複数・分散・小型コンピュータシステムの時代へ
コンピュータシステム研究会
委員長 柴山 潔 (京都工芸繊維大学)

コンピュータシステム研究会 (略称、CPSY) の前身は電子計算機研究会です。電子計算機研究会は、その名称通り、電子情報通信学会 (信学会) が「電子通信学会」と称してその名称に「情報」というキーワードがまだ無い時代に、「情報工学」や「情報科学」いわゆる「コンピュータサイエンス」のコンピュータサイエンスの研究を広くカバーしていました。その後、この研究分野はソサイエティを形成できるほどに拡張・拡拡されたのは ISS 会員各位の知るところです。

このような、情報分野の発展とともに、電子計算機研究会も変容を迫られました。対象分野の焦点を絞る必要が生じたのです。まず、総合的な研究会名称では何を研究対象としているか不明確なので、1986年4月に現在の研究会名稱「コンピュータサイエンス (CPSY)」に改称されました。さらに、当時のメインフレーム中心の単一・集中・大型コンピュータシステムからマイクロプロセッサ中心の複数・分散・小型コンピュータシステムへの時代の変遷とともに、CPSY研究会も徐々にカバーする研究分野を次のようにシフトあるいはフォーカスしてきみました。

数年前から CPSY 研究会は次のような明確な運営方針を打ち立て、活動しています。

1. コンピュータサイエンスを支える基盤技術としてのコンピュータシステムについて、具体的なネットワークシステムを設定すること。

2. 情報処理過程の機能階層別に横割りした研究分野、個々ではカバーできない縦断的で幅広い研究テーマを取り上げること。

1. については、コンピュータハードウェアとコンピュータソフトウェアとのインタフェースとしてのコンピュータアーキテクチャやシステムプログラムなどを、2. については、並列／分散処理やデバイス技術との接点などを、それぞれ特集テーマとして取り上げてきました。

これらの特集テーマは、時限の許す限り定常化し、本学会の他研究会及び関連学会の研究会などと提携・共催することで、それぞれのテーマに関する研究者が縦断的に集まって研究討論を行う場を提供しています。

そこ数年間に定常化している CPSY 研究会の特集テーマとしては次のようなものがあります。

（1）並列／分散処理
近年で重要な研究テーマとなっている並列／分散処理では、理論から応用までの幅広い分野に研究テーマが散在しており、これを相異なる観点から包括的に討議する場が必要です。CPSY研究会は、初夏に京都で開催される「並列処理シンポジウム (JSPS)」を他研究会や学会と共に共催しているほか、夏にはリソートゾーンで連続開催される研究会週間である「並列／分散／協調処理に関するサンマーケクショップ (SWoPP)」の一環を担っています。JSPSもSWoPPもいずれも300人程度の研究者が出揃い参加する会議であり、国内はもちろん国外からのリモティングリサーチ論文が集まります。JSPSはフィルスバーの厳しい査読付きで、ある程度の成果が出ている研究を対象とし、会議後には共催学会からJSPS関連研究の論文誌特集号も刊行されます。一方、SWoPPは特集研究会の位置付けで、通常の研究会と同様に、速報性を重視しています。

（2）コンピュータアーキテクチャ
コンピュータアーキテクチャをコンピュータハードウェアとプログラミング言語処理系要素システムのシステムプログラムとのトレードオフと捉える立場から、コンピュータシステムの基盤技術であるハードウェアアーキテクチャとシステムソフトウェアとにまたがる研究テーマの特集を組んでいます。例えば、昨年度(1995年)は情報処理学会の OS 研究会と「マルチメディア処理に関するシステム要素技術」、今年度(1996年)は同じく OS 研究会とアーキテクチャ研究会との共催で「言語処理/OS 支援アーキテクチャ」のそれぞれ特集を組み、い
ずれも2日間に渡り20件以上の研究発表が行われました。

(3) コンピュータシステムの応用

種々の専門分野を支援するためのコンピュータシステムについての特集を組んでいます。例えば、実時間処理 (「実時間処理に関するワークショップ (RTP)」), マルチメディア処理、データベース処理、ネットワークコンピューティングなどです。

(4) デバイス技術とコンピュータハードウェア

ハードウェアアーキテクチャとデバイス技術との接点を扱った特別セッションです。関連学会とも共催して、例えば、メモリシステム、新VLSIアーキテクチャなどを特集として組んでいただきました。

【会議報告】

ICASSP-96出席報告
川端 豪 (NTT基礎研究所)

ICASSP (IEEE International Conference on Acoustics, Speech, & Signal Processing) は、音響・音声・信号処理分野最大級の国際会議であり、1976年のフィラデルフィア開催から数えて、本年は20周年を迎えます。その21回目のICASSP-96が、5月7日から10日までの4日間にわたり米国ジョージア州アトランタ市マリオットマキシードホテルにて開催されました。今回の大会には、1740件の論文が投稿され、そのうち350件が採択されました。採択率は52% といったところ出席者数は1840人にのぼるアトランタの街は、2カ月後のオリンピック開催を目前に眺めているところ工事中ではあったが、活気にあふれていました。

この会議において、いくつかの新基軸が試みられた。一つの試みは、会術、連絡、出版などの会議開催の各過程における、電子媒体の効果的な利用である。インターネット上にICASSP-96のWorld Wide Webホームページを開設し、初期の段階から、各種開催情報のアナウンスは、論文査読状況の即時公開、電子アブストラクト提出状況表示などが行われた。作業が進むにつれて、開催プログラムやカンファレンスガイド（アブストラクト冊）に最終的に論文集までネットワーク上で公開されます。これに対して、論文集のCD-ROM化が進められている。表題やアブストラクトなどのテキストの部分は、Adobe社のPDF形式、WWWのページ記述に用いられるHTML形式、プレーテキスト形式などで記述されており、検索に便利なように配慮されている。本文のほうは、昨年同様に原稿をスキャナでとれていて、TIFF形式にしたものに加え、本年より各著者の作成したPostScript形式のファイルが提供されるようになった。また一部の著者の提供によるオーディオファイルも添付されるようになった。これらの全てを含む1枚のCD-ROMが、各UNIXワークステーション、Macintosh、Windowsックスシなどの複数のプラットフォームから利用できる。Hard copy proceedingsの価格が95ドル、additional CD-ROMの価格が20ドルというのも示唆的である。また、プロフィール文集を抱えて歩く時代ではないことも知れない。会場の数箇所に数台ずつ、CD-ROM検索用のマシンが設置され、自由に使えるようになっていた。

本年の会議におけるもう一つの試みは、Pleary sessionsの充実である。会期中、分野別のセッションが始まる前の時間帯（10:00-10:00）に運営セッションが開けられ、種々の話題が提供された。

(Tue) R. Schefer (Georgia Institute of Tech.) "A Personal Tribute to Some Pioneers of DSP"
(Wed) D. Salesm (Univ of Washington) "Multi-resolution Image", (Thu) R. W. Picard (MIT): "Signal Processing is Alive at the Media Lab", (Fri) M. Kunt (Federal Institute of Technology): "Image Compression"

例えば、水曜日の「多重解像度画像」の講演では、一枚の画像中に複数の解像度を混在させるパラダイムを中心に、多重解像度画像の編集・検査技術が紹介された。この技術を用いると、人工衛星からみた地球画像の一部をどこでも拡大して町並みにとどりつく表示ができ、またラフスケッチを解像度の低い画像とみなし、データベース中の高解像度画像と照合することによって、手書き図からの画像検索が行える。基盤となる技術は2次元WaveletであるSIGGRAPH-96で発表予定と前向きなフラクタル動画の局所をどんどん拡大していくデモは圧巻であった。

さて、4日間の会期に8分野92セッションが配置され、例年通りの過密なスケジュールが展開された。セッションの分野構成には大きな変更はないが、違いは、昨年はスペシャルセッションであったUA(Underwater Acoustics Signal Processing)が、今年は一例分類キーを獲得した点、またNN関連の話題が、PRNN(Pattern Recognition and Neural Networks for Signal Processing)という分類キーになった点くらいか。もはや紙面もつきたが、最後に、筆者の研究分野である音声認識・理解関連の研究動向について触れおこう。昨年まではDARPA絡みの性能競争があり、この分野における競争一大関心事であったが、今年はこの状況は鎮静し、むしろ新しい技術の方向性を模索するような発表が多かった。厳しい競争のあとに多様化、分野の成熟にきて、とても有用なことだと思う。

国際会議案内

● 2nd Workshop on Computability and Complexity in Analysis(CCA’96)
日時：Aug 22-23, 1996
場所：Universitas Trier, Germany
http://www.informatik.uni-trier.de/cca-96/

● パターン認識国際会議（ICPR’96）
日時：Aug 25-30, 1996
場所：ウィーン工科大学（オーストリア．ウィーン）
http://www.prrp.tuwien.ac.at/icpr/icpr.html

● Machine Perception Applications ワークショップ
日時：Sept 2-4, 1996
場所：グラーツ工科大学（オーストリア．グラーツ）
poefzeitner@pbox.joanneum.ac.at

● 1st Intl Workshop on Rewriting Logic and Its Applications
日時：Sept 3-6, 1996
場所：Asilomar Conf Center(Pacific Grove,California)
http://www.esl.stri.com/RWLV96

● 信号処理のためのニューラルネットワークに関するIEEE Workshop
日時：Sept 4-6, 1996
場所：けいはんな（京都）
shuoj@hp atr.co.jp

● 情報学会に関するヨーロッパ会議（19th ECVP）
日時：Sept 9-13, 1996

場所：Universite Louis Pasteur France
bee@currfl u-strasbg fr

● IEEE Int’l Workshop On Embedded Fault-Tolerant Systems
日時：Sept 9-10, 1996
場所：Dallas, Texas
atd@ccr.cornell.edu

● World Congress on Neural Networks
日時：Sept 15-20, 1996
場所：San Diego, USA
75457 504@compuserve.com

● 画像処理国際会議
日時：Sept 16-19, 1996
場所：EPFL, Lausanne, Switzerland
http://www.tele.ucl.ac.be/ICIP96/

● パーセナルシステム・マルチメディア国際会議’96
日時：Sept 18-20, 1996
場所：長良川国際会議場（松本）
vsinn-sec@mio.gifu-u.ac.jp

● 6th Intl Workshop Field Programmable Logic and Applications
日時：Sept 23-25, 1996
場所：Darmstadt, Germany
tsuki@elec chuo-u.ac.jp
• 7th Int'l Conf on Neural Information Processing
日時：Sept 24-27, 1996 場所：Hong Kong
http://www.cs.cuhk.hk/ik/icom96

• 4th European Symp on Research in Computer Security (ESORICS'96)
日時：Sept 25-27, 1996 場所：Rome, Italy
bettino@disunige.it

• 3rd IEEE Workshop on Interactive Voice Technology for Telecommunications Applications (IVTTA-96)
日時：Sept 30-Oct 1, 1996 場所：The AT & T Learning Center 300 N Maple Ave Basking Ridge, NJ 07970 USA
http://superbook.bellcore.com/IVTTA.html

• 7th Int'l Conf on Architectural Support for Programming Languages and Operating Systems (ASPLOS-VII)
日時：Oct 2-4, 1996 場所：Cambridge, MA, USA

• 非線形理論とその応用国際会議
日時：Oct 7-9, 1996 場所：横浜,高知
http://www.is.tokushima-u.ac.jp/misc/NOLTA96/
summary-info.html

• Int'l Workshop on HDTV '96
日時：Oct 7-8, 1996 場所：Los Angeles, USA
問合：藤井哲郎 (NTT) 0468-59-3032

• 画像処理シンポジウム PCSJ
日時：Oct 7-9, 1996 場所：横浜, 元町
問合：渡辺裕 (NTT) 0468-59-2823

• 10th Int'l Workshop on Distributed Algorithms (WDAG'96)
日時：Oct 9-11, 1996 場所：Bologna, Italy
http://www.cs.unibo.it/wdag/

• Workshop on Document Analysis System
日時：Oct 14-16, 1996 場所：Malvern, Pennsylvania, USA
http://www.vfl.paramax.com/pub/das/

• 4th Symp on the Foundations of Software Engineering (ASM SIGSOFT'96)
日時：Oct 16-18, 1996 場所：San Francisco, USA
http://www/csl.sri.com/sigsoft96

• 5th Int'l Conf on Computer Comm and Networks
日時：Oct 16-19, 1996 場所：Rockville, USA
lee@research.att.com

• 2nd IEEE Int'l Conf on Engineering of Complex Computer Systems (ICECCS'96)
日時：Oct 21-25, 1996 場所：Montreal, Canada
alex@vulcan.nyu.edu

• Int'l Test Conference

日時：Oct 22-24, 1996 場所：Washington, DC
myco@hs ting nec co.jp

• 7th Int'l Workshop on Algorithmic Learning Theory (ALT'96)
日時：Oct 23-25, 1996 場所：Sydney, Australia
http://www.cse.unsw.edu.au/~alt96/

• 15th IEEE Symp on Reliable Distributed Systems
日時：Oct 23-25, 1996 場所：Niagara-on-the-lake, Canada
fuchs@crhc.uiuc.edu

• 8th IEEE Symp on Parallel and Distributed Processing
日時：Oct 23-26, 1996 場所：New Orleans, USA
shira@jupiter.uta.edu

• 3rd Int'l Conf on Massively Parallel Processing Using Optical Interconnections (MPPOL'96)
日時：Oct 27-29, 1996 場所：Maui, Hawaii
MPPOL@RESEARCH.NJ.NEC.COM

• 6th Symp on the Frontiers of Massively Parallel Computation
日時：Oct 27-31, 1996 場所：Annapolis, Maryland, USA
http://cesdis.gsfc.nasa.gov/front96.html

• IEEE Visualization'96
日時：Oct 27-Nov 1, 1996 場所：San Francisco, USA
nejohnston@lbl.gov, bhill@rberkeley.com

• 1996 Int'l Conf on Network Protocols (ICNP-96)
日時：Oct 29-Nov 1, 1996 場所：Columbus, Ohio, USA
ural@crs.ohio-state.edu

• Int'l Conf on Software Maintenance
日時：Nov 4-8, 1996 場所：Monterey, California, USA
http://www/ervist/na/se/csm96.html

• 4th Int'l Workshop on Rough Sets, Fuzzy Sets and Machine Discovery (RSFD’96)
日時：Nov 6-8, 1996 場所：Tokyo
nakamura@cs.meij.ac.jp

• Int'l Conf. on Formal Methods in Computer-Aided Design (FMCD'96)
日時：Nov 6-8, 1996 場所：Palo Alto, CA, USA
http://www/csl.sri.com/FMCD96

• 9th Int'l Symp on System Synthesis (ISSS'96)
日時：Nov 6-8, 1996 場所：La Jolla, CA, USA
http://cs.ucr.edu/iss96/

• Int'l Conf. on Computer Aided Design (ICCAD'96)
日時：Nov 10-14, 1996 場所：San Jose, CA, USA
http://www.e2w3.com/ ICCAD.html
情報・システムソサイエティ誌 第1巻第2号

● IAPR Workshop on Machine Vision Applications
日時：Nov. 12-14
場所：慶應義塾大学三田キャンパス
http://www.etl.go.jp/6808/etl/gazou/mva96/

● Int'l Conf on Multimedia Modeling (MMM'96)
日時：Nov. 12-15, 1996
場所：Toulouse, France
http://www.ens-lyon.fr/~mmm96

● 5th Int'l Conf on Information and Knowledge Management (CIKM'96)
日時：Nov. 12-16, 1996
場所：Rockville, USA
http://www.cs.umd.edu/~dbgroup/cikm96/

● 8th IEEE Int'l Conf on Tools with Artificial Intelligence (ICTAI'96)
日時：Nov. 16-19, 1996
場所：Toulouse, France
marquis@loria.fr or

● Computer-Supported Cooperative Work (CSCW’96)
日時：Nov. 16-21, 1996
場所：Boston, MA, USA
http://info.usb.ch.ac.tcsch/w96/

● ACM/IEEE SUPERCOMPUTING'96
日時：Nov. 17-22, 1996
場所：Pittsburgh, Pennsylvania
http://www.supercmp.org/cs96/

● The 5th Asian Test Symp
日時：Nov. 20-22, 1996
場所：Hsinchu, Taiwan
http://www.smt.ee.uthu.edu.tw/cww/ats96/ats96.html

● SASIMI'96 (The 6th Workshop on Synthesis and System Integration of Mixed Technologies)
日時：Nov. 25-26, 1996
場所：福岡ソフトウェアリサーチパーク
http://www.is.kyushu-u.ac.jp/8080/SOSHIKI/SASIMI/sasimi.html

● Neural Information Processing Systems
自然と合成
日時：Dec. 2-7, 1996
場所：Denver, USA
http://www.cs.cmu.edu/Web/Groups/NIPS

● 1996 Asia-Pacific Software Engineering Conf (ASEP’96)
日時：Dec. 4-7, 1996
場所：ソウル
kck@vision.postech.ac.kr

● 1996 Winter Simulation Conf
日時：Dec. 8-11, 1996
場所：San Diego, CA, USA
75010 224@compuserve.com

● 2nd Int'l Conf. on Multiagent Systems (ICMAS’96)
日時：Dec. 9-13, 1996
場所：京都
http://www.tti.jp/ICMAS96/index.html

● 7th Ann Int'l Symp on Algorithms and Computation (ISAAC'96)
日時：Dec. 16-18, 1996
場所：大阪
muynano@ms.u-tokyo.ac.jp

● 16th Conf on the Foundations of Software Technology and Theoretical Computer Science (FST&TCS'96)
日時：Dec. 18-20, 1996
場所：Hyderabad, India
http://www.csa.usc.ernet.in/fstcs96.html

● 4th Int'l Conf on Parallel and Distributed Information Systems (PDIS’96)
日時：Dec. 18-20, 1996
場所：Miami Beach, USA
http://pandra.cs.binghamton.edu/pdis96.html

● 3rd Int'l Conf on High Performance Computing (HiPC’96)
日時：Dec. 19-22, 1996
場所：Trivandrum, India
http://www.ucsc.edu/dept/ceng/prasanna/home.html

● Int'l Conf on Intelligent User Interfaces
日時：Jan. 6-9, 1997
場所：Orland, FL, USA
puerta@cami.sanford.edu

● 6th Int'l Conf on Database Theory (ICDT’97)
日時：Jan. 8-10, 1997
場所：Delphi, Greece
http://www.softlab.ece.ntua.gr/public/AD/ICDT97.html

● Symp on Principles of Programming Languages (POPL’97)
日時：Jan. 20-24, 1997
場所：北アメリカ
ryder@cs.rutgers.edu

● 5th Euromicro Workshop on Parallel and Distributed Processing
日時：Jan. 22-24, 1997
場所：London
http://www.ele.vtt.fi/

● ASP-DAC’97 (Asia and South Pacific Design Automation Conf 1997)
日時：Jan. 28-31, 1997
場所：満州メソッド
問合せ：コンペックス phone: 03-3589-3355

● IEEE Inforcom'97
日時：Apr. 7-11, 1997
場所：神戸
http://arreggio.iees.osaka-u.ac.jp/informcom.html

● The 34th Design Automation Conf (DAC'97)
日時：June 9-13, 1997
場所：Anaheim, CA, USA
M P Associates, Inc, 5305 Spine Road, Suite A, Boulder, CO 80301 USA;
tel: +1-303-530-4333

● 第4回文書言語解析理解国際会議 (ICDAR’97)
日時：Aug. 18-20, 1997
場所：Maritim Hotel (ドイツ, ウルム)
http://www.icdar97.dbag.uni-darmstadt.de/
東京大学医学研究所ヒトゲノム解析センター
DNA情報解析分野宮野悟研究室

この研究室は、今年4月から新しいメンバーによりスタートしました。その研究は、核酸配列及びタンパク質等に関する生物情報を対象として、知識の発見、情報の解析、知識ベース化等のための知識情報処理システムを研究・開発し、それらを提供すると共に、関連するアルゴリズム、計算量、計算学習理論などその基礎となる研究を行っています。ゲノム情報という新しい情報科学の分野として成長させていきたいと考えています。研究スタッフは、助教授の阿久津達也、助手の丸山修、教務職員の立石恵利佳それに私の４名で、このカルテットを支えてくれているのが秘書の富安彩子さん（写真右）です。学生は２名ですが、大学院は理学系研究科情報科学専攻の協力講座になっていますのでこれからというところです。

ゲノム情報に関するスタッフのこれまでの研究活動は以下のようにになっています。

（１）知識発見システムの研究・開発
タンパク質のアミノ酸配列データや核酸配列データから、その配列データを特徴付ける仮説を発見するための知識発見システムBONSAIを開発しています。このシステムは、確率的近似学習とよばれる学習方式及び探索技法に基づいて研究成績に基づいて設計されています。さらに、知識発見の対象となるデータが、ノイズを含んでいたり多様な種類の配列の混成物である場合に対応するために、データの分類と知識発見のための並列システムBONSAI Gardenの開発も行っています。

（２）タンパク質立体構造の比較と推定
データベースに登録されているタンパク質立体構造データを比較・分類するための方法、および、アミノ酸配列データとタンパク質立体構造を推定する方法を計算理論や計算機シミュレーション等を用いて研究・開発しています。

（３）ゲノム情報解析のアルゴリズムの研究
モチーフ発見の困難さを計算量理論の中で理論的に解明する研究を行ない、確率技法を用いたモチーフ発見アルゴリズム等を開発しています。

日本のヒトゲノム研究についてさらにご興味のある方は
http://www.hge.ims.u-tokyo.ac.jpをご覧になってください。
1 概要

(株)富士通研究所 ネットメディアアシテュム研究所ネットメディア研究センターは昨年6月、ネットワークを活用した新しい情報サービスの研究を行うために、情報や通信の分野のインターネットに興味を持つ研究員約40名で発足しました。今年4月からは川崎と福岡に支部が設けられ、『場所を意識しない情報環境の構築』を一つの目標に、蜘蛛の巣のように世界中に張り巡らされたネットワークをいかにうまく使いこなしていくかという、巨大であるが21世紀のネットワーク社会には欠かせない技術の研究に、研究員は一丸となって取り組んでいます。また、ネットワークを通じた国際交流も盛んになっていくことから、特に福岡の部隊には、アジアとの交流の拠点となることも期待されています。

2 研究内容

ネットメディア研究センターでは、ネットワーク社会における巨大に多様な情報や分散する情報をうまく活用する新しい情報サービスを実現するために、マルチエージェント技術を用いたシステムの研究を行っています。以下、グループ別に研究内容を紹介します。

ネットエージェントグループ
インターネット上でマルチエージェントシステム(MAS)を構築するための技術の研究を行っています。具体的には、TApril (http://www.fujitsu.co.jp/hypertext/Products/Software/April/) と呼ばれるMASを構築するためのプログラミング言語の開発、それを用いたアプリケーションの開発を行っています。

スマートシステムグループ
AIの機能学習分野において、学習アルゴリズムの挙動に関する理論的研究や類似文書事例検索システムの構築を行なってきたので、その技術をインターネット上の情報検索やフィルタリングに適用する研究を行っています。また、知的エージェント環境 SAGE (Smart AGent Environment) では、膨大なネットワーク上のリソースを簡単に使用するような環境を研究しています。

エマージェントシステムグループ
センサーファージョン、マルチモーダル情報処理、ニューラルネットワーク等の技術をベースに、エージェント間通信を利用した自律型サービスロボット SERVANT の開発を行なっています。また、この技術とネットワークを利用し、遠隔地との共同作業システムの構築も行っています。

モーバイルエージェントグループ
PHS 内蔵型携帯端末向けのエージェントシステムの研究を行っています。このシステムは、エージェントが無線伝送制御やユーザの端末に合わせた情報変換を行う、モーバイル環境に適した情報サービスを実現します。

パソコンエージェントグループ
エージェントによるパソコン通信の研究を行っています。個人専用のネットワークプロセス (パソコンエージェント) を仲介役とする異種機能接続のパソコン通信システム DUET を開発しています。

3 研究設備

ネットワーク化されたWSやPCを一人一台以上持ち、携帯端末、電子手帳などもLANにリンクしています。このLANは、FJ1と呼ばれる富士通のWANに繋がっており、富士通内外のネットワーク上の資源を利用することが可能です。また、川崎・福岡間にGM/bpsの回線をはり、TV会議や遠隔地との情報交換実験も行っています。
情報・システムソサイエティ誌第1巻第2号

情報・システムソサイエティ組織図 / ソサイエティ誌編集委員

情報・システムソサイエティ次期会長に就任について

おめでとう論文賞

網膜と皮質の不均一性を考慮した注視点移動モデル

微小重力を環境下におけるコイ小脳脳波の解釈

木構造者クラスタリングを用いた話者適応

研究会だより

フォーラムトレラントシステム研究会

人工知能と知識処理研究会

言語理解とコミュニケーション研究会

コンピュータシステム研究会

会議報告

ICASSP-96 出席報告

国際会議案内

研究室めぐり

東京大学医学研究所 ヒトゲノム解析センター DNA情報解析分野 宮野悟研究室

(株) 富士通研究所 ネットメディア研究センター

編集委員募集 (編集後記に答ええて)