
Effective Mining Sequential Pattern by Last Position Induction

Zhenglu Yang and Masaru Kitsuregawa
The University of Tokyo

Institute of Industrial Science
4-6-1 Komaba, Meguro-Ku

Tokyo 153-8305, Japan
{yangzl,kitsure}@tkl.iis.u-tokyo.ac.jp

Abstract

Sequence pattern mining is an important research prob-
lem because it is the basis of many other applications.
Yet how to efficiently implement the mining is diffi-
cult due to the inherent characteristic of the problem -
the large size of the data set. In this paper, by combin-
ing SPAM, we propose a new algorithm called LAst Po-
sition INduction Sequential PAttern Mining (abbreviated
as LAPIN-SPAM), which can efficiently get all the fre-
quent sequential patterns from a large database. The
main difference between our strategy and the previ-
ous works is that when judging whether a sequence is
a pattern or not, they use S-Matrix by scanning pro-
jected database (PrefixSpan) or count the number by join-
ing (SPADE) or ANDing with the candidate item (SPAM).
In contrast, LAPIN-SPAM can easily implement this pro-
cess based on the following fact - if an item’s last position is
smaller than the current prefix position, the item can not ap-
pear behind the current prefix in the same customer se-
quence. When scanning the database for the first time,
LAPIN-SPAM will construct the ITEMIS EXISTTABLE.
Then in every recursive, it only needs to check this ta-
ble, avoid constructing S-Matrix, joining or ANDing. Be-
cause of the recursive characteristic in this research
area, LAPIN-SPAM can save much time by improving ef-
ficiency for each recursive. The experimental results
confirm that our algorithm outperforms previous algo-
rithms.

Keywords Data Mining, General Mining, Knowledge
Discovery.

1. Introduction

Sequential pattern mining is an important research theme
because it is the basis of many applications. Consider the

sales database of a store. If we know that ”80% of the per-
sons who buy television also buy video camera within a
week”, we can efficiently use the shelf space to convenient
the customers. Another business example is that if we know
that every time Microsoft stock drops 5%, IBM stock will
also drops at least 4% within three days, we can properly
decide what to do when economic problem happens. Se-
quential pattern mining is also used in biological data [12],
telecommunication network analysis [1], web access click
stream [9], and so on.

In the knowledge discovery and data mining research
area, there exist some common methods. Basic level statis-
tical analysis [3] is the most common way to extract knowl-
edge. Clustering [10] is also used because it is very use-
ful, especially when the customer data is merged with the
demographic data to generate the customer segmentations.
Classification [11] can also be used to categorize customers
based on the related information and properties. Since the
time important attribute of each dataset, sequence mining
plays an important role in knowledge extraction from many
databases.

Sequence discovery can essentially be thought of as as-
sociation discovery over a temporal database. While asso-
ciation rules [13] discover only intra-event patterns (item-
sets), sequential pattern mining discovers inter-event pat-
terns (sequences). The set of all frequent sequences is a su-
perset of the set of frequent itemsets.

1.1. Problem Definition

Based on the problem definition in [2], asequence
databaseS is a set of customer〈cid, s〉, where cid is a cus-
tomer id and s is a customer sequence. Asequences is de-
noted as(s1, s2, . . . , sl), where si is an itemset, or can
be called anelement, which is a set ofitems. The num-
ber of items in a sequence is called thelength of the se-
quence. A sequence with lengthl is called anl− sequence.
A sequencesa = (a1, a2, . . . , an) is contained in an-
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other sequencesb = (b1, b2, . . . , bm), if there exist in-
tegers1 ≤ i1 < i2 < . . . < in ≤ m such that
a1 ⊆ bi1 , a2 ⊆ bi2 ,. . . , an ⊆ bin . We can callsa

a subsequence of sb and sb a supersequence of sa.
Given a sequences = (s1, s2, . . . , sl) and an item
α, s ¦s α means s concatenates withα whose name
is sequence extension, s ¦s α=(s1, s2, . . . , sl, {α}), de-
noted asS−step. s¦iα means s concatenates withα whose
name isitemset extension, s ¦i α=(s1, s2, . . . , {sl, α}), de-
noted asI − step.

A customer〈cid, s〉 is said to contain a sequenceα, if α
is a subsequence of s. The support of a sequenceα in a se-
quence database S is the number of customer sequences in
the database containingα, denoted assupport(α). Given a
user specified positive integerε, a sequenceα is called a fre-
quent sequential pattern ifsupport(α) ≥ ε. In this paper,
our objective is to find the complete set of sequential pat-
terns in the database in an efficient way.

CID Customer Sequence
10 ac(bd)c(ab)
20 b(cd)acd
30 a(bc)(acd)c

Table 1. Sequence Database

Example. Let our running database be sequence database
S given in Table 1 and minsupport=2. We will use this sam-
ple database throughout of this paper. We can see that the set
of items in the database is{a,b,c,d}. A 2-sequence〈ac〉 is
contained in the customer sequence 10, 20 and 30, respec-
tively. So the support of〈ac〉 is 3, which is larger than the
user specified minimum support, from where we can know
that〈ac〉 is a frequent pattern.

1.2. Related Works

The problem of mining sequential patterns was first in-
troduced in [5], in which they presented three algorithms
for solving sequential pattern mining problem. The Aprio-
riAll algorithm was shown to perform better than the other
two approaches. In [2], the same authors proposed the GSP
algorithm. GSP strategy generates candidate k-sequences
from frequent (k-1)-sequences in iteration based on the
anti-monotone property that all the subsequences of a fre-
quent sequence must be frequent. The authors also intro-
duced maximum gap, minimum gap, and sliding window
constraints on the discovered sequences.

Zaki [6] proposed SPADE to find frequent sequences us-
ing efficient lattice [8] search techniques and simple join

operations. It divides the candidate sequences into groups
by items such that each group can be completely stored in
the main memory. At first the sequence database is trans-
formed into a vertical ID-List database format, in which
each id is associated with corresponding items and the time
stamp. There are two methods used in SPADE to enumerate
frequent sequences: Breadth First Search (BFS) and Depth
First Search (DFS). It computes the support count of a can-
didate k-sequence generated by merging the ID-Lists of any
two frequent (k-1)-sequences with the same (k-2)-prefix in
each iteration. Ayres et al. [4] proposed SPAM algorithm,
which is built based on SPADE’s lattice concept but repre-
sents each ID-List as a vertical bitmap. The detail of SPAM
will be described in Section 2.2.

GSP, SPADE and SPAM algorithms can be categorized
as candidate-generate-test method. On the other hand, Pei
et al. proposed a pattern growth algorithm named PrefixS-
pan [7], which employs the projection scheme to project the
customer sequences into different groups calledprojected
databases. All the customer sequences in each group have
the same prefix. For the example database in Table 1, the
PrefixSpan algorithm first scans the database to find the fre-
quent 1-sequences, i.e.〈a〉, 〈b〉, 〈c〉 and 〈d〉. Then the se-
quence database is divided into different partitions accord-
ing to these frequent items, each partition is the projec-
tion of the sequence database that take the corresponding
1-sequence. For these projected databases, the PrefixSpan
algorithm continues the discovery of frequent 1-sequences
to form the frequent 2-sequences with the corresponding
prefix. Recursively, the PrefixSpan algorithm generates the
projected database for each frequent k-sequence to find fre-
quent (k+1)-sequences. To get the sequence pattern, Pre-
fixSpan constructs a S-Matrix in each recursive step, it
spends much time on the support counting due to the in-
herent characteristic of this research area - large number of
the iterations.

As proposed in [16] , all of these algorithms use some
common strategies such as candidate sequence pruning,
database partitioning and customer sequence reducing.

1.3. Overview of our algorithm

Instead of ANDing operation and comparison when test-
ing the candidate items, we can directly accumulate the sup-
port of them by checking ITEMIS EXIST TABLE.

In some customer sequence, if the last position of some
item is smaller than the current position, it means that the
item will not appear behind the current prefix in the same
customer sequence. For example, we know that the first po-
sitions of itema in Table 1 are 10:1, 20:3, 30:1, where
sid:eid represents the customer sequence ID and the ele-
ment ID. We can see that the last position of itemb in the
customer sequence 20 is 1, smaller than the first position of



item a which is 3. It means that itemb cannot appear be-
hind itema in the same customer sequence.

From the above analysis, we know that our proposed al-
gorithm can implement support counting by avoiding
to ANDing, compare or construct and scan the pro-
jected database to find all frequent patterns.

The main difference between our algorithm and all algo-
rithms proposed before is that when judging a sequence is a
pattern or not, they use comparison, ANDing or S-Matrix,
which need to implement in every recursive step. But for the
LAPIN-SPAM, we can directly accumulate the candidate’s
support by using ITEMIS EXIST TABLE, which is con-
structed while scanning the database for the first time. Be-
cause the unavoidable large iteration when mining, our pro-
posed algorithm can effectively reduce the cost used to test
the candidates.

From the experiments we have done, which we will ex-
plain in detail in Section 3, it can be seen that our algorithm
outperforms the current fastest algorithm, named SPAM,
what confirms the efficiency of our algorithm.

The rest of this paper is organized as follows: In sec-
tion 2 we introduce the detail of LAPIN-SPAM algorithm.
In section 3 the experiment of comparing LAPIN-SPAM
and SPAM is presented. Finally we make a conclusion and
present future works in section 4.

2. LAPIN-SPAM (LAst Position INduc-
tion Sequential PAttern Mining)

2.1. Lexicographic Tree

Because our LAPIN-SPAM algorithm is built based
on SPAM, we use the lexicographic tree, which was also
shown in[4][15] as the search path of our algorithm. Fur-
thermore, we apply the lexicographic order which is de-
fined in the same way as in[4]. It uses the depth first
search strategy. Fig. 1 shows a sample of the lexico-
graphic tree. We obey the following rules based on DFS:

(a) if γ
′
= γ ¦ θ, thenγ < γ

′
; (Search the pref-

ix first, then the sequence. For example, we first
search〈a〉, then〈(ab)〉.)

(b) if γ = α ¦s θ andγ
′
= α ¦i θ, thenγ < γ

′
;

(Search the sequence-extension first, then the
itemset-extension. For example, we first
search〈ab〉, then〈(ab)〉.)

(c) if γ = α ¦ θ andγ
′
= α ¦ θ

′
, θ < θ

′
indi-

catesγ < γ
′
. (For two sequences which have the

same prefix, search them based on the alpha-
betic order of the postfix. For example, we
first search〈aa〉, then〈ab〉.)

Because our algorithm is built based on SPAM [4], first
we will introduce SPAM.

Figure 1. Lexicographic Tree

2.2. SPAM

Ayres et al. [4] proposed SPAM algorithm, which uti-
lizes a bitmap representation of the database. While scan-
ning the database for the first time, a vertical bitmap is con-
structed for each item in the database, and each bitmap has
a bit corresponding to each element of the sequences in the
database. If an item appears in an element, the bit corre-
sponding to the element of the bitmap for the item is set
to one; otherwise, the bit is set tozero. The size of a se-
quence is the number of elements contained in the sequence.
A sequence in the database of size between2k + 1 and
2k+1 is considered as a2k+1-bit sequence. The bitmap of
a sequence will be constructed according to the bitmaps of
items contained in it.

To generate and test the candidate sequences, SPAM uses
two steps: S-step and I-step, based on the lattice concept. As
a depth-first approach, the overall process starts from S-step
and then I-step. To extend a sequence, the S-step appends
an item to it as the new last element, and the I-step appends
the item to its last element if possible. Each bitmap parti-
tion of a sequence to be extended is transformed first in the
S-step, such that all bits after the first bit with value one are
set to one. Then the resultant bitmap of the S-step can be
obtained by doing ANDing operation for the transformed
bitmap and the bitmap of the appended item, as shown in
Fig. 2 based on the example database in Table 1. On the
other hand, the I-step just uses the bitmaps of the sequence
and the appended item to do ANDing operation to get the re-
sultant bitmap, as shown in Fig. 3. The support counting be-
comes a simple check how many bitmap partitions not con-
taining all zeros. Yet for the inherent characteristic existed
in the sequential pattern mining problem, these ANDing op-
erations cost a lot during the whole mining process, which
should be reduce for efficiency improving.

According to the two processes existed in SPAM, it uses
two pruning techniques: S-step pruning and I-step pruning,
based on the Apriori heuristic to minimize the size of the
candidate items.



Figure 2. SPAM S-step join

Figure 3. SPAM I-step join

2.3. LAPIN-SPAM

Although the authors of SPAM claim that they efficiently
count the support of the candidate, we have found more ef-
ficiency improving space in this support counting process.

In SPAM, to judge a candidate is a pattern or not, it does
as many ANDing operation as to the number of customers
involved. For example, if there are 10000 customers in cer-
tain dataset, it will cost 10000 ANDing operation time for
each candidate item testing. Consider the recursive charac-
teristic in the implementation, this cost is too big. So how
to avoid this ANDing operation becomes essential step.

As mentioned earlier, if given a current position in cer-
tain customer, we can know which items are behind cur-
rent position and which are not based on the last position of
them. So a naive method to judge a candidate is to compare

the last position of it with the current position. This is in
fact the same cost as ANDing operation in SPAM. To avoid
this comparison or ANDing operation, we can construct a
ITEM IS EXIST TABLE when scanning the database for
the first time. In each iteration, we only need to check this
table to get information that a candidate is behind current
position or not. By this way, we can save much time by
avoiding ANDing operation or comparison.

Figure 4. ITEM IS EXIST TABLE

Fig.4, which is built based on the example database in
Table 1, shows one part of the ITEMIS EXIST TABLE for
the first customer. The left column is the position number
and the top row is the item ID. In the table, we use bit vec-
tor to represent candidates existence for respective position.
Bit value is 1 indicates the item existing, otherwise the item
does not exist. The bit vector size is equal to the total num-
ber of the candidate items. For example, if the current po-
sition is 2, we can get its corresponding bit vector as 1111,
which means that all candidates can be appear behind cur-
rent prefix. When the current position is 4, we can get the
bit vector as 1100, indicates that only item a and b exist in
the same customer sequence after the current prefix. To ac-
cumulate the candidate sequence’s support, we only need
to check this table and add the corresponding item’s vec-
tor value, avoiding comparison, ANDing operation or con-
structing S-Matrix in each recursive step, which largely im-
prove efficiency during mining. Attention that here we only
discuss the S-Step process, the reader can easily extend it to
the I-Step process based on the same strategy.

2.3.1. Space OptimizationSPAM assumes that the whole
vector representation of the database should be filled in the
main memory, yet the space necessary is always a key fac-
tor of an algorithm. As Fig. 4 shows, we can easily know
that the main memory used in LAPIN-SPAM is no more
than twice of that used in SPAM, because each item needs
one bit for every transaction no matter it exists or not in the
ITEM IS EXIST TABLE.



Figure 5. Optimized ITEM IS EXIST TABLE

Symb. Meaning
D Number of customers in 000s
C Average number of transactions per customer
T Average number of items per transaction
N Number of different items in 000s
S Average length of maximal sequences

Table 2. Parameters used in datasets genera-
tion

After consideration, we find that only part of the table is
useful and most are not. For example in Fig.4, when the cur-
rent position is smaller than 3, all items exist and when the
position is larger than 4, there is no item existing. So the
useful information is store in some key positions’ lines. We
definekey positionas follows: Given a position, if its cor-
responding bit vector is different from that of the position
one smaller than it (except the one whose bit vector is equal
to 0), this position is calledkey position. For example, in
Fig.4, the position 3 and 4 are key positions and others are
not (position 5 is not because its bit vector is equal to 0).
We can find that these key positions are indeed the last po-
sitions of the candidates items (except the last one). The op-
timized ITEM IS EXIST TABLE is shown in Fig.5, which
stores only two bit vectors instead of eight ones shown in
Fig.4. For long pattern dataset, this space saving strategy
is more efficient. Through thorough experiments what we
will mention in section 3, the memory used to store the
ITEM IS EXIST TABLE is less than 10 percent of the one
used in SPAM, which can be neglected when comparing
LAPIN-SPAM and SPAM efficiency.

3. Experiment

We perform the experiments on a 1.6GHz Intel Pen-
tium(R)M PC machine with 1G memory, running Microsoft
Windows XP. The synthetic datasets are generated by the
IBM data generator described in [2]. The meaning of the
different parameters used to generate the datasets is shown
in Table 2. As [4] shown, SPAM is by far the fastest al-
gorithm when mining to get the whole set of the sequen-
tial patterns, nearly an order faster than PrefixSpan [7] and

Figure 6. Varying support for small dataset

Figure 7. Varying support for medium-sized
dataset

SPADE [6] for large datasets. So we only compare SPAM
and LASIN SPAM in this paper. All methods are imple-
mented using Microsoft Visual C++ 6.0.

Because the dataset size plays a key role on the per-
formance of the algorithm, we first compare SPAM and
LAPIN-SPAM for different size of datasets, as Fig. 6,
Fig. 7 and Fig. 8 shown. This set of tests presents that
LASIN SPAM outperforms SPAM by about 2 to 3 times
for different size of the datasets.

In the second group of the experiments, we consider the
different parameters used to generate the datasets on the ef-
fect of the performance. Fig. 9 shows the result when chang-
ing the number of the customers. Fig. 10 presents the effect
when varying average number of transactions per customer.
Fig. 11 shows the result when changing the average num-
ber of items per transaction parameter. Fig. 12 modifies the
average length of maximal sequences and the variable in
Fig. 13 is the number of different items in the datasets. We
can see that no matter which parameter changes, LAPIN-
SPAM is always faster than SPAM about 2 to 3 times. The
primary reason that LAPIN-SPAM performs so well for all
datasets is due to avoiding ANDing operation or compar-
ison of the bitmap for efficient counting. This process is
critical because it is performed many times at each recur-
sive step, and LAPIN-SPAM can save much time compared
with SPAM.



Figure 8. Varying support for large dataset

Figure 9. Varying number of customers

4. Conclusion and Future Works

In this paper, we have proposed a new strategy, named
LAPIN-SPAM, to mine sequential patterns. The key idea
is that if given the current position, we can immediately
know which items should be appear behind current pre-
fix items, based on the items’ last positions. LAPIN-SPAM
avoids ANDing operation or comparison in each iteration
in the support counting process, which can largely im-
prove the efficiency. In fact, for any time-series database,
the last positions of different items should be paid more at-
tention because they can be treated as the judgement for the
items’ existence at each recursive step. We also present a set
of thorough experiments when comparing LASPINSPAM
and SPAM on different parameters of the datasets. The re-
sult shows that our algorithm outperforms the current fastest
one by about 2 to 3 times.

Currently we only implement S-Step process based on
LAPIN strategy. We expect our algorithm will become
more efficient after implement on I-Step in the near fu-
ture. Yet there is a paid-off between space and time while
mining [14]. To make it a practical tool, we need to find
a balance through more experiments. We also will ap-
ply our strategy on other more applications, such as dy-
namic database(data stream, etc).

Figure 10. Varying num. of trans. per customer

Figure 11. Varying num. of items per trans.
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