
    
社団法人 電子情報通信学会 信学技報 

THE INSTITUTE OF ELECTRONICS,   TECHNICAL REPORT OF IEICE 

INFORMATION AND COMMUNICATION ENGINEERS 
 

 

Tree-based Access Control Mechanism for XML Databases 

Naizhen Qi   Michiharu Kudo
 

{naishin, kudo}@jp.ibm.com 

Tel: +81-46-215-4428, +81-46-215-4642 

Fax: +81-46-273-7428 

IBM Research, Tokyo Research Laboratory 

1623-14, Shimotsuruma, Yamato-shi, Kanagawa 242-8502, Japan 

 

Abstract Many XML database applications call for node-level access control on elements, attributes, and text nodes 

according to their locations and values in an XML document. However, there is trade-off between the performance and the cost 

of access control especially when the XML database is large–scaled. In order to achieve both the performance and the cost 

effectiveness, we introduce a tree-based access control mechanism, in which each access control rule is a set of nodes and 

edges with a leaf in the tree, to determine the subset of all access control rules matching the requested path. We present some 

optimizations to our algorithm that improve the performance. We also present the results of simulations that our mechanism 

runs at a nearly constant speed when the number of access control rules increases and that shows acceptable performance for a 

large amount of the access control rules. 
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1. Introduction 

The Extensible Markup Language (XML[1]) is widely 

used for data presentation, integration, and management 

because of its rich data structure. Since data with 

different security levels may be intermingled in a single 

XML document, such as business transactions and 

medical records, access control is required on both the 

element- and attribute-level to ensure that sensitive data 

will be accessible only to the authorized users. In most of 

the current research, such node-level access control is 

specified with XPath[2] to identify the sensitive portion. 

XPath is powerful for addressing parts of an XML 

document. It can not only select a set of nodes at any 

depth, but also select based on the data content. However, 

because of such rich capability of node selections, there 

is trade-off between the performance and the cost on 

performing access control on the selected nodes. Some of 

the approaches (e.g. [3, 4, 5, 6, 7]) improve the runtime 

performance by generating indexing per document on the 

basis of the access control rules in a pre-processing. Some 

of the approaches (e.g. [8, 9, 10, 11]) focus more on rich 

node selections rather than the runtime performance. And 

there also some approaches (e.g. [12, 13]) trade part of 

the capability of node selections off against both of the 

performance and the cost. 

However, the XML database usually stores a large 

amount of documents. For instance, the number of the 

medical records of a hospital normally reaches several 

hundreds of thousands. It is obvious that indexing on a 

per-document basis definitely consumes massive 

resources. Meantime, when the rich node selection is 

required, the unacceptable runtime performance may be 

fatal to a real application. Moreover, the limitations on 

node selections may bring serious problems to sensitive 

data protection that concerned nodes cannot be selected. 

In this paper, we introduce a novel tree-based access 

control mechanism which supports rich capability of node 

selections with the performance and the cost efficiency. 

Policy matching tree (PMT) is a tree structure in which 

each node is a test, and the edges are results of such tests. 

Each lower level of the tree is a refinement of the tests 

performed at higher levels, and each leaf represents for 

the action of an access control rule. The PMT can find the 

access control rules that match a requested path by 

traversing the tree starting from the root; at each node, we 

perform the test prescribed by the node and follow all 

those edges consistent with the result. Such steps are 

repeated until we get to the leaves. The leaves that are 

finally visited correspond to the access control rules that 

match the requested path. Then we evaluate the 

accessibility based on the rule subset. When the 

accessibility results true, the user is granted to access the 

XML database to retrieve the requested data item; 

otherwise, the database access is denied. 

The PMT performs almost constantly even the number 

of access control rules increases sharply. And the 

efficiency can be achieved independent of the XML 

documents that it is free from re-computation as long as 

the access control rules are not updated. In addition, the 

PMT can provide applicable access control for various 

query languages including XQuery, SQL XML, and 
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XPath. 

 

Outline The rest of this paper is organized as follows. 

After reviewing some preliminaries in Section 2, we 

introduce the features of PMT in Section 3 and 

optimizations on PMT in Section 4. Experimental results 

are reported in Section 5 and the conclusions are 

summarized in Section 6. 

 

2. Preliminaries 

2.1. XPath 

An XPath expression can select nodes based on the 

document structure and the data contents in an XML 

document. A structure-based selection relies on the 

structural relationships, which is expressed by ‘/’ and ‘//’. 

For example, /record//name selects all name in the subtree 

of record regardless of name’s depth. Value-based 

selection is fulfilled by attaching a value-based condition 

on a specific node: if the condition is satisfied, the node 

is selected. For instance, the expression 

disclosure[@status='published'] selects disclosure whose 

status attribute equals 'published'. In this XPath 

expression, @status='published' is a value-based 

condition which is called a predicate. In addition, ‘*’ is a 

wildcard that selects any node of the principle node type. 

For instance, /record/* selects all of the element children 

of record, while /record/patient/disclosure/@* selects all 

of the attribute children of disclosure. 

 

2.2. Semantics of access control rule 

Various access control policy models have been proposed, 

but we use the one proposed by Murata et al. [12] in 

which an access control policy contains a set of 3-tuples 

rules with the syntax: (Subject, Action, Object) as shown 

in Table 1. Note Action consists of two factors: 

Permission and Propagation. 

 

Table 1 Access Control Rule Syntax 

Field Description 

Subject A human user or a user process. 

Permission Grant access (+) or denial access (-) 

Propagation r: without propagation; R: propagation 

Object An XPath expression selects affected 

nodes 

 

The subject has a prefix indicating the type such as uid, 

role, and group. '+' stands for a grant rule while '-' for a 

denial one. The rule with +R or -R is propagation 

permitted that the access can be propagated downward on 

the entire subtree, while +r is propagation denied. As an 

example, (uid:Seki, +r, /a) specifies user Seki's access to 

/a is allowed but to /a/b is implicit specified since grant 

is not propagated down to the descending paths of /a 

owing to r. Moreover, according to the denial downward 

consistency in [12] that the descendants of an inaccessible 

node are either inaccessible, there is an accessibility 

dependency between the ancestors and the descendants. 

Therefore, it is obvious that -r is equivalent to -R; and 

thus, we specify denial rules only with -R in this paper. In 

addition, in order to maximize the security of the data 

items, we (i) resolve access conflicts with the 

denial-takes-precedence [14], and (ii) apply the default 

denial permission on the paths if no explicit access 

control is specified. In addition, due to the lack of space, 

we focus on the read in this paper though either type of 

update, create, or delete can be implemented with the 

same mechanisms. 

 

3. Policy Matching Tree 

To find the access control rules that match a requested 

path from a set of access control rules can be solved 

easily by testing the requested path against each access 

control rule. This naïve solution runs in time proportional 

to the number of access control rules. Therefore, it is 

clear that if the paths are requested by the users at a fast 

rate, then the access control rules need to be matched at a 

fast rate as well, so the naïve solution may not perform 

adequately when the number of access control rules is 

high. In this section, we introduce a tree structure, policy 

matching tree (PMT), that performs significantly better 

and the all types of XPath expressions are supported as 

well. 

 

3.1. The PMT generation 

Our mechanism initially pre-processes the access control 

policy into a PMT, which is used to search for the subset 

of the rules that match the requested path at runtime. 

Henceforth, we assume that the object of an access 

control rules is a conjunction of node checks, where each 

node check represents a test on the node name in the 

XPath expression. Therefore, the object obj of an access 

control rule is as follows: 

obj := chk0 ∧  chk1 ∧ … ∧  chkk 

chk i := test i → result i 

where the notation test i → result i means that test i checks 

the name of the node at depth i to see whether it is result i. 

For example, in the access control rule (role:intern, +r, 

/record/patient), the object /record/patient therefore 



 

 

consists of two node checks chk1 and chk2, where 

chk0 = test0 → is ‘record’ 

chk1 = test1 → is ‘patient ’ 

test0=’check the name of the node at depth 0’ 

test1= ‘check the name of the node at depth 1’ 

In our PMT, each non-leaf node contains a test on the 

node name, and the edges from that node representing the 

results of that test. The edge ends at another non-leaf 

node for further refinement or a leaf node. A leaf node l 

contains the action of the access control rule. 

Consequently, an access control rule is described by 

walking the tree from the root node to l and taking the 

conjunction of the node checks. 

Here are some simple examples. Suppose access control 

rules R1, R2 and R3 as follows: 

R1 = (role:intern, +r, /record)  (1) 

R2 = (role:intern, +r, /record/patient)  (2) 

R3 = (role:intern, +R, /record/diagnosis) (3) 

In this case, the PMT for intern is shown in Figure 1. 

Note the nodes test0 and test1, and the edge ‘record’ are 

shared by R2 and R3. 

 

 

 

 

 

 

 

 

Figure 1 The PMT for R1, R2, and R3 

 

To create the PMT, we start with the empty tree, and we 

process one access control rule at a time by converting 

each node in the object (the XPath expression) into a node 

check, and adding nodes and edges to the PMT as 

necessary. If the test node and the edge have exists in the 

PMT, they won’t be duplicated. For instance, the 

processing of R2 (see Equation 2) creates two non-leaf 

nodes test0 and test1, and a leaf node containing the 

action ‘+r’ of Figure 1; and the subsequent processing of 

R3 (see Equation 3) creates the remaining leaf node 

containing the action ‘+R’. The corresponded edges 

describing test results are added under related nodes. For 

instance, the processing of R2 creates the edges ‘record’ 

and ‘patient’ while R3 creates the edge ‘diagnosis’.  

The PMT can be built on a per-subject basis that each 

uid, role or group has its own tree. However, we can also 

build a tree for the whole access control system as the 

occasion demands. In this case, the test on the subject of 

the access control rule, testsub, should be added to the tree 

as well. For example, in the access control rule 

(role:intern, +r, /record/patient), the subject sub is: 

sub := testsub → is ’ intern’.  

Therefore, to reach a leaf, both the subject check and 

the node checks should be walked through, where can be 

represented as: sub ∧  obj 

 

3.2. Describe ‘*’ and ‘//’ on the PMT 

The PMT can have a special ‘don’t care edge’ to represent 

the wildcard ‘*’ in XPath expressions that the result of a 

node check can be anything. For simplicity, we use *-edge 

to represent it. 

Besides the *-edge, we also specify a //-structure to 

represent the descendant-or-self axis ‘//’ in XPath 

expressions. The //-structure consists of an edge and a 

loop, whose relationship to the other is logical OR 

representing as a branch in the PMT from a non-leaf node. 

The edge represents the result of the node check of the 

concerned node name, and it reaches to a lower non-leaf 

node or a leaf node. The loop starts and ends at the same 

non-leaf node and connects with an edge representing the 

result of other cases, and each step in the loop performs a 

node check in order. 

Suppose access control rules R4, R5, and R6 as follows: 

R4 = (role:nurse, +R, /record)  (4) 

R5 = (role:nurse, -R, /record//info)  (5) 

R6 = (role:nurse, -R, /record/diagnosis/*)  (6) 

The PMT for nurse is shown in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2 The PMT for R4, R5, and R6 

 

In figure 2, // info is described as a loop labeling with 

‘not info’ starts and ends at test1; and the edge ‘ info’ starts 

at test1 and ends at the leaf node ‘-R’. Meanwhile, *-edge 

starts from test2 ends at the leaf node ‘-R’. 
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3.3. Describe predicates on the PMT 

Predicate is treated as a value filter on XML elements and 

attributes appearing in an XML document. Since we 

pre-process the access control rules independent of the 

XML documents, the data values are unknown beforehand. 

Therefore, the runtime accessibility checks on predicates 

cannot finish without accessing the database. 

We introduce another type of the non-leaf node to the 

PMT, which performs tests by interacting with the XML 

database to obtain the data values for predicate evaluation. 

Meanwhile, we pre-process the predicates into the 

non-leaf nodes and edges as well. 

Predicates are conditional expressions. We assume the 

simplest predicate pred is: 

pred(par) := test_par  →Operator value 

where test_par retrieves the data value of par from the 

database and evaluates the predicate of the form par 

operator value. A predicate can also contain multiple pred 

connecting with logical AND or logical OR. For simplicity, 

predicates are accepted of the form without using 

parentheses. 

Suppose one of the access control rule R7 is as follows: 

R7 =  (role:intern, +R, /record/patient[@age>50 and 

@gender=’F’])/disclosure       (7) 

The part of the PMT generated for R7 is shown in 

Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 The PMT for R7 

 

In Figure 3, between the nodes test1 and test2, nodes 

test_@age and test_@gender are inserted. Only when 

both predicate tests succeed in retrieving and checking 

the values of @age and @gender, the node check on test2 

is performed. 

 

 

4. Tree-based Access Control Mechanism 

The algorithm of access control enforcement on a path 

consists of two sub-algorithms that 1) Matching: find the 

subset of the rules matching the requested path on the 

PMT; and 2) Evaluating: evaluate the accessibility on the 

basis of the actions of the rule subset. 

 

4.1. Matching algorithm 

The algorithm match that uses the PMT to find actions of 

matching rules is given in Figure 4. The idea is to walk 

the PMT by performing the test prescribed by each node 

and following the edge that represents the result of the 

test, and the *-edge if it is present. The set of the actions 

of the matching rules are the visited leaves. The algorithm 

match in Figure 4 traverses the PMT in a depth-first order, 

but obviously other orderings, such as breadth-first, also 

works. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Matching algorithm 

 

For example, to perform access control on the patient 

records using the PMT in Figure 1. If we use the notation 

‘ ⇒ ’ to represent the tree traverse, when 

/record/diagnosis/info is requested, two action leaves are 

reached through test0 ⇒ ‘+r ’, and test0 ⇒ test1 ⇒ ‘+R’.  

However, in case on the PMT in Figure 2, when 

/record/patient/disclosure/info is requested, two action 

leaves are reached through test0⇒ ‘+R’, and test0⇒ test1 

⇒ test1 ⇒ test1 ⇒ ‘-R’ that test1 is walked through for 

three times because of the loop. 

 

4.2. Evaluating algorithm 

To evaluate the accessibility of a path from a set of 

actions (of rules) can be solved easily by testing from the 

root node toward the last node in the path to see whether 

the accessibility is evaluated true on each node. This 

naïve solution runs in time proportional to the product of 

the path length and the number of the matching action. It 

test0

= ‘record’

test1

test_@age

= ‘patient’

test_@gender

>50

=‘F’
test2

= ‘disclosure’

‘+R’

R7

procedure match(Tree, path)

suppose path is presented as the array node.

visit(Tree, root, 0)

procedure visit(Tree, n, depth)

if n is a leaf node of Tree then output(n)

else

if n is node check 

perform test prescribed by n on node[depth]

if (n has an edge e with the result of test) or (n has a *-edge e)

then visit(Tree, (child of n at the endpoint of e in Tree), depth+1)

else if n is predicate check 

retrieve value of the parameter from DB

perform test prescribed by n on value

if (n has an edge e with the result of test)

then visit(Tree, (child of n at the endpoint of e in Tree), depth)



 

 

is clear that the naïve solution may not perform 

adequately when the requested path is long. 

We introduce an efficient evaluating mechanism which 

runs in time proportional to the number of the matching 

action. An effect-value is calculated for the requested path 

that each level is replaced by a one-digit number which 

reflects the action imposed to the node on that level. The 

effect-value can be calculated by traversing all of the 

matching actions for only one time.  

There are four types of actions in our access control 

system: ‘-R(-r)’, ‘+r’, ‘+R’, and ‘no access control 

(NAC)’. We use 4 different one-digit numbers from 0 to 3 

in Table 2 to represent these actions. 

 

Table 2 Actions and their notation 

Action Notation(1 digit number) 

-R(-r) 0 

NAC 1 

+r 2 

+R 3 

 

‘-R’ denies the access to the path, the smallest number 

is used to represent this action. Sorting with the action 

range, the rest of the three actions are ordered in NAC, 

‘+r’, and ‘+R’ that: NAC applies no access control on the 

nodes; ‘+r’ applies access control on the object node 

itself; and ‘+R’ applies not only on the object, but also on 

its subtree. Consequently, we use 1, 2, and 3 to represent 

NAC, ‘+r’, and ‘+R’ respectively. The access to a path 

will be granted if its effect-value alternatively complying 

with the following two regular expressions. 

reg1=(2)+ 

reg2=(2)*3(1|2|3)* 

It is obvious that if the effect-value does not contain a 

0 digit and is bigger than (2)+ in value, the access to the 

path is granted. 

The algorithm evaluate in Figure 5 calculates the 

effect-value from the matching actions for the request 

path, and evaluates the accessibility. The result of 

evaluate is true or false and the access is allowed when 

true. 

For example, to perform access control on the patient 

records with the PMT in Figure 1 which representing R1, 

R2, and R3. When an intern accesses /record/diagnosis/info, 

the effect-value is initiated to be 111. The effect-value 

has three digits since the length of the requested path is 

three. As described in Section 4.1, two action leaves are 

reachable in this case. Because of ‘+r’ of R1 that the depth 

of the object is 0, the effect-value is updated to be 211; 

and with ‘+R’ of R3, with the object depth 1, the 

effect-value is updated to be 231. Since 231 is bigger than 

222, the intern’s access to /record/diagnosis/info is 

granted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Evaluating algorithm 

 

4.3. Optimization with ACT-based cache 

ACT stands for Access-Condition-Table [13] which is a 

table storing Boolean expressions for runtime efficient 

accessibility checks. The Boolean expressions are the 

results of accessibility checks on the paths, and they are 

preprocessed on the basis of the access control rules. 

There are two types of expressions in the ACT: access 

condition (AC) for the target path itself; and descendant 

access condition (DAC) for the subset of the path. At 

runtime, given a path, the ACT provides a proper Boolean 

expression to decide the accessibility. 

Both ACT and PMT are generated independent of the 

XML documents, and their goals are to enforce efficient 

access control; however, they have pros and cons which 

are shown in Table 3. 

Table 3 Pros and cons of ACT and PMT 

 ACT PMT 

‘//’ 1. Appear once. 

2. Identify one 

node after ‘//’ 

No 

‘*’ Only accept 

‘//*’ 

No 

Limita- 

tions 

Predicates No. No. 

Check speed Constant and 

faster than PMT 

Slower 

than ACT 

 

suppose path length is l

suppose nth element of Actions imposes action_n on the node at 

the depth of depth_n

initiate array e with l digits that each digit is 1

procedure evaluate(Actions)

calculate(Actions, 0)

generate effectvalue from e

if effectvalue is not smaller than the number with l digits 

that each digit is 2

then true else false

procedure calculate(Actions, n)

get the nth action_n from Actions

if action_n is ‘-R’ then stop

else

if action_n is ’+r’ then

if e[depth_n] is not either 2 or 3

then e[depth_n] = 2

else

if e[depth_n] is not 3

then e[depth_n] = 3

calculate(Actions, n+1)



 

 

From the table, we know the ACT performs faster than 

the PMT, but it restricts the expressiveness of the access 

control rules. However, in many XML documents the 

identical path may appear hundreds or thousands time. 

For instance, in the case of patient records, each XML 

document has a record root, and a patient  child of record. 

Rather than evaluate the accessibility every time when 

record is accessed, to evaluate once and cache the result 

costs much less. Therefore, we use the ACT as a runtime 

cache to get a better performance. The ACT is generated 

at runtime from the results obtained by the PMT. Each of 

the cached entry contains four fields: Subject, Path, AC, 

and DAC. Subject is the value of uid, role, or group of the 

user sent the request. Path is the path expression of an 

XML node that the subject requests. AC, the accessibility 

check result of the path; while DAC is the accessibility 

check result of the subtree. The algorithm that generates 

ACT cache from the result of the PMT is given in Figure 

6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Caching algorithm 

 

At runtime, the access control system queries the 

ACT-based cache at first for the accessibility result of a 

path. If there is no proper entry cached for the path, the 

system requests the PMT for the result. The PMT 

performs accessibility check, returns the result, and 

inserts a new cache entry into the ACT if necessary.  

For example, intern requests a group of paths in a 

patient record as follows: 

P1: /record 

P2: /record/patient 

P3: /record/patient/name 

P4: /record/diagnosis 

P5: /record/diagnosis/pathology 

P6: /record/chemotherapy 

The accessibility checks are performed on the basis of 

the PMT in Figure 1. The ACT-based cache is created at 

the same time as Table 4 shows when intern has finished 

the accesses. 

Table 4 The example of ACT-based optimization 

 PMT ACT cache entry result(mechanism) 

P1 true (intern, P1, true, -) true (PMT) 

P2 true (intern, P2, true, false) true (PMT) 

P3   false(ACT cache) 

P4 true (intern, P4, true, true) true (PMT) 

P5   true(ACT cache) 

P6 false (intern, P6, false, false) false(PMT) 

 

When P1 is requested, since no cached object exists in 

the ACT, the PMT runs for the accessibility check. The 

result from the PMT is true. Since there are two edges 

with the result ‘record’ of test0 that multiple actions are 

specified on the nodes in the subtree, the DAC cannot be 

uniquely decided; therefore, the cache entry is (intern, 

/record, true, -) in which ‘-’ stands for not available (for 

the sake of the space, we use P1 to represent the path 

/record in Table 4). When P2 is requested, the ACT cache 

is checked at first that P2 is not in the ACT but the entry 

for the ancestor node record  is in the ACT. However, the 

DAC of record is ‘-’ which showing the PMT-based access 

control should be performed. The PMT evaluates the 

accessibility for P2 and inserts a new cache entry (intern, 

/record/patient, true, false) into the ACT. In this case, the 

DAC can be decided since only one action is imposed on 

the subtree. Then P3 is requested, the ACT cache is 

checked, and there is no entry for P3. However, the DAC 

of /record/patient is provided to show the access to P3 is 

denied since the access to any node in the subtree of 

/record/patient is prohibited. In addition, P4, P5, and P6 

are evaluated in the same way. 

On the other hand, since value-based access control is 

XML document-dependant that the accessibility cannot be 

decided on the path level, the ACT cache entry won’t be 

added. 

 

5. Implementation 

We implemented the PMT access control mechanism with 

Java. In this section, we present the details of the 

implementation of the predicates. 

As described in Section 3.3, the predicate check  

interacts with the database and checks the value at 

runtime. To retrieve the values from the database, the 

node name and the node location related to the context 

node are required. Moreover, when multiple nodes are 

checked, rather than query the database multiple times, to 

query once and obtain all of the values is definitely more 

efficient. Therefore, we implement the predicate check in 

procedure cache(sub, Tree, path)

if during match(Tree) walked through //-loop then stop

else

if the accessibility check of path results false

then add cache entry (sub, path, false, false)

else

if there are multiple edges with the same result at the last

test of match(Tree, path)

then add cache entry (sub, path, true, -)

else

if effectvalue applies to the regular expression (2)+

then add cache entry (sub, path, true, false)

else

add cache entry (sub, path, true, true)



 

 

a different way. As first, we give an example PMT in 

Figure 7, which represents R7. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 The PMT’ for R7 

As Figure 7 shows, we use a parameter table to store 

the necessary information for data retrieval from the 

database. Each entry in the parameter table contains a 

parameter name, an element node or an attribute node, 

and a relative-depth showing the relative distance 

between the requested node and the node imposed with 

the predicate. In Figure 7, there are two entries in the 

parameter table, @age and @gender, both the children of 

patient, and the relative-depth from patient to disclosure 

is both -1. 

With both the parameter name and its relative-depth, 

the system knows whose value is requested by the 

predicate evaluation. However, it also has some 

limitations. The notation of relative-path can easily 

represent the ancestor traversal or descendant traversal, 

but the combination of the both types can not be handled. 

For example, when the parameter is the sibling of the 

requested node, relative-depth is 0. However, the 

relative-depth of the request node itself is also 0, so the 

relative-depth is not enough to identify them. To deal 

with such complicated cases, we use a relative-path list 

which describes the traversal. In this case, the 

relative-path list is (-1, 1) which means the context node 

should go to the parent and then find the child with the 

parameter as its node name. 

 

6. Experiments 

To validate the efficiency of the PMT, we ran a variety of 

experiments to see how our techniques perform. The 

purposes of the experiments are to explore: 1) the 

performance of the simple path expressions, 2) the 

performance of the path expressions containing a 

predicate, and 3) the scalability in terms of the rule size. 

All of the experiments were run on a 1.80GHz Pentium 

M processor with 1.50GB RAM. The XML document used 

in the experiments is 9.84MB in size with 328,699 nodes 

and the maximum node depth is 4. 

 

6.1. The performance of simple paths 

We explored the accessibility check time per path when 

simple path expressions are used to specify the access 

control target. In this case, the path expressions do not 

contain predicates, ‘*’, or ‘//’. The XML document used 

in the experiments is about 200KB in size with more than 

4,700 nodes. 

With various access control rule size, from 60 to 470, 

our experimental results show the accessibility check time 

on path is 0.006ms at average. 

 

6.2. The performance of handling predicates 

We also explored the accessibility check time when a 

predicate is imposed. The XML document used in the 

experiments is about 10MB in size with more than 4,700 

nodes. We specified a rule set consisting of 12 access 

control rules, in which 11 rules containing a predicate, as 

follows: 

(uid:U, +r, /Orders) 

(uid:U, +r, /Orders/Order[UserKey=’U’]) 

(uid:U, +r, /Orders/Order[UserKey=’U’]/OrderKeyInfo) 

(uid:U, +r, /Orders/Order[UserKey=’U’]/UserKeyInfo) 

(uid:U, +r, /Orders/Order[UserKey=’U’]/OrderStatusInfo) 

(uid:U, +r, /Orders/Order[UserKey=’U’]/TotalPriceInfo) 

(uid:U, +r, /Orders/Order[UserKey=’U’]/ClarkInfo) 

(uid:U, +r, /Orders/Order[UserKey=’U’]/ShipPriorityInfo) 

(uid:U, +r, /Orders/Order[UserKey=’U’]/Comment) 

(uid:U, +r, /Orders/Order[UserKey=’U’]/Item) 

(uid:U, +r, /Orders/Order[UserKey=’U’]/Item/ShipInstruct) 

(uid:U, +r, /Orders/Order[UserKey=’U’]/Item/Comment) 

 

We control the rule size by replacing ‘U’ in the rules 

with user-ids that the rule size equals 12*user_size. We 

managed to run the experiments for 64,000 users’ 768,000 

rules without any Java garbage collection triggered. 

Figure 8 shows the average speed of the accessibility 

check when the rule size is various from 96,000 to 

768,000. 

Please note except the path /Orders, the accessibility 

checks on all of the other paths call for an additional 

predicate check, in which the data retrieval from the 

database occurs. However, all experimental data eliminate 

the time cost on data retrievals. 
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Figure 8 Access control time when rule size changes  

 

From Figure 8, we can see the accessibility check time 

is between 0.008 - 0.01ms and there is no obvious huge 

change in value. In other words, the rule size has little 

influence on the accessibility check speed. 

Therefore, we can infer from our experimental results 

that the accessibility check is close to 0.006 ms when 

there is no predicate evaluation involved, and 0.008 to 

0.01 ms when a predicate evaluation is required. 

Moreover, we can also figure out that the speed for the 

objects containing a predicate is almost twice as much as 

the speed of the simple path expression since the PTM 

engine runs an additional matching for the predicate test. 

Therefore, the more predicate tests involve, the more 

accessibility check time costs; and we can estimate the 

accessibility check time by considering the predicate 

number. 

 

7. Conclusion 

In this paper, we proposed a PMT-based access control 

mechanism to provide efficient node-level access control. 

Using the tree structure, the PMT is capable of handling 

complicated target selection that there is no limitations on 

the usages of predicates, ‘*’, or ‘//’. We built a prototype 

to demonstrate the effectiveness of the PMT, and we also 

showed the performance and the scalability through a 

group of experiments. As our future work, we will extend 

the current model to support more rules with more 

efficient memory utilization. 
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