

社団法人 電子情報通信学会 信学技報

THE INSTITUTE OF ELECTRONICS, TECHNICAL REPORT OF IEICE

INFORMATION AND COMMUNICATION ENGINEERS

Tree-based Access Control Mechanism for XML Databases

Naizhen Qi Michiharu Kudo

{naishin, kudo}@jp.ibm.com

Tel: +81-46-215-4428, +81-46-215-4642

Fax: +81-46-273-7428

IBM Research, Tokyo Research Laboratory

1623-14, Shimotsuruma, Yamato-shi, Kanagawa 242-8502, Japan

Abstract Many XML database applications call for node-level access control on elements, attributes, and text nodes

according to their locations and values in an XML document. However, there is trade-off between the performance and the cost

of access control especially when the XML database is large–scaled. In order to achieve both the performance and the cost

effectiveness, we introduce a tree-based access control mechanism, in which each access control rule is a set of nodes and

edges with a leaf in the tree, to determine the subset of all access control rules matching the requested path. We present some

optimizations to our algorithm that improve the performance. We also present the results of simulations that our mechanism

runs at a nearly constant speed when the number of access control rules increases and that shows acceptable performance for a

large amount of the access control rules.

Keyword XML, XML database, Access control, Access control policy, Accessibility check,

1. Introduction

The Extensible Markup Language (XML[1]) is widely

used for data presentation, integration, and management

because of its rich data structure. Since data with

different security levels may be intermingled in a single

XML document, such as business transactions and

medical records, access control is required on both the

element- and attribute-level to ensure that sensitive data

will be accessible only to the authorized users. In most of

the current research, such node-level access control is

specified with XPath[2] to identify the sensitive portion.

XPath is powerful for addressing parts of an XML

document. It can not only select a set of nodes at any

depth, but also select based on the data content. However,

because of such rich capability of node selections, there

is trade-off between the performance and the cost on

performing access control on the selected nodes. Some of

the approaches (e.g. [3, 4, 5, 6, 7]) improve the runtime

performance by generating indexing per document on the

basis of the access control rules in a pre-processing. Some

of the approaches (e.g. [8, 9, 10, 11]) focus more on rich

node selections rather than the runtime performance. And

there also some approaches (e.g. [12, 13]) trade part of

the capability of node selections off against both of the

performance and the cost.

However, the XML database usually stores a large

amount of documents. For instance, the number of the

medical records of a hospital normally reaches several

hundreds of thousands. It is obvious that indexing on a

per-document basis definitely consumes massive

resources. Meantime, when the rich node selection is

required, the unacceptable runtime performance may be

fatal to a real application. Moreover, the limitations on

node selections may bring serious problems to sensitive

data protection that concerned nodes cannot be selected.

In this paper, we introduce a novel tree-based access

control mechanism which supports rich capability of node

selections with the performance and the cost efficiency.

Policy matching tree (PMT) is a tree structure in which

each node is a test, and the edges are results of such tests.

Each lower level of the tree is a refinement of the tests

performed at higher levels, and each leaf represents for

the action of an access control rule. The PMT can find the

access control rules that match a requested path by

traversing the tree starting from the root; at each node, we

perform the test prescribed by the node and follow all

those edges consistent with the result. Such steps are

repeated until we get to the leaves. The leaves that are

finally visited correspond to the access control rules that

match the requested path. Then we evaluate the

accessibility based on the rule subset. When the

accessibility results true, the user is granted to access the

XML database to retrieve the requested data item;

otherwise, the database access is denied.

The PMT performs almost constantly even the number

of access control rules increases sharply. And the

efficiency can be achieved independent of the XML

documents that it is free from re-computation as long as

the access control rules are not updated. In addition, the

PMT can provide applicable access control for various

query languages including XQuery, SQL XML, and

aya
DEWS2005 5A-o1

aya

XPath.

Outline The rest of this paper is organized as follows.

After reviewing some preliminaries in Section 2, we

introduce the features of PMT in Section 3 and

optimizations on PMT in Section 4. Experimental results

are reported in Section 5 and the conclusions are

summarized in Section 6.

2. Preliminaries

2.1. XPath

An XPath expression can select nodes based on the

document structure and the data contents in an XML

document. A structure-based selection relies on the

structural relationships, which is expressed by ‘/’ and ‘//’.

For example, /record//name selects all name in the subtree

of record regardless of name’s depth. Value-based

selection is fulfilled by attaching a value-based condition

on a specific node: if the condition is satisfied, the node

is selected. For instance, the expression

disclosure[@status='published'] selects disclosure whose

status attribute equals 'published'. In this XPath

expression, @status='published' is a value-based

condition which is called a predicate. In addition, ‘*’ is a

wildcard that selects any node of the principle node type.

For instance, /record/* selects all of the element children

of record, while /record/patient/disclosure/@* selects all

of the attribute children of disclosure.

2.2. Semantics of access control rule

Various access control policy models have been proposed,

but we use the one proposed by Murata et al. [12] in

which an access control policy contains a set of 3-tuples

rules with the syntax: (Subject, Action, Object) as shown

in Table 1. Note Action consists of two factors:

Permission and Propagation.

Table 1 Access Control Rule Syntax

Field Description

Subject A human user or a user process.

Permission Grant access (+) or denial access (-)

Propagation r: without propagation; R: propagation

Object An XPath expression selects affected

nodes

The subject has a prefix indicating the type such as uid,

role, and group. '+' stands for a grant rule while '-' for a

denial one. The rule with +R or -R is propagation

permitted that the access can be propagated downward on

the entire subtree, while +r is propagation denied. As an

example, (uid:Seki, +r, /a) specifies user Seki's access to

/a is allowed but to /a/b is implicit specified since grant

is not propagated down to the descending paths of /a

owing to r. Moreover, according to the denial downward

consistency in [12] that the descendants of an inaccessible

node are either inaccessible, there is an accessibility

dependency between the ancestors and the descendants.

Therefore, it is obvious that -r is equivalent to -R; and

thus, we specify denial rules only with -R in this paper. In

addition, in order to maximize the security of the data

items, we (i) resolve access conflicts with the

denial-takes-precedence [14], and (ii) apply the default

denial permission on the paths if no explicit access

control is specified. In addition, due to the lack of space,

we focus on the read in this paper though either type of

update, create, or delete can be implemented with the

same mechanisms.

3. Policy Matching Tree

To find the access control rules that match a requested

path from a set of access control rules can be solved

easily by testing the requested path against each access

control rule. This naïve solution runs in time proportional

to the number of access control rules. Therefore, it is

clear that if the paths are requested by the users at a fast

rate, then the access control rules need to be matched at a

fast rate as well, so the naïve solution may not perform

adequately when the number of access control rules is

high. In this section, we introduce a tree structure, policy

matching tree (PMT), that performs significantly better

and the all types of XPath expressions are supported as

well.

3.1. The PMT generation

Our mechanism initially pre-processes the access control

policy into a PMT, which is used to search for the subset

of the rules that match the requested path at runtime.

Henceforth, we assume that the object of an access

control rules is a conjunction of node checks, where each

node check represents a test on the node name in the

XPath expression. Therefore, the object obj of an access

control rule is as follows:

obj := chk0 ∧ chk1 ∧ … ∧ chkk

chk i := test i → result i

where the notation test i → result i means that test i checks

the name of the node at depth i to see whether it is result i.

For example, in the access control rule (role:intern, +r,

/record/patient), the object /record/patient therefore

consists of two node checks chk1 and chk2, where

chk0 = test0 → is ‘record’

chk1 = test1 → is ‘patient ’

test0=’check the name of the node at depth 0’

test1= ‘check the name of the node at depth 1’

In our PMT, each non-leaf node contains a test on the

node name, and the edges from that node representing the

results of that test. The edge ends at another non-leaf

node for further refinement or a leaf node. A leaf node l

contains the action of the access control rule.

Consequently, an access control rule is described by

walking the tree from the root node to l and taking the

conjunction of the node checks.

Here are some simple examples. Suppose access control

rules R1, R2 and R3 as follows:

R1 = (role:intern, +r, /record) (1)

R2 = (role:intern, +r, /record/patient) (2)

R3 = (role:intern, +R, /record/diagnosis) (3)

In this case, the PMT for intern is shown in Figure 1.

Note the nodes test0 and test1, and the edge ‘record’ are

shared by R2 and R3.

Figure 1 The PMT for R1, R2, and R3

To create the PMT, we start with the empty tree, and we

process one access control rule at a time by converting

each node in the object (the XPath expression) into a node

check, and adding nodes and edges to the PMT as

necessary. If the test node and the edge have exists in the

PMT, they won’t be duplicated. For instance, the

processing of R2 (see Equation 2) creates two non-leaf

nodes test0 and test1, and a leaf node containing the

action ‘+r’ of Figure 1; and the subsequent processing of

R3 (see Equation 3) creates the remaining leaf node

containing the action ‘+R’. The corresponded edges

describing test results are added under related nodes. For

instance, the processing of R2 creates the edges ‘record’

and ‘patient’ while R3 creates the edge ‘diagnosis’.

The PMT can be built on a per-subject basis that each

uid, role or group has its own tree. However, we can also

build a tree for the whole access control system as the

occasion demands. In this case, the test on the subject of

the access control rule, testsub, should be added to the tree

as well. For example, in the access control rule

(role:intern, +r, /record/patient), the subject sub is:

sub := testsub → is ’ intern’.

Therefore, to reach a leaf, both the subject check and

the node checks should be walked through, where can be

represented as: sub ∧ obj

3.2. Describe ‘*’ and ‘//’ on the PMT

The PMT can have a special ‘don’t care edge’ to represent

the wildcard ‘*’ in XPath expressions that the result of a

node check can be anything. For simplicity, we use *-edge

to represent it.

Besides the *-edge, we also specify a //-structure to

represent the descendant-or-self axis ‘//’ in XPath

expressions. The //-structure consists of an edge and a

loop, whose relationship to the other is logical OR

representing as a branch in the PMT from a non-leaf node.

The edge represents the result of the node check of the

concerned node name, and it reaches to a lower non-leaf

node or a leaf node. The loop starts and ends at the same

non-leaf node and connects with an edge representing the

result of other cases, and each step in the loop performs a

node check in order.

Suppose access control rules R4, R5, and R6 as follows:

R4 = (role:nurse, +R, /record) (4)

R5 = (role:nurse, -R, /record//info) (5)

R6 = (role:nurse, -R, /record/diagnosis/*) (6)

The PMT for nurse is shown in Figure 2.

Figure 2 The PMT for R4, R5, and R6

In figure 2, // info is described as a loop labeling with

‘not info’ starts and ends at test1; and the edge ‘ info’ starts

at test1 and ends at the leaf node ‘-R’. Meanwhile, *-edge

starts from test2 ends at the leaf node ‘-R’.

test0

= ‘record’

test1

‘+r’ ‘+R’

= ‘diagnosis’= ‘patient’

‘+r’

= ‘record’

R1

R2 R3

test0

= ‘record’

test1

test2

= ‘diagnosis’= ‘info’

‘-R’

‘-R’

*

<> ‘info’

‘+R’

= ‘record’

R4

R5

R6

3.3. Describe predicates on the PMT

Predicate is treated as a value filter on XML elements and

attributes appearing in an XML document. Since we

pre-process the access control rules independent of the

XML documents, the data values are unknown beforehand.

Therefore, the runtime accessibility checks on predicates

cannot finish without accessing the database.

We introduce another type of the non-leaf node to the

PMT, which performs tests by interacting with the XML

database to obtain the data values for predicate evaluation.

Meanwhile, we pre-process the predicates into the

non-leaf nodes and edges as well.

Predicates are conditional expressions. We assume the

simplest predicate pred is:

pred(par) := test_par →Operator value

where test_par retrieves the data value of par from the

database and evaluates the predicate of the form par

operator value. A predicate can also contain multiple pred

connecting with logical AND or logical OR. For simplicity,

predicates are accepted of the form without using

parentheses.

Suppose one of the access control rule R7 is as follows:

R7 = (role:intern, +R, /record/patient[@age>50 and

@gender=’F’])/disclosure (7)

The part of the PMT generated for R7 is shown in

Figure 3.

Figure 3 The PMT for R7

In Figure 3, between the nodes test1 and test2, nodes

test_@age and test_@gender are inserted. Only when

both predicate tests succeed in retrieving and checking

the values of @age and @gender, the node check on test2

is performed.

4. Tree-based Access Control Mechanism

The algorithm of access control enforcement on a path

consists of two sub-algorithms that 1) Matching: find the

subset of the rules matching the requested path on the

PMT; and 2) Evaluating: evaluate the accessibility on the

basis of the actions of the rule subset.

4.1. Matching algorithm

The algorithm match that uses the PMT to find actions of

matching rules is given in Figure 4. The idea is to walk

the PMT by performing the test prescribed by each node

and following the edge that represents the result of the

test, and the *-edge if it is present. The set of the actions

of the matching rules are the visited leaves. The algorithm

match in Figure 4 traverses the PMT in a depth-first order,

but obviously other orderings, such as breadth-first, also

works.

Figure 4 Matching algorithm

For example, to perform access control on the patient

records using the PMT in Figure 1. If we use the notation

‘ ⇒ ’ to represent the tree traverse, when

/record/diagnosis/info is requested, two action leaves are

reached through test0 ⇒ ‘+r ’, and test0 ⇒ test1 ⇒ ‘+R’.

However, in case on the PMT in Figure 2, when

/record/patient/disclosure/info is requested, two action

leaves are reached through test0⇒ ‘+R’, and test0⇒ test1

⇒ test1 ⇒ test1 ⇒ ‘-R’ that test1 is walked through for

three times because of the loop.

4.2. Evaluating algorithm

To evaluate the accessibility of a path from a set of

actions (of rules) can be solved easily by testing from the

root node toward the last node in the path to see whether

the accessibility is evaluated true on each node. This

naïve solution runs in time proportional to the product of

the path length and the number of the matching action. It

test0

= ‘record’

test1

test_@age

= ‘patient’

test_@gender

>50

=‘F’
test2

= ‘disclosure’

‘+R’

R7

procedure match(Tree, path)

suppose path is presented as the array node.

visit(Tree, root, 0)

procedure visit(Tree, n, depth)

if n is a leaf node of Tree then output(n)

else

if n is node check

perform test prescribed by n on node[depth]

if (n has an edge e with the result of test) or (n has a *-edge e)

then visit(Tree, (child of n at the endpoint of e in Tree), depth+1)

else if n is predicate check

retrieve value of the parameter from DB

perform test prescribed by n on value

if (n has an edge e with the result of test)

then visit(Tree, (child of n at the endpoint of e in Tree), depth)

is clear that the naïve solution may not perform

adequately when the requested path is long.

We introduce an efficient evaluating mechanism which

runs in time proportional to the number of the matching

action. An effect-value is calculated for the requested path

that each level is replaced by a one-digit number which

reflects the action imposed to the node on that level. The

effect-value can be calculated by traversing all of the

matching actions for only one time.

There are four types of actions in our access control

system: ‘-R(-r)’, ‘+r’, ‘+R’, and ‘no access control

(NAC)’. We use 4 different one-digit numbers from 0 to 3

in Table 2 to represent these actions.

Table 2 Actions and their notation

Action Notation(1 digit number)

-R(-r) 0

NAC 1

+r 2

+R 3

‘-R’ denies the access to the path, the smallest number

is used to represent this action. Sorting with the action

range, the rest of the three actions are ordered in NAC,

‘+r’, and ‘+R’ that: NAC applies no access control on the

nodes; ‘+r’ applies access control on the object node

itself; and ‘+R’ applies not only on the object, but also on

its subtree. Consequently, we use 1, 2, and 3 to represent

NAC, ‘+r’, and ‘+R’ respectively. The access to a path

will be granted if its effect-value alternatively complying

with the following two regular expressions.

reg1=(2)+

reg2=(2)*3(1|2|3)*

It is obvious that if the effect-value does not contain a

0 digit and is bigger than (2)+ in value, the access to the

path is granted.

The algorithm evaluate in Figure 5 calculates the

effect-value from the matching actions for the request

path, and evaluates the accessibility. The result of

evaluate is true or false and the access is allowed when

true.

For example, to perform access control on the patient

records with the PMT in Figure 1 which representing R1,

R2, and R3. When an intern accesses /record/diagnosis/info,

the effect-value is initiated to be 111. The effect-value

has three digits since the length of the requested path is

three. As described in Section 4.1, two action leaves are

reachable in this case. Because of ‘+r’ of R1 that the depth

of the object is 0, the effect-value is updated to be 211;

and with ‘+R’ of R3, with the object depth 1, the

effect-value is updated to be 231. Since 231 is bigger than

222, the intern’s access to /record/diagnosis/info is

granted.

Figure 5 Evaluating algorithm

4.3. Optimization with ACT-based cache

ACT stands for Access-Condition-Table [13] which is a

table storing Boolean expressions for runtime efficient

accessibility checks. The Boolean expressions are the

results of accessibility checks on the paths, and they are

preprocessed on the basis of the access control rules.

There are two types of expressions in the ACT: access

condition (AC) for the target path itself; and descendant

access condition (DAC) for the subset of the path. At

runtime, given a path, the ACT provides a proper Boolean

expression to decide the accessibility.

Both ACT and PMT are generated independent of the

XML documents, and their goals are to enforce efficient

access control; however, they have pros and cons which

are shown in Table 3.

Table 3 Pros and cons of ACT and PMT

 ACT PMT

‘//’ 1. Appear once.

2. Identify one

node after ‘//’

No

‘*’ Only accept

‘//*’

No

Limita-

tions

Predicates No. No.

Check speed Constant and

faster than PMT

Slower

than ACT

suppose path length is l

suppose nth element of Actions imposes action_n on the node at

the depth of depth_n

initiate array e with l digits that each digit is 1

procedure evaluate(Actions)

calculate(Actions, 0)

generate effectvalue from e

if effectvalue is not smaller than the number with l digits

that each digit is 2

then true else false

procedure calculate(Actions, n)

get the nth action_n from Actions

if action_n is ‘-R’ then stop

else

if action_n is ’+r’ then

if e[depth_n] is not either 2 or 3

then e[depth_n] = 2

else

if e[depth_n] is not 3

then e[depth_n] = 3

calculate(Actions, n+1)

From the table, we know the ACT performs faster than

the PMT, but it restricts the expressiveness of the access

control rules. However, in many XML documents the

identical path may appear hundreds or thousands time.

For instance, in the case of patient records, each XML

document has a record root, and a patient child of record.

Rather than evaluate the accessibility every time when

record is accessed, to evaluate once and cache the result

costs much less. Therefore, we use the ACT as a runtime

cache to get a better performance. The ACT is generated

at runtime from the results obtained by the PMT. Each of

the cached entry contains four fields: Subject, Path, AC,

and DAC. Subject is the value of uid, role, or group of the

user sent the request. Path is the path expression of an

XML node that the subject requests. AC, the accessibility

check result of the path; while DAC is the accessibility

check result of the subtree. The algorithm that generates

ACT cache from the result of the PMT is given in Figure

6.

Figure 6 Caching algorithm

At runtime, the access control system queries the

ACT-based cache at first for the accessibility result of a

path. If there is no proper entry cached for the path, the

system requests the PMT for the result. The PMT

performs accessibility check, returns the result, and

inserts a new cache entry into the ACT if necessary.

For example, intern requests a group of paths in a

patient record as follows:

P1: /record

P2: /record/patient

P3: /record/patient/name

P4: /record/diagnosis

P5: /record/diagnosis/pathology

P6: /record/chemotherapy

The accessibility checks are performed on the basis of

the PMT in Figure 1. The ACT-based cache is created at

the same time as Table 4 shows when intern has finished

the accesses.

Table 4 The example of ACT-based optimization

 PMT ACT cache entry result(mechanism)

P1 true (intern, P1, true, -) true (PMT)

P2 true (intern, P2, true, false) true (PMT)

P3 false(ACT cache)

P4 true (intern, P4, true, true) true (PMT)

P5 true(ACT cache)

P6 false (intern, P6, false, false) false(PMT)

When P1 is requested, since no cached object exists in

the ACT, the PMT runs for the accessibility check. The

result from the PMT is true. Since there are two edges

with the result ‘record’ of test0 that multiple actions are

specified on the nodes in the subtree, the DAC cannot be

uniquely decided; therefore, the cache entry is (intern,

/record, true, -) in which ‘-’ stands for not available (for

the sake of the space, we use P1 to represent the path

/record in Table 4). When P2 is requested, the ACT cache

is checked at first that P2 is not in the ACT but the entry

for the ancestor node record is in the ACT. However, the

DAC of record is ‘-’ which showing the PMT-based access

control should be performed. The PMT evaluates the

accessibility for P2 and inserts a new cache entry (intern,

/record/patient, true, false) into the ACT. In this case, the

DAC can be decided since only one action is imposed on

the subtree. Then P3 is requested, the ACT cache is

checked, and there is no entry for P3. However, the DAC

of /record/patient is provided to show the access to P3 is

denied since the access to any node in the subtree of

/record/patient is prohibited. In addition, P4, P5, and P6

are evaluated in the same way.

On the other hand, since value-based access control is

XML document-dependant that the accessibility cannot be

decided on the path level, the ACT cache entry won’t be

added.

5. Implementation

We implemented the PMT access control mechanism with

Java. In this section, we present the details of the

implementation of the predicates.

As described in Section 3.3, the predicate check

interacts with the database and checks the value at

runtime. To retrieve the values from the database, the

node name and the node location related to the context

node are required. Moreover, when multiple nodes are

checked, rather than query the database multiple times, to

query once and obtain all of the values is definitely more

efficient. Therefore, we implement the predicate check in

procedure cache(sub, Tree, path)

if during match(Tree) walked through //-loop then stop

else

if the accessibility check of path results false

then add cache entry (sub, path, false, false)

else

if there are multiple edges with the same result at the last

test of match(Tree, path)

then add cache entry (sub, path, true, -)

else

if effectvalue applies to the regular expression (2)+

then add cache entry (sub, path, true, false)

else

add cache entry (sub, path, true, true)

a different way. As first, we give an example PMT in

Figure 7, which represents R7.

Figure 7 The PMT’ for R7

As Figure 7 shows, we use a parameter table to store

the necessary information for data retrieval from the

database. Each entry in the parameter table contains a

parameter name, an element node or an attribute node,

and a relative-depth showing the relative distance

between the requested node and the node imposed with

the predicate. In Figure 7, there are two entries in the

parameter table, @age and @gender, both the children of

patient, and the relative-depth from patient to disclosure

is both -1.

With both the parameter name and its relative-depth,

the system knows whose value is requested by the

predicate evaluation. However, it also has some

limitations. The notation of relative-path can easily

represent the ancestor traversal or descendant traversal,

but the combination of the both types can not be handled.

For example, when the parameter is the sibling of the

requested node, relative-depth is 0. However, the

relative-depth of the request node itself is also 0, so the

relative-depth is not enough to identify them. To deal

with such complicated cases, we use a relative-path list

which describes the traversal. In this case, the

relative-path list is (-1, 1) which means the context node

should go to the parent and then find the child with the

parameter as its node name.

6. Experiments

To validate the efficiency of the PMT, we ran a variety of

experiments to see how our techniques perform. The

purposes of the experiments are to explore: 1) the

performance of the simple path expressions, 2) the

performance of the path expressions containing a

predicate, and 3) the scalability in terms of the rule size.

All of the experiments were run on a 1.80GHz Pentium

M processor with 1.50GB RAM. The XML document used

in the experiments is 9.84MB in size with 328,699 nodes

and the maximum node depth is 4.

6.1. The performance of simple paths

We explored the accessibility check time per path when

simple path expressions are used to specify the access

control target. In this case, the path expressions do not

contain predicates, ‘*’, or ‘//’. The XML document used

in the experiments is about 200KB in size with more than

4,700 nodes.

With various access control rule size, from 60 to 470,

our experimental results show the accessibility check time

on path is 0.006ms at average.

6.2. The performance of handling predicates

We also explored the accessibility check time when a

predicate is imposed. The XML document used in the

experiments is about 10MB in size with more than 4,700

nodes. We specified a rule set consisting of 12 access

control rules, in which 11 rules containing a predicate, as

follows:

(uid:U, +r, /Orders)

(uid:U, +r, /Orders/Order[UserKey=’U’])

(uid:U, +r, /Orders/Order[UserKey=’U’]/OrderKeyInfo)

(uid:U, +r, /Orders/Order[UserKey=’U’]/UserKeyInfo)

(uid:U, +r, /Orders/Order[UserKey=’U’]/OrderStatusInfo)

(uid:U, +r, /Orders/Order[UserKey=’U’]/TotalPriceInfo)

(uid:U, +r, /Orders/Order[UserKey=’U’]/ClarkInfo)

(uid:U, +r, /Orders/Order[UserKey=’U’]/ShipPriorityInfo)

(uid:U, +r, /Orders/Order[UserKey=’U’]/Comment)

(uid:U, +r, /Orders/Order[UserKey=’U’]/Item)

(uid:U, +r, /Orders/Order[UserKey=’U’]/Item/ShipInstruct)

(uid:U, +r, /Orders/Order[UserKey=’U’]/Item/Comment)

We control the rule size by replacing ‘U’ in the rules

with user-ids that the rule size equals 12*user_size. We

managed to run the experiments for 64,000 users’ 768,000

rules without any Java garbage collection triggered.

Figure 8 shows the average speed of the accessibility

check when the rule size is various from 96,000 to

768,000.

Please note except the path /Orders, the accessibility

checks on all of the other paths call for an additional

predicate check, in which the data retrieval from the

database occurs. However, all experimental data eliminate

the time cost on data retrievals.

test0

= ‘record’

test1

test_@age

= ‘patient’
test_@gender

>50

=‘F’

test2

= ‘disclosure’

‘+R’R7

-1@gender

-1@age

relative-depthparameter

-1@gender

-1@age

relative-depthparameter

Figure 8 Access control time when rule size changes

From Figure 8, we can see the accessibility check time

is between 0.008 - 0.01ms and there is no obvious huge

change in value. In other words, the rule size has little

influence on the accessibility check speed.

Therefore, we can infer from our experimental results

that the accessibility check is close to 0.006 ms when

there is no predicate evaluation involved, and 0.008 to

0.01 ms when a predicate evaluation is required.

Moreover, we can also figure out that the speed for the

objects containing a predicate is almost twice as much as

the speed of the simple path expression since the PTM

engine runs an additional matching for the predicate test.

Therefore, the more predicate tests involve, the more

accessibility check time costs; and we can estimate the

accessibility check time by considering the predicate

number.

7. Conclusion

In this paper, we proposed a PMT-based access control

mechanism to provide efficient node-level access control.

Using the tree structure, the PMT is capable of handling

complicated target selection that there is no limitations on

the usages of predicates, ‘*’, or ‘//’. We built a prototype

to demonstrate the effectiveness of the PMT, and we also

showed the performance and the scalability through a

group of experiments. As our future work, we will extend

the current model to support more rules with more

efficient memory utilization.

Reference

[1] Extensible Markup Language (XML) 1.0, World

Wide Web Consortium (W3C),

http://www.w3c.org/TR/REC-xml (Oct. 2000).

[2] XML Path Language (XPath) 1.0, World Wide

Web Consortium (W3C),

http://www.w3c.org/TR/xpath (Nov. 1999).

[3] M. F. Fernandez and D. Suciu: Optimizing

regular path expressions using graph schemas. ICDE

(1998) pp.14-23.

[4] R. Kaushik, P. Bohannon, J. F. Naughton, and H.

F. Korth: Covering indexes for branching path

queries. ACM SIGMOD (2002) pp.133-144.

[5] D. D. Kha, M. Yoshikawa, and S. Uemura: An

XML Indexing Structure with Relative Region

Coordinate. ICDE (2001) pp.313-320.

[6] Q. Li and B. Moon: Indexing and Querying XML

Data for Regular Path Expressions. VLDB (2001)

pp.361-370.

[7] T. Yu, D. Srivastava, L. V. S. Lakshmanan, and

H. V. Jagadish: Compressed Accessibility Map:

Efficient Access Control for XML. VLDB (2002)

pp.478-489.

[8] E. Bertino and E. Ferrari: Secure and selective

dissemination of XML documents. ACM TISSEC

(2002) pp.290-331.

[9] E. Damiani, S. De Capitani di Vimercati, S.

Paraboschi, and P. Samarati: Design and

Implementation of an Access Control Processor for

XML documents. WWW9 (2000).

[10] M.Kudo and S.Hada: XML Document Security

based on Provisional Authorization, in ACM

Conference Computer and Communications Security

(2000).

[11] A. Gabillon and E. Bruno: Regulating Access to

XML Documents. Working Conference on Database

and Application Security (2001) pp.219-314.

[12] M. Murata, A. Tozawa, M.Kudo and H.Satoshi:

XML Access Control Using Static Analysis, in 10 t h

ACM Conference on Computer and Communications

Security (Oct, 2003)

[13] N. Qi and M.Kudo:

Access-Condition-Table-driven Access Control for

XML Databases. ESORICS2004 (Sep. 2004)

[14] E. Bertino, P. Samarati, and S. Jajodia: An

extended authorization model for relational database.

IEEE trans. on Knowledge and Data Engineering

(1997).

Average Access Control Time

0

0.002

0.004

0.006

0.008

0.01

0.012

96K 288K 384K 576K 672K 768K

Rule #

m
s/

P
a
th

