
DEWS2005 1-B-o4

Processing Load Prediction for Parallel FP-growth

Iko PRAMUDIONO�, Katsumi TAKAHASHI�, Anthony K.H. TUNG��, and Masaru

KITSUREGAWA���

� NTT Information Sharing Platform Laboratories, NTT Corporation

Midori-cho 3–9–11, Musashino-shi, Tokyo, 180–8585 Japan

�� Department of Computer Science, National University of Singapore

3 Science Dr 2, Singapore 117543

��� Institute of Industrial Science, The University of Tokyo

Komaba 4–6–1, Meguro-ku, Tokyo, 153–8505 Japan

Abstract Load balancing is a dominant factor to achieve scalable parallel frequent pattern mining. In this paper, we examine

some methods to predict processing load for parallel FP-growth algorithm. We propose item processing order based heuristic

and load prediction function based on the path depth and other statistics which can be collected before the execution of mining

process. We also propose sampling to predict statistics such as the number of iterations. Finally, we implement those methods

to improve the initial distribution of processing units i.e. conditional pattern bases as well as the load balancing during the

execution of those conditional pattern bases. The performance evaluation shows that sampling based load prediction and item

ordering heuristics perform well for the initial distribution.

Key words data mining, parallel-distributed DB, performance evaluation

1. Introduction

Since the invention of Apriori algorithm [2], a lot of algorithms

have been devised to cope with the problem of frequent pattern min-

ing. Among them, FP-growth is now well known as a representative

algorithm that based on pattern-growth paradigm [5]. The main idea

of FP-growth is the projection of the database into a compact on-

memory data structure FP-tree. Then it uses a divide-and-conquer

method to extract frequent patterns from the FP-tree. FP-growth

iteratively construct subdatabases calledconditional pattern bases

for each itemset in the FP-tree.

Some parallel algorithms to mine frequent patterns from a large

database also have been proposed because this kind of data mining

technique requires a lot of processing power [1], [7], [10], [11], [13].

FP-growth algorithm has some restrictions when implemented on

a shared nothing platform, in particular that the tree data structure

must stay on the main memory for efficient pointer traversal. The

data structure of FP-tree is complex and it is not easy to be par-

titioned. Thus, the management of memory and work distribution

plays important role for the scalability of the system. The first par-

allel implementation of FP-growth was on a shared-memory ma-

chine [13].

In our previous work [10], we have proposed a parallel framework

to mine frequent patterns on a PC cluster. The parallel FP-growth

algorithm employs the processing of conditional pattern base as the

parallel execution unit. We introduced a novel notion ofpath depth

to estimate the processing load. Path depth is defined as the longest

path in the conditional pattern base whose count satisfies minimum

support count. Path depth can be computed from the FP-tree during

its construction. Although path depth based load balancing mech-

anism works well on many datasets, the path depth alone can not

measure the workload precisely because the load to process condi-

tional pattern bases depends on some other elements, such as the

number of the elements in the conditional pattern bases. In this pa-

per, we focus on how to improve the prediction of processing load.

We evaluate some statistics gathered during the execution of paral-

lel FP-growth, and we develop some load prediction methods based

on those statistics. We implement the workload prediction during

two phases of the parallel FP-growth :

（1） Initial distribution of conditional pattern bases

（2） Load balancing during the processing of conditional pat-

tern bases

The configuration of this paper is as follow : In section 2 we will

briefly explain the parallel FP-growth algorithm which becomes the

base of this research. In section 3 we will examine some kinds of

statistics which can be collected during the execution of parallel

FP-growth. Some statistics can be gathered before the processing

of conditional pattern base, while we can not know some others un-

til we process them. We further examine how we can utilize those

statistics to predict processing load of each conditional pattern base

in section 4. In section 5, we will report the parallel FP-growth

implementation of those processing load predictions on a PC clus-



Figure 1 Illustration of parallel FP-growth

ter. Some experiment results using synthetic and real datasets are

presented.

2. Parallel FP-growth

First we will explain briefly the parallel FP-growth algorithm.

The detail of the algorithm can be found in [10].

The FP-growth algorithm can be divided into two phases : the

construction of FP-tree and mining frequent patterns from the FP-

tree [5].

2. 1 Construction of FP-tree

The construction of FP-tree requires two scans on transaction

database. The first scan accumulates the support of each item and

then selects items that satisfy minimum support, i.e. frequent 1-

itemsets. Those items are sorted in frequency descending order to

form F-list. The second scan constructs FP-tree.

As shown in Figure 1, basically we need two kinds of processes

: SEND process and RECV process. After the first scan of trans-

action database, SEND process exchanges the support count of all

items to determine globally frequent items. Then each node builds

F-list since it also has global support count. Notice that each node

will have the identical F-list. At the second database scan, SEND

process builds a local FP-tree from the local transaction database

with respect to the global F-list.

First, the transactions are reordered according to F-list, while

non-frequent items are stripped off. Then reordered transactions

are inserted into FP-tree. The order of items is important since in

FP-tree itemset with same prefix shares same nodes. If the node

corresponds to the items in transaction exists the count of the node

is increased, otherwise a new node is generated and the count is set

to 1.

FP-tree also has a frequent-item header table that holds head of

node-links, that connect nodes of same item in FP-tree. The node-

links facilitate item traversal during mining of frequent pattern.

2. 2 FP-growth

Input of FP-growth algorithm is FP-tree and the minimum sup-

port. To find all frequent patterns whose support are higher than

minimum support, FP-growth traverses nodes in the FP-tree start-

ing from the least frequent item in F-list. The node-link originating

from each item in the frequent-item header table connects the same

item in FP-tree.

While visiting each node, FP-growth also collects the prefix-path

of the node, that is the set of items on the path from the node to

the root of the tree. FP-growth also stores the count on the node

as the count of the prefix path. The prefix paths form the so called

conditional pattern baseof that item.

The conditional pattern base is a small database of patterns which

co-occur with the item. Then FP-growth creates small FP-tree from

the conditional pattern base calledconditional FP-tree. The process

is recursively iterated until no conditional pattern base can be gen-

erated and all frequent patterns that consist the item are discovered.

Parallel FP-growth generates local conditional pattern bases from

the local FP-tree. SEND process use hash function to determine

which node should process it, instead of processing conditional pat-

tern base locally. Then the RECV process at the destination node

collects the local conditional pattern bases from all SEND pro-

cesses, reconstructs the global conditional pattern base and then ex-

ecutes the FP-growth.

The same iterative process are repeated for other frequent items

in the F-list.

3. Some statistics of processing load

Here we examine some statistics related to the processing load

of FP-growth. As mentioned in previous section, FP-growth con-

sists of two phases : FP-tree construction and FP-tree traversal. We

discuss the processing load of those phases.

Since parallel FP-growth employs conditional pattern base pro-

cessing as its independent processing unit, we also discuss the statis-

tics specifically related to the conditional pattern base processing.

In particular, we will examine how the path depth can be used to

predict the processing load of conditional pattern base.

Table 1 gives an illustration of the statistics collected during

the mining of frequent patterns. The statistics are taken from

fifteen most time consuming conditional pattern bases and they

are ranked by the processing time. The dataset is a synthetic

T25.I20.D100K.i10K with minimum support 0.1%. The dataset

is prepared using the data generator provided by Apriori paper [1].

T25.I20.D100K.i10K means that in the dataset, number of transac-

tions in the dataset is set to 100K with 10K items, and the average

transaction size and average maximal potentially frequent itemset

size are set to 25 and 20 respectively. Total number of frequent items

in the FP-tree is 6689, which means that only 6689 items among

10K items that satisfy the minimum support of 100.



Table 1 Statistics of the most time consuming conditional pattern bases

item order #iterations pattern length #elements #nodes

5507 16036864 23 107 241

6126 8650752 19 73 297

4792 7920128 22 132 236

4350 5161984 18 132 285

5577 4174752 21 101 236

4164 4072448 21 169 207

4119 2580992 17 155 261

5444 2096640 21 116 286

4066 2083072 21 176 217

3780 1290496 16 168 241

5423 1048576 21 109 253

3526 1041536 20 201 199

4568 659456 16 122 285

4961 524288 20 119 192

3345 524288 20 219 195

3. 1 Support of frequent item

During the first scan of transaction data, the support of each item

is collected to determine frequent items, called also as 1-itemset.

The ranking of the 1-itemsets is represented by the F-list and is used

to decide the order of items in the FP-tree.

However as we can observe from Table 1, the order of the items

has little relevance with the ranking of the processing load. Among

the 6689 items in the F-list, the most time consuming conditional

pattern base is the item with the processing order number 5507,

6126 and so on.

The observation also indicates that the ordering of the item pro-

cessing can affect the overall performance. This optimization will

be explored further using the distribution of path depth when we

discuss the initial distribution of conditional pattern bases.

3. 2 Number of nodes in FP-tree

One of the easily to obtain statistics is the number of nodes in

FP-tree. The number of nodes in a FP-tree can be calculated after

the construction of the FP-tree. When the number of nodes in a FP-

tree is large, more time is needed to traverse it. The total number

of FP-tree node traversals is a main factor of FP-growth processing

load.

However the number of nodes does not reflect the density of

the nodes in the FP-tree. When the nodes in the FP-tree become

”bushy”, a lot of traversals are needed even in the subsequent con-

ditional FP-trees.

3. 3 Number of elements in conditional pattern base

Similar to the number of nodes in a FP-tree, the number of ele-

ments in a conditional pattern base is also a readily available statis-

tic. The number of elements in a conditional pattern base determines

the number of insertions to a FP-tree. The insertion cost is another

main factor of processing cost during the construction of FP-tree.

Since each element represents a distinct pattern in the previously

generated conditional FP-tree, the number of elements in condi-

tional pattern base also affects the density of the FP-tree, one of

the most important performance factor in the tree-based algorithms.

3. 4 Number of iterations

Since the processing of conditional pattern bases is the atomic

processing unit of parallel FP-growth, the processing load is de-

fined on the processing of each conditional pattern base. And since

FP-growth is an iterative process, the processing load is best defined

as the number of the iterations during the processing. Note that pro-

cessing load of a conditional pattern base is also an accumulation of

its subordinate conditional pattern bases.

Of course, the exact number of iterations can be determined only

after the execution of the conditional pattern bases.

3. 5 Length of frequent pattern

The length of frequent pattern is also a good indicator of pro-

cessing load since the longer the final frequent pattern, FP-growth

usually requires more iterations.

Unfortunately, the exact length of frequet patterns also can be de-

termined only after the execution of conditional pattern bases.

3. 6 Path depth

The path depth is an approximate of the length of the longest fre-

quent pattern in a conditional pattern base. It can be computed by

the bottom-up aggregation of the support counts in the nodes of a

FP-tree. When the total aggregated count reaches the minimum sup-

port at a certain node, the path depth is the ”depth” of the node, in

other word, the number of nodes in the shortest path from the root

node to the current node.

Path depth can be calculated during the construction of a FP-tree

or a conditional FP-tree. However the accuracy of the path depth is

determined from some other factors. The path depth does not rep-

resent the actual frequent pattern length because some prefix paths

may become infrequent.

Figure 2 Length of frequent pattern approximation by path depth

Figure 2 shows the accuracy of the path depth to predict the length

of the actual longest frequent pattern in a conditional pattern base.

The dataset is a synthetic T25.I20.D100K.i10K with minimum sup-

port 0.1%. The path depth is calculated from the second generation

of conditional pattern bases, i.e. the conditional pattern bases of

itemsets with two items.

The X-axis represents the items in the F-list while the Y-axis rep-



resents the accuracy of the path depth which is the path depth di-

vided by the length of the actual longest frequent pattern. The fig-

ure indicates that the path depth is a good indicator of the longest

frequent patterns after the second generation of conditional pattern

bases when the conditional FP-trees are becoming denser. The av-

erage accuracy is 0.96 and the standard deviation is 0.12.

4. Load prediction models

Although there are many algorithms proposed so far to mine fre-

quent patterns, there are very few works on quantitative analysis of

the mining process. A notion of the ”denseness” of a dataset is used

to switch data representation during mining process [6], [9]. Some

models to predict the processing loads were proposed to select fre-

quent pattern for compression [3] and to switch enumeration method

in closed pattern mining [8].

4. 1 Load prediction function

When all subsets of a frequent pattern� with length��� are also

frequent and its support is����, the processing load can be esti-

mated as����� � �� � ���� [3].

However if we do not know the length of frequent patterns in ad-

vance we need to estimate it. As described in previous section, path

depth can be a good indicator of the length of frequent patterns for

the second generation of conditional pattern bases or later. Note that

the path depth alone is also sufficient to provide a convenient way

to balance processing load using a threshold namelyminimum path

depth[10]. Here we explore how we can use path depth to enhance

the accuracy of the processing load prediction.

Using the same assumptions as [3], the processing load of a con-

ditional pattern base is proportional to��� � �� where� is the path

depth of the conditional pattern base.

The complexity of the processing also depends on the number of

elements in a conditional pattern base���� , so we examine the

load prediction function in the form of��� � �� � ���� . Other

statistics such as the number of nodes in the FP-tree can be used

also, but the number of nodes in FP-tree represents the information

of the previous conditional pattern base. We expect to have better

prediction since���� represents the number of elements in the

individual conditional pattern bases generated from the FP-tree.

4. 2 Sampling based load prediction

Sampling is one of the earliest method to mine association rule

[12]. With some improvements such as lower minimum support

threshold, a predictable error rate can be achieved. Some commer-

cial products such as Intelligent Miner also employ sampling to re-

duce the number of transactions to be processed.

Here we examine sampling not as a method to mine the frequent

patterns theirselves, but instead to gather some statistics so we can

devise better load balancing strategy. The basic idea is to sample

some transactions and then apply mining algorithm on them. From

the mining result, some statistics such as the number of iterations,

and the length of frequent patterns, which can be observed only after

mining finishes, can be estimated.

Because the number of iterations shows the best correlation with

the processing load, we use the number of iterations from mining

the sample to predict the processing load.

5. Performance Evaluation on PC cluster

A common execution trace of parallel FP-growth is shown in Fig-

ure 3. The dataset is T25.I20.D100K.i10K and the minimum sup-

port is set to 0.01%. Figure 3 shows the parallel execution without

the path depth based load balancing on four processing nodes. The

PC cluster consists of 16 processing nodes that are interconnected

to a 100Base-TX Ethernet through a Gigabit switch. Each process-

ing node has 800MHz Pentium III and 128 MB of main memory.

The underlying parallel FP-growth is implemented in C language

on Solaris 8 for x86. The detail of the implementation can be found

in [10].

Figure 3 Execution trace of parallel FP-growth without load balancing

The figure shows CPU resource usage, and interconnection net-

work (send/receive). Horizontal axis is elapsed time. The vertical

axis for the top graph denotes CPU utilization ratio for overall pro-

cess (solid red line) and background process (dashed green line).

The second graph denotes data transfer throughput in MB/s for

interconnection network. The network throughput is divided into

two parts, send throughput (solid red line) and receive throughput

(dashed green line).

From Figure 3, we can identify that there are two parts where

the CPU resource usage is likely to drop thus hinder the scalabil-

ity of the overall system. The first part (denoted as ”II”) is when

the conditional pattern bases are first extracted from the local FP-

tree on each processing node and then distributed to the collector

processes. This phase is called ”initial distribution of conditional

pattern base”. The second part (denoted as ”IV”) is near the end of

the execution trace where some processing nodes have starved their

own conditional pattern base and ask other nodes to share some con-

ditional pattern bases. Before the processing load is balanced, some

processing nodes may become idle. This phase is called ”load bal-

ancing during the execution of conditional pattern bases”.

5. 1 Initial distribution of conditional pattern bases

As depicted by Figure 3, during this phase the network activities

become the bottleneck of the whole system. The collector process

has to collect conditional pattern bases from all nodes before it can



proceed to reconstruct a conditional FP-tree. Actually we can hide

the network latency, by employing a background process which can

utilyze the CPU idle time to process the reconstructed conditional

pattern bases during this critical phase.

However the processing load of each conditional pattern base

varies significantly [10]. The background process can not optimally

recover the loss of CPU usage if the processing of conditional pat-

tern bases finishes too quickly. Thus it is important to distribute

conditional pattern bases that potentially consume a lot of process-

ing time as soon as possible so that the background process has

enough processing load to digest.

Unfortunately, as mentioned in Section 3., at this phase only a

limited statistics can be gathered because even the conditional pat-

tern bases are not reconstructed. Thus we propose some methods to

decide the initial distribution of conditional pattern base using those

limited statistics.

5. 1. 1 Distribution methods

Here we examine three kinds of distribution methods. The first

one is based on a simple heuristics based on the distribution of path

depth to decide which item to start the processing of conditional pat-

tern bases. The rest of the processing is following the order of items

in the F-list. The other two methods try to find the optimal distri-

bution by estimating the processing load of individual conditional

pattern base. The second method employs the processing load pre-

diction function and the third one employs the sampling based load

prediction.

Figure 4 Segmented path depth distribution

（ 1） ordering of conditional base processing

Figure 4 gives another view of the distribution of path depth.

When the items following F-list order are divided into ten equal

segments, the vertical axis represents the distribution of path depth

for each segment. For example if F-list contains 100 items from 1

to 100, the third segment contains items range from 71 to 80. The

color of the bars represents the path depth of conditional pattern

bases in the segment. The figure reveals that most of conditional

Figure 5 Effect of processing order on performance

pattern base have small path depth, but some have very large path

depth.

Our observation on path depth distribution as shown in Figure 4

also indicates that conditional pattern bases with small path depth

are more likely to be found with the segment of the least frequent

items in the F-list, i.e. the first segment in the figure. The processing

of conditional pattern bases with small path depth is dominated by

network activities to send and receive them. Therefore, if following

conventional processing order, many nodes stay idle after quickly

finishing conditional pattern bases with small path depth. We can

make optimization on the processing order.

Figure 5 shows the results of preliminary experiments on the ef-

fect of the processing order on overall performance. Four nodes of

the PC cluster were used, and the dataset for this experiment was

T25.I20.D100K.i10K with minimum support 0.1%. “normal” rep-

resents ordinary processing order, i.e. starting from the least fre-

quent item in the F-list to the most frequent, while “reversed” rep-

resents the opposite order, i.e. we process the most frequent item in

the F-list first. The x-axis is the segment number when the items in

the F-list are divided into ten equal segments like in Figure 4. The

y-axis records the overall execution time in seconds. The results are

the average of two executions.

The figure reveals that the processing order and the starting point

for items in F-list have influence on the performance. In particular,

the best performance was achieved when following ordinary pro-

cessing order but starting from third segment, i.e. from 70% to 80%

of the items in the F-list. The alternative to reverse the order of

the processing does not give significant performance improvement.

Nevertheless, as we observe from Figure 4, the first segment also

contains mostly conditional pattern bases with small path depth.

Based on our observation, the processing of the items in the F-list

is not started from their least frequent ones, but we start from the

third segment of the items since in that segment conditional pattern

bases with longer path depth are more likely.

（2） Enhanced path depth based load prediction

The prediction of the processing load of the conditional pattern

base is based on the processing load prediction function described



Table 2 Execution time of distribution methods (T25.I20.D100K.i10K)

#nodes ordering prediction func. sampling

4 92.9s 103.3s 96.6s

8 52.3s 57.3s 53.4s

Table 3 Execution time of distribution methods (accidents)

#nodes ordering prediction func. sampling

4 193.9s 204.9s 194.8s

8 112.6s 112.6s 96.4s

in previous section.

The statistics from each processing node are collected after the lo-

cal FP-tree on each processing node is constructed. The aggregated

support counts for each ”depth” in the local FP-tree are accumu-

lated to calculate the path depth for each conditional pattern base.

The number of elements in each conditional pattern base is also col-

lected so we can calculte the processing load prediction function

��� � �� � ���� described in previous section. We sort the pre-

dicted load to generate a distribution map determining which pro-

cessing node should process a conditional pattern base. Conditional

pattern bases which are predicted to have more load will be sent

first to the processing nodes. Thus we can expect that the back-

ground process keep the processing node busy in order to hide the

latency during the distribution of later conditional pattern bases.

（ 3） Sampling

The sampling method collects a portion of transaction database

randomly from each processing node and applies the FP-growth

mining algorithm to gather the statistics.

The sampled transactions are collected by the control process dur-

ing the insertions of ordered-transactions into the local FP-tree on

each processing node. Those sampled transactions are mined by the

control process and the number of iterations for each conditional

pattern base is gathered.

The distribution map is generated simply based on the ranking of

the number of iterations. The sampling method has the advantage

that the number of iterations better represents the processing load.

However there are two kinds of overhead during the sampling pro-

cess : the collection of sampled transactions and the mining on the

sampled transactions. Thus we have to set the size of the sampling

to get optimal trade off between its precision and the overhead.

5. 1. 2 Performance evaluation of the distribution methods

We perform experiments to compare the effectiveness of each

initial distribution method. The datasets are T25.I20.D100K.i10K,

which is described in Section 3., with minimum support 0.01% and

real data set called ”accidents”. The accidents data set contains

anonymized traffic accidents data collected by National Institute of

Statistics for the region of Flanders(Belgium) for the period 1991-

2000 [4]. It contains 340183 records and 572 items. The average

transaction length is 45. The minimum support for accidents dataset

is set to 20%.

The results are shown in Table 2 for T25.I20.D100K.i10K dataset

and Table 3 for accidents dataset. Those results indicate that chang-

ing the order of the distribution shows the best performance because

it incurs less overhead. However it is not a trivial task to find the

optimal order. Here we use the starting point at the 70% segment

in the F-list as a rule of thumb. The sampling based distribution

appears to be the second best performer. Here we sample 1% of

the transactions. The sampling method also performs better on ac-

cidents dataset, in particular when the number of nodes is eight,

the sampling method can outperform the item order heuristic based

method. The accidents dataset has smaller number of items, and for

the minimum support of 20%, the number of frequent items is only

48. Thus the overhead is smaller and the effect of better prediction

becomes significant. The sampling method may also work well for

some datasets which the characteristics are unknown in advance.

5. 2 Load balancing during the execution of conditional pat-

tern bases

In our previous work we have developed a path depth based load

balancing mechanism [10]. By setting the minimum path depth, any

conditional pattern base whose path depth is smaller than the thresh-

old will be immediately executed until completion; otherwise, it is

executed only until the generation of subsequent conditional pat-

tern bases. Then the generated conditional pattern bases are stored,

some of them might be executed at the same node or sent to other

idle nodes. Since node with heavy processing load can split the load

and disperses it to other nodes, path depth approach can also absorb

the processing skew among nodes to some extent.

Here we propose load balancing models which also consider

other statistics in order to have better precision of the load predic-

tion. Notice that we can still employ the same load balancing mech-

anism so that we also need to set a threshold to determine whether

to break down the processing load or not.

Figure 6 Speedup with T25.I20.D100K.i10K dataset

We employ the load prediction function in section 3.. Figure 6

shows the results of the synthetic T25.I20.D100K.i10K dataset and

the minimum support is set to 0.01% for various threshold values.

The X-axis represents the number of processing nodes, while the

Y-axis represents the speedup ratio, that is how faster the overall



performance when more processing nodes are used. Simple path

depth balancing mechanism is denoted by ”min pdepth P”, where P

represents the threshold of the path depth. While the proposed load

prediction function is denoted by ”th F”, where F represents the

threshold of the load prediction. For example, ”th 1000” means that

if the load prediction value of a conditional pattern base is more than

1000 then the subsequent conditional pattern bases will be splitted

and stored.

The performance of the load prediction function based load bal-

ancing still lacks behind its path depth based predecessor. The ex-

periment results show that the speedup ratio of the load prediction

based approach suffer when the number of processing nodes is more

than four. The static threshold based mechanism can not sufficiently

adapt to the granularity of the processing load distributed among

many nodes.

Note also that compared to the simple path depth, it is more dif-

ficult to find the optimal value for the threshold because the value

range of the threshold is larger. However, as Figure 6 shows, the

load prediction function based method is easier to use since the

threshold is less sensitive than the minimum path depth.

6. Conclusion

We have examined several statistics related to the processing load

of parallel FP-growth algorithm. Based on those observations, we

designed two load prediction methods based on path depth and sam-

pling. We have implemented those methods on a PC cluster to ex-

amine their effectiveness.

For the initial distribution of conditional pattern bases, we also

examined a heuristic to change the processing order based on the

distribution of path depth. Through real implementation, we found

that the heuristic approach performed better than the load prediction

methods because it does not incur overhead to collect the statistics

before the distribution. However the sampling method can performs

better in some cases where the number of frequent items is small,

and it requires less knowledge in advance. We are going to examine

other approaches with little overhead.

For the load balancing during the processing of conditional pat-

tern bases, the proposed load prediction function still do not achieve

expected performance due to the problem with the flexibility of the

static threshold mechanism. The determination of the threshold dy-

namically during the execution is necessary, although it is not an

easy task because more statistics are involved. We are also going to

investigate other load prediction models involving more statistics to

achieve better prediction precision.

References
[1] R. Agrawal and J. C. Shafer. “Parallel Mining of Association Rules”.

In IEEE Transaction on Knowledge and Data Engineering, Vol. 8,
No. 6, pp. 962–969, December, 1996.

[2] R. Agrawal and R. Srikant. ”Fast Algorithms for Mining Associ-
ation Rules”. InProc. of the 20th Int. Conf. on Very Large Data
Bases(VLDB), pp. 487–499, September 1994.

[3] G. Cong, B. C. Ooi, K.-L. Tan, A. K. H. Tung ”Go Green: Recycle

and Reuse Frequent Patterns”. InProc. of Int. Conf. on Data Engi-
neering (ICDE’2004), Boston, 2004.

[4] Geurts, K. Wets, G. and Brijs, T. ”Profiling high frequency accident
locations using association rules”. InElectronic Proc. of the 82th
Annual Meeting of the Transportation Research Board, 2003.

[5] J. Han, J. Pei and Y. Yin ”Mining Frequent Pattern without Candidate
Generation”. InProc. of the ACM SIGMOD Conf. on Management
of Data, 2000.

[6] J. Liu, Y. Pan, K. Wang, and J. Han “Mining Frequent Item Sets by
Opportunistic Projection“ InProc. of the ACM SIGKDD Int. Conf.
on Knowledge Discovery and Data Mining, 2002

[7] S. Orlando, P. Palmerini, R. Perego, and F. Silvestri “Adaptive and
Resource-Aware Mining of Frequent Sets”. InProc. of the Int. Conf.
on Data Mining(ICDE), 2002.

[8] F. Pang, A. K. H. Tung, G. Cong, X. Xu. ”COBBLER: Combining
Column and Row Enumeration for Closed Pattern Discovery”. In
Proc. of 16th Int. Conf. on Scientific and Statistical Database Man-
agement, 2004

[9] J. Pei, J. Han, H. Lu S. Nishio, S. Tang and D. Yang “H-Mine :
Hyper-Structure Mining of Frequent Patterns in Large Databases” In
Proc. of Int. Conf. on Data Mining(ICDM), 2001.

[10] I. Pramudiono and M. Kitsuregawa “Tree Structure based Parallel
Frequent Pattern Mining on PC Cluster”. InProc of 14th Int. Conf.
on Database and Expert Systems Applications (DEXA’03), 2003.

[11] T. Shintani and M. Kitsuregawa “Hash Based Parallel Algorithms
for Mining Association Rules”. InIEEE Fourth Int. Conf. on Paral-
lel and Distributed Information Systems, pp. 19–30, December 1996.

[12] H. Toivonen. ”Sampling Large Databases for Association Rules” In
Proc. of the 22th Int. Conf. on Very Large Data Bases(VLDB), 1996.

[13] O. R. Zaiane, M. El-Hajj, and P. Lu. “Fast Parallel Association Rule
Mining Without Candidacy Generation” InProc. of the IEEE 2001
Int. Conf. on Data Mining (ICDM’2001), pp. 665–668, 2001


