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Abstract In our previous work, we proposed a data model, called V-bags, for representing incomplete information
on bags of tuples. This paper proposes a supermodel of V-bags, called GV-bags, which are V-bags augmented by
global conditions. Global conditions restrict assignments over variables in V-bags. Then, the closure properties
of six operations, selection, projection, union, product, difference and unique, and their inverses on these models
under both closed world assumption (called CWA) and open world assumption (called OWA) are investigated. We
obtain that unique on V-bags is closed under CWA, but it under OWA and its inverse on V-bags is not closed under
either CWA or OWA. It is shown that inverse of product under CWA, inverse of selection under OWA and inverse
of unique under CWA are closed on GV-bags although they are not closed on V-bags. The others are the same as
those on V-bags.
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1. Introduction

1. 1 Background

Incomplete information is partial and ambiguous informa-

tion such as “We know that the course Databases is given

at room A01, but we do not know who teaches it” and “The

room of the course Programming given by Ishihara is B02 or

C03.” Information which we obtain in the real world is often

incomplete. To handle such incompleteness strictly, we need

data models for representing incomplete information.

Moreover, in some of the recent works on answering queries

using materialized views, data models for incomplete infor-

mation are demonstrated to be useful [1], [6], [10], [13]. Such

data models are also useful for access control guaranteeing

no secret information disclosed. As an example, consider

Disclosure Monitor proposed in [5]. When a database user

issues a query, Disclosure Monitor maintains the following

two types of knowledge: (a) knowledge which the user has

obtained from the database so far, and (b) knowledge which

the user can obtain from the query and the answer of the

query. If the secret information of the database can be de-

rived from knowledge (a) and (b), then Disclosure Monitor

refuses to answer the query. Data models for incomplete in-

formation are useful for representing the user’s knowledge

because queries and their answers can be regarded as incom-

plete information on the database. Hence, if such incomplete

information can be naturally treated, the idea of Disclosure

Monitor will have more impact.

Ordinary relational databases cannot represent incomplete

information naturally. Therefore, some extensions of rela-

tional databases have been proposed. For example, in a Codd

table [7], unknown values are represented by one special sym-

bol, null. In a V-table [11], unknown values are represented

by variables. C-tables [11] are a supermodel of V-tables such

that each tuple has a condition for the tuple to exist. In [3],

the complexity of operations on those models is investigated.

Example 1 Figures 1 and 2 give examples of a V-table and

a C-table, respectively. Figure 1 shows three facts that ar-

bitrary teacher gives Databases at room A01, and Ishihara

teaches two courses, Programming and Network. Figure 2

contains a new attribute con representing the condition for

the associated tuple to exist. For example, the tuple (Pro-

gramming, Ishihara, y) exists if y is B02 or C03.

The underlying data models of Codd tables, V-tables and

C-tables are relational. However, most of the practical query

languages contain constructs and functions which are repre-

sented on bags, i.e., the answer of a query may contain du-

plicate tuples. In SQL, the “select distinct” construct and

the “count” function are examples of such constructs and

functions. These operations can be better explained if bags

instead of sets are used. Thus, a bag-based data model for

representing incomplete information is desirable. Moreover,

bag-based data models can be implemented easily on rela-

tional databases, by using a special attribute for represent-

ing the number of tuples. Also, they can be implemented on



Course Teacher Room

Databases x A01

Programming Ishihara y

Network Ishihara y

Figure 1 An example of a V-table.

Course Teacher Room con

Databases x A01 true

Programming Ishihara y (y = B02) ∨ (y = C03)

Network Ishihara y (y = B02) ∨ (y = C03)

Figure 2 An example of a C-table.

Global condition: (x |= Yamaguchi) ∧ (z <= 3)

Teacher Room

x A01 7→ z

Ishihara y 7→ “if (y = B02) ∨ (y = C03) then 2 else 0”

Figure 3 An example of a GV-bag.

other models, i.e., there is a lot of flexibility in implementing

bag-based data models.

1. 2 Our results

In [17], we proposed a bag-based data model for incomplete

information, called EC-tables, which has a special attribute

of conditions for tuples to exist. In this paper, we propose a

data model called V-bags for representing incomplete infor-

mation on bags of tuples. V-bags do not have such a special

attirbute of conditions but are equivalent to EC-tables ba-

cause in V-bags, the number of tuples can be specified by

a conditional expression. Like C-tables, incompleteness is

represented by variables in V-bags. In [17], the closure prop-

erties of five operations, selection, projection, union, product

and difference and their inverses are investigated. Since as-

signments over variables in V-bags cannot be restricted in

this model, some operations are not closed. In this paper,

we propose a supermodel of V-bags, called GV-bags, which

are V-bags augmented by global conditions [4], [8], [9]. Global

conditions restrict assignments over variables in V-bags.

Example 2 Figure 3 shows an example of a GV-bag. This

GV-bag has a global condition (x |= Yamaguchi) ∧ (z <= 3).

The numbers of tuples are shown to the right of 7→. Then,

the first tuple describes that some teacher x other than

Yamaguchi gives at most 3 courses at A01. The second tuple

says that if the room which Ishihara uses is either at room

B02 or C03, then Ishihara has two courses, and otherwise,

Ishihara has no courses.

Next, we also provide two semantics [16] to these models.

One semantics is closed world assumption (called CWA),

which means “invisible tuples do not exist.” For example,

Figure 3 under CWA describes that no room other than A01,

B02, and C03 is used. The other is open world assumption

(called OWA), which means that “the existence of invisible

tuples is unknown.” For example, Figure 3 under OWA de-

Table 1 Closure properties.

(a) V-bags, CWA

σ π ∪ × − µ

Forward Y Y Y Y Y Y

Inverse N N Y N N N

(b) V-bags, OWA

σ π ∪ × − µ

Forward N Y Y Y Y N

Inverse N N Y Y N N

(c) GV-bags, CWA

σ π ∪ × − µ

Forward Y Y Y Y Y Y

Inverse N N Y Y N Y

(d) GV-bags, OWA

σ π ∪ × − µ

Forward N Y Y Y Y N

Inverse Y N Y Y N Y

Y: the operation is closed.

N: the operation is not closed.

scribes that some room other than A01, B02, and C03 may

be used.

Then, we consider operations which are often used in a

query to a database. In this paper, the closure properties

of algebraic operations, selection σ, projection π, union ∪,

product ×, difference − and unique µ, and their inverses on

each model under these semantics are investigated.

The closure properties of forward operations are impor-

tant since the answer of a query to incomplete information

should be represented under the same data model. The clo-

sure properties of inverse operations are also important when

the incomplete information on a database is derived from a

query to the database and its answer. For example, suppose

that the user has issued a query q to the database D and ob-

tained the answer A. Then, Disclosure Monitor mentioned

above computes the user’s knowledge (a) and (b), i.e., the in-

complete information on D determined by q and A. Roughly

speaking, this computation is accomplished by applying the

inverse of q to A. Therefore, in order for the incomplete in-

formation on D to be represented under a data model, the

inverse of every operation in q is desirable to be closed on

the same data model.

Our results are summarized in Table 1. The results newly

obtained in this paper are represented by bold letters. The

inverse of product × under CWA, the inverse of selection σ

under OWA and the inverse of unique µ under CWA are not

closed on V-bags in Table 1 (a) and (b), whereas they are

closed on GV-bags in Table 1 (c) and (d).

1. 3 Related works

There are some related works on bag-based data models

for incomplete information. In [14], a partial order represent-

ing a degree of incompleteness between bags is introduced.



In the model of [14], partial information such as “A’s value is

unknown” can be captured, but ambiguous information such

as “A’s value is B or C” cannot be represented naturally. On

the other hand, in our model, ambiguous information can be

naturally represented. In [12], aggregate queries on C-tables

are defined. Then, it is shown that the aggregate queries on

C-tables are closed. In that model, aggregate values are rep-

resented by the values of a special attribute. On the other

hand, our model is purely a bag-based model.

In [15], a standard bag language, called BQL (additive

union, monus, max, min, eq, member and unique), is pro-

posed, where additive union, monus and unique are the same

as union, difference and unique in this paper. Monus can ex-

press all operations in BQL other than additive union and

unique, which are independent of the rest of other operations.

Therefore, in this paper, the closure properties of these three

important operations are investigated. Moreover, in [15], an

element of a bag is not a tuple but an atomic fact while, in

this paper, an element of a bag is a tuple. Therefore, inves-

tigating the closure properties of selection, projection, and

product is also important.

1. 4 Organization

The rest of this paper is organized as follows. In Section 2,

we define bag-based databases, V-bags, GV-bags, CWA and

OWA . In Section 3, we prove the closure properties of unique

and its inverse on V-bags under CWA. In Section 4, we prove

the closure properties on GV-bags under both CWA and

OWA. Lastly, in Section 5, we provide the summary and

future work.

2. Definitions

2. 1 Bag-based databases

In this section, we extend the definition of ordinary re-

lational databases in [2] to bag-based databases. Although

bag-based databases are not relational, we borrow the termi-

nology of relational databases.

Definition 1 A relation schema R is a set of attributes.

We assume that the domain of every attribute in R is the

set N of non-negative integers (or every attribute value is

encoded by a non-negative integer). A tuple t over R is a

function from R to N . Let t(A) denote the value of A ∈ R

in t. A relational instance D over R is a function from the

set of tuples over R to N such that {t | D(t) |= 0} is a finite

set. A database schema R is a finite sequence 〈R1, . . . , Rn〉
of relation schemas. A database instance over a database

schema R = 〈R1, . . . , Rn〉 is a sequence 〈D1, . . . , Dn〉, where

each Di is a relational instance of Ri.

For a tuple t over R and X⊂=R, let t[X] denote the func-

tion obtained by restricting the domain of t to X. Let

dom(D) = {t | D(t) |= 0}. If D1(t) <= D2(t) for an arbi-

trary tuple t, then we write D1⊂=D2.

Birthday Name

June 10 Sato 7→ 3

May 5 Tanaka 7→ 2

Figure 4 A relational instance D in Example 3.

Example 3 Suppose that there are three people whose sur-

names are Sato and the dates of the birth are June 10. More-

over, assume that there are two other people whose surnames

are Tanaka and the dates of the birth are May 5. Then, the

relational instance D representing these facts is as follows

(see Fig. 4):

D(t) =





3 if t = (June 10, Sato),

2 if t = (May 5, Tanaka),

0 otherwise.

In Fig. 4, the numbers of tuples are shown to the right of 7→.

By definition, dom(D) = {(June 10, Sato), (May 5, Tanaka)}.

Definition 2 We define selection, projection, union, prod-

uct, difference and unique as follows:

Selection σC(D): Let D be a relational instance over a re-

lation schema R and C be a selection condition. For every

tuple t over R, we define σC(D)(t) as follows:

σC(D)(t) =

{
D(t) if t satisfies C,

0 otherwise.

Projection πX(D): Let D be a relational instance over a re-

lation schema R and let X⊂=R. For every tuple t over X, we

define πX(D)(t) as follows:

πX(D)(t) =
∑

t′:t′[X]=t

D(t′).

Union D1 ∪D2: Let D1 and D2 be relational instances over

a relation schema R. For every tuple t over R, we define

(D1 ∪D2)(t) as follows:

(D1 ∪D2)(t) = D1(t) + D2(t).

Product D1 ×D2: Let D1 and D2 be relational instances

over relation schemas R1 and R2, respectively, such that

R1 ∩ R2 = ∅. For every t1 over R1 and every t2 over R2,

we define (D1 ×D2)(t1t2) as follows:

(D1 ×D2)(t1t2) = D1(t1)×D2(t2),

where t1t2 denotes the tuple over R1∪R2 such that t1t2[R1] =

t1 and t1t2[R2] = t2, and × in the right-hand side denotes

the arithmetic multiplication.

Difference D1 −D2: Let D1 and D2 be relational instances

over a relation schema R. For every tuple t, we define

(D1 −D2)(t) as follows:

(D1 −D2)(t) = max(D1(t)−D2(t), 0),

where − in the right-hand side denotes the arithmetic sub-

traction.



Table 2 Conditional expressions defined as macros on non-

negative integer expressions.

conditional expressions non-negative integer expressions

true 1

false 0

a = b 1
.− ((a

.− b) + (b
.− a))

a <= b 1
.− (a

.− b)∨
i
ci 1

.−
(
1

.−
∑

i
ci

)
∧

i
ci

∏
i
ci

¬c1 1
.− c1

if c1 then a else b c1 × a + (1
.− c1)× b

Unique µ(D): Let D be a relational instance over a relation

schema R. For every tuple t, we define µ(D)(t) as follows:

µ(D)(t) =

{
1 if D(t) >= 1,

0 otherwise.

2. 2 V-bags

Let V be a set of variables. Let
.− denote the difference

operation on non-negative integers, i.e.,

a
.− b =

{
a− b if a >= b,

0 otherwise.

A non-negative integer expression is an expression consist-

ing of non-negative integers, variables, and operators +, ×
and

.−. Hereafter, we use
∑n

i=1
ai and

∏n

i=1
ai as shorthand

notations for a1 + · · ·+ an and a1 × · · · × an, respectively.

A V-tuple u over R is a total function from R to N ∪ V .

A V-bag E over R is a total function from the set of V-

tuples over R to the set of non-negative integer expres-

sions such that {u | E(u) |= 0} is finite, where E(u) |= 0

means that the expression of E(u) is not literally 0. Let

dom(E) = {u | E(u) |= 0}. For example, let E(u) = 0 and

E(u′) = x
.− x. Then, u /∈ dom(E) but u′ ∈ dom(E).

In Table 2, we introduce conditional expressions defined

as macros on non-negative integer expressions, where a and

b are arbitrary non-negative integer expressions and ci is an

arbitrary non-negative integer expression such that the value

of ci is equal to 0 or 1.

A valuation is defined as a function from V to N . The

domain of a valuation ν is naturally extended as follows:

• For each constant a ∈ N , let ν(a) = a.

• For non-negative integer expressions x + y, x× y and

x
.− y, let ν(x+y) = ν(x)+ν(y), ν(x×y) = ν(x)×ν(y) and

ν(x
.− y) = ν(x)

.− ν(y).

• For a V-tuple u over X, let ν(u) be a tuple over X

satisfying that for each A ∈ X, (ν(u))(A) = ν(u(A)).

• For a V-bag E and a tuple t,

ν(E)(t) =
∑

u:ν(u)=t

ν(E(u)).

We provide two semantics. The first semantics is Closed

World Assumption (CWA). The other is Open World As-

sumption (OWA).

Definition 3 The set repC(〈E1, . . . , En〉) of database in-

stances represented by 〈E1, . . . , En〉 under CWA is defined

as follows:

repC(〈E1, . . . , En〉) = {〈D1, . . . , Dn〉 |
D1 = ν(E1), . . . , Dn = ν(En) for some valuation ν}.

The set repO(〈E1, . . . , En〉) of database instances repre-

sented by 〈E1, . . . , En〉 under OWA is defined as follows:

repO(〈E1, . . . , En〉) = {〈D1, . . . , Dn〉 |
D1⊃=ν(E1), . . . , Dn⊃=ν(En) for some valuation ν}.

If n = 1, then we write repC(E1) and repO(E1) instead of

repC(〈E1〉) and repO(〈E1〉), respectively.

Definition 4 Let q be an operation on bag-based

databases with n inputs and m outputs. The operation

q is closed on V-bags under CWA if for any sequence

〈E1, . . . , En〉 of V-bags, there is a sequence 〈E′
1, . . . , E

′
m〉 of

V-bags such that

repC(〈E′
1, . . . , E

′
m〉) = {q(〈D1, . . . , Dn〉) |

〈D1, . . . , Dn〉 ∈ repC(〈E1, . . . , En〉)}.

The inverse of operation q is closed on V-bags under CWA

if for any 〈E′
1, . . . , E

′
m〉, there is 〈E1, . . . , En〉 of V-bags such

that

repC(〈E1, . . . , En〉) = {〈D1, . . . , Dn〉 |
q(〈D1, . . . , Dn〉) ∈ repC(〈E′

1, . . . , E
′
m〉)}.

Closure properties on V-bags under OWA is defined in the

same way.

2. 3 GV-bags

We propose a supermodel of V-bags called GV-bags. A

GV-bag is a pair (E,G) of a V-bag E and a global con-

dition G. A sequence of GV-bags with a same global

condition G 〈(E1,G), (E2,G), . . . , (En,G)〉 is rewritten as

(〈E1, . . . , En〉,G). If n = 1, then we write (E1,G) instead

of (〈E1〉,G). A global condition is a Boolean expression con-

sisting of conditional expressions shown in the left column of

Table 2.

Definition 5 The set repG
C(〈E1, . . . , En〉,G) of database

instances represented by (〈E1, . . . , En〉,G) under CWA is de-

fined as follows:

repG
C(〈E1, . . . , En〉,G) = {〈D1, . . . , Dn〉 |

D1 = ν(E1), . . . , Dn = ν(En)

for some valuation ν such that ν(G) = true}.

The set repG
O(〈E1, . . . , En〉,G) of database instances repre-

sented by (〈E1, . . . , En〉,G) under OWA is defined as follows:

repG
O(〈E1, . . . , En〉,G) = {〈D1, . . . , Dn〉 |



D1⊃=ν(E1), . . . , Dn⊃=ν(En)

for some valuation ν such that ν(G) = true}.

If n = 1, then we write repG
C(E1,G) and repG

O(E1,G) instead

of repG
C(〈E1〉,G) and repG

O(〈E1〉,G), respectively.

Note that if ν(G) = false for any valuation ν, then

repG(E,G) = ∅, where ∅ means there is no instance in

repG(E,G). On the other hand, if ν(E(u)) = 0 for any

u ∈ dom(E) and any valuation ν such that ν(G) = true,

then repG(E,G) = {∅}, where {∅} means that repG(E,G)

contains only the empty instance.

The closure properties of six operations on GV-bags are

defined in the same way as V-bags.

3. Closure properties of V-bags

In this section, we show that unique under CWA is closed

(Theorem 1). Then, we show that the inverse of unique un-

der CWA is not closed (Theorem 2). The proofs of the case

of OWA are similar to the case of CWA.

Unique on V-bags under CWA is defined as follows.

Definition 6 Let E be a V-bag over a relation schema R.

Fix some total order ¹ on dom(E). For each V-tuple u, we

define µ(E)(u) as follows:

µ(E)(u) =





∑

F⊂=dom(E)

“if Φu
F then Ξu

F else 0”

if u ∈ dom(E),

0 otherwise,

where

Φu
F =

( ∧
u′∈F

∧
A∈R

(u[A] = u′[A])

)

∧


 ∧

u′∈dom(E)−F

∨
A∈R

¬(u[A] = u′[A])


 ,

and

Ξu
F =





1
.−

(
1

.−
∑
u′∈F

E(u′)

)

if u is the largest in F w.r.t. ¹,

0 otherwise.

Theorem 1 Unique is closed on V-bags under CWA, that

is, repC(µ(E)) = {µ(D) | D ∈ repC(E)}.

Proof: Let E be a V-bag over a relation schema R. We prove

that

∀ν∀u, ν(µ(E))(ν(u)) = µ(ν(E))(ν(u)).

The theorem is immediately derived from this equation

and the definition of CWA. We will prove the equation

by showing that both-hand side can be rewritten as 1
.−

(1
.− ν(E)(ν(u))). First, we consider the Left-hand side.

From the construction of Φu
F , it can be concluded that for

each pair of ν and u, there is exactly one F ν,u such that

ν(Φu
F ν,u) = true, namely,

F ν,u = {u′ ∈ dom(E) | ν(u′) = ν(u)}.

Therefore, we have

ν(µ(E))(ν(u))

=
∑

u′:ν(u′)=ν(u)

ν(µ(E(u′)))

=
∑

u′:ν(u′)=ν(u)

ν




∑

F⊂=dom(E)

“if Φu′
F then Ξu′

F else 0”




=
∑

u′:ν(u′)=ν(u)

∑

F⊂=dom(E)

“if ν
(
Φu′

F

)
then ν

(
Ξu′

F

)
else 0”

=
∑

u′:ν(u′)=ν(u)

ν
(
Ξu′

F ν,u′

)

= ν

(
1

.−
(

1
.−

∑
u∈F ν,u

E(u)

))
,

since u′ varies over F ν,u′ and u is in F ν,u′ . Therefore, we

have

ν(µ(E))(ν(u)) = ν

(
1

.−
(

1
.−

∑
u∈F ν,u

E(u)

))

= 1
.− (1

.− ν(E)(ν(u))) .

This equation indicates that if ν(E)(ν(u)) >= 1, the number

of ν(u) is 1, and otherwise, the number of ν(u) is 0. Now,

we consider the Right-hand side. From Definition 2 and the

property of
.−, we obtain

µ(ν(E))(ν(u)) =

{
1 if ν(E)(ν(u)) >= 1,

0 otherwise,

= 1
.− (1

.− ν(E)(ν(u))) .

2

Now, we show that the inverse of unique on V-bags under

CWA is not closed.

Theorem 2 The inverse of unique is not closed on V-bags

under CWA.

Proof: We assume that the inverse of unique is closed on

V-bags under CWA, and derive a contradiction. Let a be

a non-negative constant. Let E′ be a V-bag over a relation

schema {A} with dom(E′) = {u}, u(A) = a and E′(u) = 2

(see Figure 5). From the assumption that the inverse of

unique is closed, there is a V-bag E such that

repC(E) = {D | µ(D) ∈ repC(E′)}.

For D′ ∈ repC(E′), there is an only tuple t such that



A

a 7→ 2

Figure 5 E′ in Theorem 2.

D′(t) = 2, and hence, there is no D such that µ(D) = D′.

Thus,

repC(E) = {D | µ(D) ∈ repC(E′)} = Ø.

On the other hand, by the definition of CWA,

repC(E) = {D | D = ν(E) for some valuation ν}.

cannot be empty. Hence, the inverse of unique is not closed

under CWA. 2

4. Closure properties of GV-bags

In this section, we show that the proofs of the inverse of se-

lection under OWA, the inverse of product under CWA and

the inverse of unique under CWA are closed (Theorems 3, 4

and 5). The proof of the inverse of unique under OWA is

similar to the CWA case. The proofs of the other operations

are similar to the case of V-bags. They are omitted because

of the space limitation.

Now, we prove that inverse of selection under OWA is

closed.

Definition 7 Let (E,G) be a GV-bag over a relation

schema R and C be a selection condition. Let Cu be a

condition such that every attribute A in C is replaced with

u(A) (e.g., if C is “A = a′′ then Cu is “u(A) = a′′). Let

(E′,G′) = σ−1
C (E,G). We define E′ as E and G′ as follows:

G′ =


 ∧

u∈dom(E)

Cu


 ∧ G.

Theorem 3 The inverse of selection is closed under

OWA, that is, σC(D) ∈ repG
O(E,G) if and only if D ∈

repG
O(σ−1

C (E,G)).

Proof: If part. Let (E,G) and C be a GV-bag over a rela-

tion schema R and a selection condition, respectively. Let

(E′,G′) = σ−1
C (E,G). Consider an instance D such that

D ∈ repG
O(E′,G′). There must be a valuation ν′ such

that D⊃=ν′(E′) and ν′(G′) = true. Hence, for each tuple

u′ ∈ dom(E′), ν′(u′) satisfies Cu, since ν′(G′) = true. There-

fore, we have σC(D)⊃=ν′(E′). We obtain σC(D)⊃=ν′(E), be-

cause E′ = E. Hence, we have σC(D)⊃=ν′(E) ∈ repG
O(E,G).

Only if part. Let (E,G) and C be a GV-bag over a rela-

tion schema R and a selection condition, respectively. Let

D be an arbitrary instance such that σC(D) ∈ repG
O(E,G).

Then, there is a valuation ν such that σC(D)⊃=ν(E). There-

fore, all tuples in ν(E) satisfy C. Let (E′,G′) = σ−1
C (E,G).

We obtain ν(G′) is true, and ν(E′) = ν(E)⊂=σC(D)⊂=D

because E = E′. Hence, we have D ∈ repG
O(E′,G′) =

repG
O(σ−1

C (E,G)). 2

Now, the inverse of product on GV-bags under CWA is

defined as follows.

Definition 8 Let X and Y be relation schemas such that

X ∩ Y = ∅. Let (E,G) be a GV-bag over the relation

schema X ∪ Y . Let G1 = {u[X] | u ∈ dom(E)} and

G2 = {u[Y ] | u ∈ dom(E)}. We define ×−1(E,G) as the

following pair of GV-bags (E1,G′) over X and (E2,G′) over

Y . First, the global condition G′ is defined as follows:

G′ =
∧

u1u2∈dom(E)




∧

F1⊂=G1

∧

F2⊂=G2

ΩF1F2


 ∧ G,

where

ΩF1F2 =

“if ΦF1F2 then
∑

u1∈F1,u2∈F2

(E,G)(u1u2) = SF1F2 ,”

ΦF1F2 =( ∧
u′∈F1

∧
A∈X

(u1(A) = u′(A))

)

∧
( ∧

u′∈G1−F1

∨
A∈X

¬(u1(A) = u′(A))

)

∧
( ∧

u′∈F2

∧
A∈Y

(u′(A) = u2(A))

)

∧
( ∧

u′∈G2−F2

∨
A∈Y

¬(u′(A) = u2(A))

)
,

SF1F2 =
∑

u1∈F1

(E1,G′)(u1)×
∑

u2∈F2

(E2,G′)(u2).

For each V-tuple u, introduce new variables xuX and yuY

not appearing in dom(E), and define (E1,G′) and (E2,G′)
as follows:

(E1,G′)(uX) =

{
xuX if uX ∈ G1,

0 otherwise,

(E2,G′)(uY ) =

{
yuY if uY ∈ G2,

0 otherwise.

Theorem 4 The inverse of product is closed on GV-bags

under CWA, that is, D1 × D2 ∈ repG
C(E,G) if and only if

〈D1, D2〉 ∈ repG
C(×−1(E,G)).

Proof: If part. Let (E,G) be a GV-bag over a relation schema

X ∪ Y . Let (〈E1, E2〉,G′) be ×−1(E,G). Consider instances

D1 and D2 such that 〈D1, D2〉 ∈ repG
C(〈E1, E2〉,G′). There

must be a valuation ν′ such that ν′(E1) = D1, ν′(E2) = D2

and ν′(G′) = true. For ν′, t1 ∈ D1, and t2 ∈ D2, define



F ν′,t1
1 = {u1 ∈ G1 | ν′(u1) = t1},

F ν′,t2
2 = {u2 ∈ G2 | ν′(u2) = t2}.

Then,

ν′(E1)(t1) = ν′


 ∑

u1:ν′(u1)=t1

(E1,G)(u1)




=
∑

u1:ν′(u1)=t1

ν′((E1,G)(u1))

=
∑

u1∈F
ν′,t1
1

ν′(xu1).

Similarly, ν′(E2)(t2) =
∑

u2∈F
ν′,t2
2

ν′ (yu2).

Since ν′(G′) = true, we obtain
∑

u1∈F
ν′,t1
1

ν′ (xu1)×
∑

u2∈F
ν′,t2
2

ν′ (yu2)

=
∑

u1∈F
ν′,t1
1 ,u2∈F

ν′,t2
2

ν′((E,G)(u1u2))

=
∑

u1u2:ν′(u1u2)=t1t2

ν′((E,G)(u1u2))

= ν′(E)(t1t2).

Therefore, we have ν′(E1)(t1) × ν′(E2)(t2) = ν′(E)(t1t2).

Thus, if D1 = ν′(E1) and D2 = ν′(E2), then D1 × D2 =

ν′(E). By the definition of CWA, D1 ×D2 ∈ repG
C(E,G).

Only if part. Let (E,G) be a GV-bag over a relation

schema X ∪ Y , and D1 and D2 be arbitrary instances such

that D1 × D2 ∈ repG
C(E,G). Then, there is a valuation ν

such that ν(E) = D1 × D2, and ν(G) = true. Therefore,

for each t1t2 in ν(E), ν(E)(t1t2) = D1(t1) × D2(t2). Let

(〈E1, E2〉,G′) be ×−1(E,G). In what follows, we construct a

valuation ν′ such that for each pair of tuples t1 ∈ dom(D1)

and t2 ∈ dom(D2),

ν′(E1)(t1) = D1(t1),

ν′(E2)(t2) = D2(t2).

Such ν′ satisfies D1 = ν′(E1), D2 = ν′(E2) and ν′(G′) =

true.

ν′ is defined on the variables appearing in dom(E1) or

dom(E2) and the new variables xuX and yuY . For each vari-

able z appearing in dom(E1) or dom(E2), let ν′(z) = ν(z).

Define

F ν′,t1
1 = {u1 ∈ G1 | ν′(u1) = t1},

F ν′,t2
2 = {u2 ∈ G2 | ν′(u2) = t2}.

We prove the existence of ν′ such that
∑

u1∈F
ν′,t1
1

ν′(xu1) = D1(t1),

∑

u2∈F
ν′,t2
2

ν′(yu2) = D2(t2).

From the construction of F ν′,t1
1 and F ν′,t2

2 , if t1 |= t′1, then

F ν′,t1
1 ∩ F

ν′,t′1
1 = ∅. Therefore, each variable in G1 and G2

appears only once. Hence, we can easily construct the valu-

ation ν′ satisfying above equations. Then,

∑

u1∈F
ν′,t1
1 ,u2∈F

ν′,t2
2

ν′((E,G)(u1u2))

=
∑

u1u2:ν′(u1u2)=t1t2

ν′((E,G)(u1u2)) = ν′(E)(t1t2).

Hence, we have 〈D1, D2〉 ∈ repG
C(〈E1, E2〉,G) =

repG
C(×−1(E,G)). 2

Now, we prove that inverse of unique under CWA is closed.

Definition 9 Let (E,G) be a GV-bag over a relation

schema R. Let (E′,G′) = µ−1(E,G). First, the global con-

dition G′ is defined as follows:

G′ =
∧

u∈dom(E)




∧

F⊂=dom(E)

ΩF


 ∧ G,

where

ΩF = “if ΦF then
∑

u∈F
(E,G)(u) = 1,”

ΦF =

( ∧
u′∈F

∧
A∈X

(u[A] = u′[A])

)

∧


 ∧

u′∈dom(E)−F

∨
A∈X

¬(u[A] = u′[A])


 .

For each V-tuple u, introduce a new variable xu not appear-

ing in dom(E), and define (E′,G′) as follows:

(E′,G′)(u) ={
“if (E,G)(u) then xu + 1 else 0” if u ∈ dom(E),

0 otherwise.

Theorem 5 The inverse of unique is closed under CWA,

that is, µ(D) ∈ repG
C(E,G) if and only if D ∈

repG
C(µ−1(E,G)).

Proof: If part. Let (E,G) be a GV-bag over a relation schema

R. Let (E′,G′) = µ−1(E,G). Consider an instance D such

that D ∈ repG
C(E′,G′). There must be a valuation ν′ such

that D = ν′(E′) and ν′(G′) = true. For ν′ and t ∈ dom(D),

define

F ν′,t = {u ∈ dom(E) | ν′(u) = t}.

Then,

µ(D)(t) = µ(ν′(E′))(t)

= 1
.−


1

.− ν′


 ∑

u:ν′(u)=t

(E′,G′)(u)









= 1
.−


1

.− ν′


 ∑

u∈F ν′,t

S





 ,

where

S = “if (E,G)(u) then xu + 1 else 0”.

Since ν′(G′) = true,

ν′


 ∑

u∈F ν′,t

(E,G)(u)


 = 1.

Hence, for one u′ ∈ F ν′,t, we have ν′((E,G)(u′)) = 1, and

for the others u′′ ∈ F ν′,t, we have ν′((E,G)(u′′)) = 0. Thus,

we obtain µ(D)(t) = 1
.− (1

.− (ν′(xu′ + 1))) = 1. Therefore,

we have µ(D) = ν′(E). Hence, we have µ(D) = ν′(E) ∈
repG

C(E,G).

Only if part. Let (E,G) be a GV-bag over a relation

schema R. Let D be an arbitrary instance such that

µ(D) ∈ repG
C(E,G). Then, there is a valuation ν such that

µ(D) = ν(E) and ν(G) = true. We obtain ν(G′) = true be-

cause, for each ν(u) in ν(E), ν(E)(ν(u))(= µ(D)(ν(u))) = 1.

Let (E′,G′) = µ−1(E,G). In what follows, we construct a

valuation ν′ such that for each tuple t ∈ dom(D),

ν′(E′)(t) = D(t).

ν′ is defined on the variables appearing in dom(E′) and the

new variables xu. For each variable z appearing in dom(E′),

let ν′(z) = ν(z). Such ν′ satisfies ν′(G′) = true.

Define

F ν′,t = {u ∈ dom(E) | ν′(u) = t}.

Then, we must prove the existence of ν′ such that

ν′(E′)(t) =∑

u∈F ν′,t

ν′(“if (E,G)(u) then xu + 1 else 0”) = D(t).

Since ν′(G′) = true, for one u′ ∈ F ν′,t, we have

ν′((E,G)(u′)) = 1, and for the others u′′ ∈ F ν′,t, we

have ν′((E,G)(u′′)) = 0. From the construction of F ν′,t,

if t |= t′, then F ν′,t ∩ F ν′,t′ = ∅. From Definition 9, for each

u ∈ dom(E), xu in dom(E′) appears only once. Hence, we

can easily construct the valuation ν′ satisfying above equa-

tions. Hence, we have D ∈ repG
C(E′,G′) = repG

C(µ−1(E,G)).

2

5. Conclusion and future work

We have proposed a bag-based model, called GV-bags, for

representing incomplete information. Then, we have proved

the closure properties of unique and its inverse on V-bags un-

der both CWA and OWA, and the closure properties of six

operations and their inverses on GV-bags under both CWA

and OWA.

As a future work, we will evaluate the computational com-

plexity of the operations and the sizes of V-bags and GV-

bags after the operations. Also, we will investigate a new

submodel of GV-bags where the usage of variables for repre-

senting the number of tuples is somewhat restricted. In this

model, we expect that inverse of projection is closed, which

is not closed on both V-bags and GV-bags under both CWA

and OWA.
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