
Codes for Privacy
and Reliability

in Information Retrieval and Distributed Computation

by

Oliver W. Gnilke
owg@math.aau.dk

September 2, 2020

Private Information Retrieval 2/34

Private Information Retrieval

Securing Communications

Private Information Retrieval 3/34

Request

Anonymity
Privacy

?

Securing Communications

Private Information Retrieval 3/34

Request

Anonymity

Privacy

?

For example: TOR

Securing Communications

Private Information Retrieval 3/34

Request

Anonymity

Security

Privacy

?

For example: https/TLS/SSL

Securing Communications

Private Information Retrieval 3/34

Request

Anonymity

Privacy

?

PIR

One-Time Pad

Private Information Retrieval 4/34

Message / Information e of ’size’ |e|.
Key k of size |k | ≥ |e|.

Encryption: c := e + k
Decryption: e = c − k

Information theoretically secure.
But requires a key that is at least as big as the
message.

The advantage is that an eavesdropper needs to have
the ciphertext c AND the key k .

One-Time Pad

Private Information Retrieval 4/34

Message / Information e of ’size’ |e|.
Key k of size |k | ≥ |e|.

Encryption: c := e + k
Decryption: e = c − k

Information theoretically secure.
But requires a key that is at least as big as the
message.

The advantage is that an eavesdropper needs to have
the ciphertext c AND the key k .

One-Time Pad

Private Information Retrieval 4/34

Message / Information e of ’size’ |e|.
Key k of size |k | ≥ |e|.

Encryption: c := e + k
Decryption: e = c − k

Information theoretically secure.
But requires a key that is at least as big as the
message.
The advantage is that an eavesdropper needs to have
the ciphertext c AND the key k .

A first example

Private Information Retrieval 5/34

Server 2

x

Server 1

x

u
= q1

u + ei

= q2

〈x,u + ei〉
= r2

〈x,u〉
= r1

1.) The user wants file xi . Draws u ∼ U(Fm
q) and forms

queries q1 = u and q2 = u + ei .

2.) The servers respond with rj := 〈x ,qj〉.
3.) The user calculates r2 − r1 = 〈x ,u + ei〉 − 〈x ,u〉 = xi .

A first example

Private Information Retrieval 5/34

Server 2

x

Server 1

x

u
= q1

u + ei

= q2

〈x,u + ei〉
= r2

〈x,u〉
= r1

1.) The user wants file xi . Draws u ∼ U(Fm
q) and forms

queries q1 = u and q2 = u + ei .
2.) The servers respond with rj := 〈x ,qj〉.

3.) The user calculates r2 − r1 = 〈x ,u + ei〉 − 〈x ,u〉 = xi .

A first example

Private Information Retrieval 5/34

Server 2

x

Server 1

x

u
= q1

u + ei

= q2

〈x,u + ei〉
= r2

〈x,u〉
= r1

1.) The user wants file xi . Draws u ∼ U(Fm
q) and forms

queries q1 = u and q2 = u + ei .
2.) The servers respond with rj := 〈x ,qj〉.
3.) The user calculates r2 − r1 = 〈x ,u + ei〉 − 〈x ,u〉 = xi .

A first example

Private Information Retrieval 5/34

Server 2

x

Server 1

x

u
= q1

u + ei

= q2

〈x,u + ei〉
= r2

〈x,u〉
= r1

Rate
We measure rate as the size of the requested file over the size
of all downloads, R = |xi |∑

|rj |
. E.g. the rate in the example is

R = 1
2

More Servers

Private Information Retrieval 6/34

x x . . . x

If all n servers contain the full database X we can
download n − 1 files simultaneously.
This gives us a rate of R = 1− 1

n

Capacity

Private Information Retrieval 7/34

Capacity for m files replicated on n servers 2

C =
1− 1

n

1−
(1

n
)m

2Hua Sun, Syed A. Jafar, The Capacity of Private Information Retrieval,
IEEE Transactions on Information Theory, Volume: 63, Issue: 7, July 2017)

Capacity

Private Information Retrieval 7/34

1 2 3 4 5 6 7 8 9 10 11

number of files

0.78

0.8

0.82

0.84

0.86

0.88

0.9

R
at

e

Capacity n=5
Capacity n=8
Capacity n=10
Rate n=5
Rate n=8
Rate n=10

2Hua Sun, Syed A. Jafar, The Capacity of Private Information Retrieval,
IEEE Transactions on Information Theory, Volume: 63, Issue: 7, July 2017)

Distributed Storage Systems

Private Information Retrieval 8/34

Replicating all files across all servers is rather
wasteful.
To save space a storage code C is employed.

Not coding across files enables easy addition or
removal of files.

x1
1 . . . x1

k
...

xm
1 . . . xm

k




x1

xm

...fil
es · GC =

y1
1 . . . y1

n
...

ym
1 . . . ym

n




Server 1 Server n. . .

Distributed Storage Systems

Private Information Retrieval 8/34

Replicating all files across all servers is rather
wasteful.
To save space a storage code C is employed.

Not coding across files enables easy addition or
removal of files.

x1
1 . . . x1

k
...

xm
1 . . . xm

k




x1

xm

...fil
es · GC =

y1
1 . . . y1

n
...

ym
1 . . . ym

n




Server 1 Server n. . .

Distributed Storage Systems

Private Information Retrieval 8/34

Replicating all files across all servers is rather
wasteful.
To save space a storage code C is employed.
Not coding across files enables easy addition or
removal of files.

x1
1 . . . x1

k
...

xm
1 . . . xm

k

xm+1
1 . . . xm+1

k





x1

xm

...

xm+1

fil
es · GC =

y1
1 . . . y1

n
...

ym
1 . . . ym

n

ym+1
1 . . . ym+1

n





Server 1 Server n. . .

More Servers - Coded

Private Information Retrieval 9/34

y1 y2
. . . yn

If the storage is coded, contents from two different
servers no longer cancel out.

PIR from coded storage

Private Information Retrieval 10/34

Let u ∼ U(Fm
q).

Define the n queries as qj = u for all servers j . Then
rj = 〈qj , yj〉 = 〈u, yj〉.

The vector

(r1, . . . , rn) = (u.y1, . . . ,u.yn) = uT [y1 · · · yn] =
m∑

i=1

uiy i

is a linear combination of the codewords in the
storage system, and therefore itself a codeword in C.

Define the queries as qj = u for all servers but one,
here the last, and let qn = u + ei
The vector (r1, . . . , rn) is a linear combination of the
codewords in the storage system, plus one ’error’ in
the last coordinate

(r1, . . . , rn) = (u.y1, . . . ,u.yn+y i
n) =

m∑
i=1

uiy i+(0, . . . ,0, y i
n)

We only need k coordinates of a codeword to
uniquely determine it. Hence we can add up to n − k
such ’errors’.

PIR from coded storage

Private Information Retrieval 10/34

Let u ∼ U(Fm
q).

Define the queries as qj = u for all servers but one,
here the last, and let qn = u + ei

The vector (r1, . . . , rn) is a linear combination of the
codewords in the storage system, plus one ’error’ in
the last coordinate

(r1, . . . , rn) = (u.y1, . . . ,u.yn+y i
n) =

m∑
i=1

uiy i+(0, . . . ,0, y i
n)

We only need k coordinates of a codeword to
uniquely determine it. Hence we can add up to n − k
such ’errors’.

PIR from coded storage

Private Information Retrieval 10/34

Let u ∼ U(Fm
q).

Define the queries as qj = u for all servers but one,
here the last, and let qn = u + ei

The vector (r1, . . . , rn) is a linear combination of the
codewords in the storage system, plus one ’error’ in
the last coordinate

(r1, . . . , rn) = (u.y1, . . . ,u.yn+y i
n) =

m∑
i=1

uiy i+(0, . . . ,0, y i
n)

We only need k coordinates of a codeword to
uniquely determine it. Hence we can add up to n − k
such ’errors’.

PIR from coded storage

Private Information Retrieval 10/34

Let u ∼ U(Fm
q).

Define the queries as qj = u for all servers but one,
here the last, and let qn = u + ei

The vector (r1, . . . , rn) is a linear combination of the
codewords in the storage system, plus one ’error’ in
the last coordinate

(r1, . . . , rn) = (u.y1, . . . ,u.yn+y i
n) =

m∑
i=1

uiy i+(0, . . . ,0, y i
n)

We only need k coordinates of a codeword to
uniquely determine it. Hence we can add up to n − k
such ’errors’.

PIR Rate for coded storage

Private Information Retrieval 11/34

We receive n − k blocks of information, when
downloading n blocks total.

Rate for PIR from MDS coded storage
R = n−k

n

We compare to the capacity

Capacity for PIR from coded storage 3

C =
1− k

n

1−(k
n)

m

PIR Rate for coded storage

Private Information Retrieval 11/34

We receive n − k blocks of information, when
downloading n blocks total.

Rate for PIR from MDS coded storage
R = n−k

n

We compare to the capacity

Capacity for PIR from coded storage 3

C =
1− k

n

1−(k
n)

m

3Karim Banawan, Sennur Ulukus, The Capacity of Private Information
Retrieval From Coded Databases, IEEE Transactions on Information Theory,
Volume: 64, Issue: 3, March 2018

Asymptotic vs. Capacity

Private Information Retrieval 12/34

2 4 6 8 10 12 14 16

number of files

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

R
at

e
Capacity n=5, k=3
Capacity n=8, k=5
Capacity n=10 ,k=7
Rate n=5, k=3
Rate n=8, k=5
Rate n=10, k=7

More Servers - Collusion

Private Information Retrieval 13/34

x x . . . x

In the replicated storage scenario, each query is
masked with the same random vector.
If two of them exchange their queries, they can
unmask the request.

t-Collusion

Private Information Retrieval 14/34

We want to design a scheme that remains secure,
even if t < n of the servers combine their queries.
We use secret sharing to design these queries.

Shamir Secret Sharing
Let (αi) be a list of n pairwise different elements of Fq. Let
u0, . . . ,ut−1∼ U(Fq), and et our information.

(u0, . . . ,ut−1,et) ∈ Fk
q

↓
f (z) = u0 + · · ·+ ut−1z t−1 + etz t 7→ (f (α1), . . . , f (αn))

Any subset of t shares si , reveals no information about et .

We use a slightly altered version for our scheme.

t-Collusion

Private Information Retrieval 14/34

We want to design a scheme that remains secure,
even if t < n of the servers combine their queries.
We use secret sharing to design these queries.

Shamir Secret Sharing
Let (αi) be a list of n pairwise different elements of Fq. Let
u0, . . . ,ut−1∼ U(Fq), and et our information.

(u0, . . . ,ut−1,et) ∈ Fk
q

↓
f (z) = u0 + · · ·+ ut−1z t−1 + etz t 7→ (f (α1), . . . , f (αn))

Any subset of t shares si , reveals no information about et .

We use a slightly altered version for our scheme.

t-Collusion

Private Information Retrieval 14/34

We want to design a scheme that remains secure,
even if t < n of the servers combine their queries.
We use secret sharing to design these queries.

Shamir Secret Sharing
Let (αi) be a list of n pairwise different elements of Fq. Let
u0, . . . ,ut−1∼ U(Fq), and et our information.

(u0, . . . ,ut−1,et) ∈ Fk
q (s1, . . . , sn)

↓ q
f (z) = u0 + · · ·+ ut−1z t−1 + etz t 7→ (f (α1), . . . , f (αn))

Any subset of t shares si , reveals no information about et .

We use a slightly altered version for our scheme.

t-Collusion

Private Information Retrieval 14/34

We want to design a scheme that remains secure,
even if t < n of the servers combine their queries.
We use secret sharing to design these queries.

Shamir Secret Sharing
Let (αi) be a list of n pairwise different elements of Fq. Let
u0, . . . ,ut−1∼ U(Fq), and et our information.

(u0, . . . ,ut−1,et) ∈ Fk
q (s1, . . . , sn)

↓ q
f (z) = u0 + · · ·+ ut−1z t−1 + etz t 7→ (f (α1), . . . , f (αn))

Any subset of t shares si , reveals no information about et .

We use a slightly altered version for our scheme.

PIR with Collusion

Private Information Retrieval 15/34

The scheme is dual to the coded storage scheme.
Instead of the files, our queries are encoded with an
[n, t] MDS code D.

u1
1 . . . u1

t
...

um
1 . . . um

t




ra
nd

om
ne

ss

· GD + E =

q1
1 . . . q1

n
...

qm
1 . . . qm

n




Query 1 Query n. . .

+E

The responses now again take the form,

(r1, . . . , rn) = (d1.x , . . . ,dn.x) + e =
m∑

i=1

d ix i + e.

∑m
i=1 d ix i is a codeword in D

PIR with Collusion

Private Information Retrieval 15/34

The scheme is dual to the coded storage scheme.
Instead of the files, our queries are encoded with an
[n, t] MDS code D.

u1
1 . . . u1

t
...

um
1 . . . um

t




ra
nd

om
ne

ss

· GD + E =

d1
1 . . . d1

n
...

dm
1 . . . dm

n




Query 1 Query n. . .

The responses now again take the form,

(r1, . . . , rn) = (d1.x , . . . ,dn.x) + e =
m∑

i=1

d ix i + e.

∑m
i=1 d ix i is a codeword in D

PIR with Collusion

Private Information Retrieval 15/34

The scheme is dual to the coded storage scheme.
Instead of the files, our queries are encoded with an
[n, t] MDS code D.

u1
1 . . . u1

t
...

um
1 . . . um

t




ra
nd

om
ne

ss

· GD + E =

d1
1 . . . d1

n
...

dm
1 . . . dm

n




Query 1 Query n. . .

The responses now again take the form,

(r1, . . . , rn) = (d1.x , . . . ,dn.x) + e =
m∑

i=1

d ix i + e.

∑m
i=1 d ix i is a codeword in D

Rate and Capacity for t-collusion

Private Information Retrieval 16/34

We receive n − t blocks of information, when
downloading n blocks total.

Rate for PIR with t-collusion
R = n−t

n

We compare to the capacity expression for this
scenario

Capacity for PIR with t-collusion 4

C =
1− t

n

1−(t
n)

m

Rate and Capacity for t-collusion

Private Information Retrieval 16/34

We receive n − t blocks of information, when
downloading n blocks total.

Rate for PIR with t-collusion
R = n−t

n

We compare to the capacity expression for this
scenario

Capacity for PIR with t-collusion 4

C =
1− t

n

1−(t
n)

m

4Hua Sun, Syed A. Jafar, The capacity of private information retrieval with
colluding databases, 2016 IEEE Global Conference on Signal and
Information Processing

Asymptotic vs. Capacity

Private Information Retrieval 17/34

2 4 6 8 10 12 14 16

number of files

0.5

0.55

0.6

0.65

0.7

0.75

R
at

e
Capacity n=5, t=2
Capacity n=8, t=3
Capacity n=10, t=5
Rate n=5, t=2
Rate n=8, t=3
Rate n=10, t=5

Combining both schemes

Private Information Retrieval 18/34

We combine both schemes, i.e., encode both the data
and the queries.
The responses then take a different form

(r1, . . . , rn) = (d1.y1, . . . ,dn.yn) + e

=
m∑

i=1

d i ? y i + e

where (c1, . . . , cn) ? (d1, . . . ,dn) := (c1d1, . . . , cndn) is
the Schur product of vectors.
Do these responses lie inside some code (plus some
errors) that we can easily describe?

Combining both schemes

Private Information Retrieval 18/34

We combine both schemes, i.e., encode both the data
and the queries.
The responses then take a different form

(r1, . . . , rn) = (d1.y1, . . . ,dn.yn) + e =
m∑

i=1

d i ? y i + e

where (c1, . . . , cn) ? (d1, . . . ,dn) := (c1d1, . . . , cndn) is
the Schur product of vectors.

Do these responses lie inside some code (plus some
errors) that we can easily describe?

Combining both schemes

Private Information Retrieval 18/34

We combine both schemes, i.e., encode both the data
and the queries.
The responses then take a different form

(r1, . . . , rn) = (d1.y1, . . . ,dn.yn) + e =
m∑

i=1

d i ? y i + e

where (c1, . . . , cn) ? (d1, . . . ,dn) := (c1d1, . . . , cndn) is
the Schur product of vectors.
Do these responses lie inside some code (plus some
errors) that we can easily describe?

Products of Codes

Private Information Retrieval 19/34

Schur Product
Let C and D be two linear codes of length n. Then we define
their product code as the span of all Schur products of
codewords in C with codewords in D.

C ? D := 〈{c ? d : c ∈ C,d ∈ D}〉

Products of Codes

Private Information Retrieval 19/34

Schur Product
Let C and D be two linear codes of length n. Then we define
their product code as the span of all Schur products of
codewords in C with codewords in D.

C ? D := 〈{c ? d : c ∈ C,d ∈ D}〉

The rate of our scheme will again depend on the
minimum distance of the response code.

Products of Codes

Private Information Retrieval 19/34

Schur Product
Let C and D be two linear codes of length n. Then we define
their product code as the span of all Schur products of
codewords in C with codewords in D.

C ? D := 〈{c ? d : c ∈ C,d ∈ D}〉

Product Singleton Bound5

dC?D − 1 ≤ max{0,n − kC − kD + 1}

5H. Randriambololona, An upper bound of Singleton type for
componentwise products of linear codes, IEEE Transactions on Information
Theory vol 59., 2013

Optimal Products

Private Information Retrieval 20/34

Product Singleton Bound5

dC?D − 1 ≤ max{0,n − kC − kD + 1}

Equality is achieved in a handful of cases only

C or D are the repetition code.

Then we have no collusion or no coding.

C = D⊥.

Then we get a rate 1
n scheme.

C and D are generalized Reed-Solomon (GRS) codes
on the same evaluation set.

This allows for a flexible schemes with varied
parameters.

5H. Randriambololona, An upper bound of Singleton type for
componentwise products of linear codes, IEEE Transactions on Information
Theory vol 59., 2013

Optimal Products

Private Information Retrieval 20/34

Product Singleton Bound5

dC?D − 1 ≤ max{0,n − kC − kD + 1}

Equality is achieved in a handful of cases only
C or D are the repetition code.

Then we have no collusion or no coding.

C = D⊥.

Then we get a rate 1
n scheme.

C and D are generalized Reed-Solomon (GRS) codes
on the same evaluation set.

This allows for a flexible schemes with varied
parameters.

5H. Randriambololona, An upper bound of Singleton type for
componentwise products of linear codes, IEEE Transactions on Information
Theory vol 59., 2013

Optimal Products

Private Information Retrieval 20/34

Product Singleton Bound5

dC?D − 1 ≤ max{0,n − kC − kD + 1}

Equality is achieved in a handful of cases only
C or D are the repetition code.
Then we have no collusion or no coding.
C = D⊥.

Then we get a rate 1
n scheme.

C and D are generalized Reed-Solomon (GRS) codes
on the same evaluation set.

This allows for a flexible schemes with varied
parameters.

5H. Randriambololona, An upper bound of Singleton type for
componentwise products of linear codes, IEEE Transactions on Information
Theory vol 59., 2013

Optimal Products

Private Information Retrieval 20/34

Product Singleton Bound5

dC?D − 1 ≤ max{0,n − kC − kD + 1}

Equality is achieved in a handful of cases only
C or D are the repetition code.
Then we have no collusion or no coding.
C = D⊥.
Then we get a rate 1

n scheme.
C and D are generalized Reed-Solomon (GRS) codes
on the same evaluation set.

This allows for a flexible schemes with varied
parameters.

5H. Randriambololona, An upper bound of Singleton type for
componentwise products of linear codes, IEEE Transactions on Information
Theory vol 59., 2013

Optimal Products

Private Information Retrieval 20/34

Product Singleton Bound5

dC?D − 1 ≤ max{0,n − kC − kD + 1}

Equality is achieved in a handful of cases only
C or D are the repetition code.
Then we have no collusion or no coding.
C = D⊥.
Then we get a rate 1

n scheme.
C and D are generalized Reed-Solomon (GRS) codes
on the same evaluation set.
This allows for a flexible schemes with varied
parameters.

5H. Randriambololona, An upper bound of Singleton type for
componentwise products of linear codes, IEEE Transactions on Information
Theory vol 59., 2013

PIR - coded storage & collusion

Private Information Retrieval 21/34

Use GRS codes for the storage and the queries.

(r1, . . . , rn) = (d1.y1, . . . ,dn.yn) + e

=
m∑

i=1

d i ? y i + e

.

Then
∑m

i=1 d i ? y i is again a codeword in an
[n, k + t − 1] GRS code
Hence we can add up to n − k − t + 1 ’errors’ via e
that we can correct.
We therefore achieve a rate of n−k−t+1

n , whenever this
is positive.

PIR - coded storage & collusion

Private Information Retrieval 21/34

Use GRS codes for the storage and the queries.

(r1, . . . , rn) = (d1.y1, . . . ,dn.yn) + e =
m∑

i=1

d i ? y i + e.

Then
∑m

i=1 d i ? y i is again a codeword in an
[n, k + t − 1] GRS code

Hence we can add up to n − k − t + 1 ’errors’ via e
that we can correct.
We therefore achieve a rate of n−k−t+1

n , whenever this
is positive.

PIR - coded storage & collusion

Private Information Retrieval 21/34

Use GRS codes for the storage and the queries.

(r1, . . . , rn) = (d1.y1, . . . ,dn.yn) + e =
m∑

i=1

d i ? y i + e.

Then
∑m

i=1 d i ? y i is again a codeword in an
[n, k + t − 1] GRS code
Hence we can add up to n − k − t + 1 ’errors’ via e
that we can correct.
We therefore achieve a rate of n−k−t+1

n , whenever this
is positive.

Capacity

Private Information Retrieval 22/34

The capacity for the coded, colluding case has been a
long standing problem.

A recent paper6 ’solves’ this by only considering
schemes that are ’symbol separated’ or ’strongly
linear’.
This covers a lot of schemes in the literature and
especially the ones presented here, and they are
indeed capacity achieving under these restrictions.

6Lukas Holzbaur, Ragnar Freij-Hollanti, Jie Li, Camilla Hollanti, Towards
the Capacity of Private Information Retrieval from Coded and Colluding
Servers, arXiv:1903.12552.

Capacity

Private Information Retrieval 22/34

The capacity for the coded, colluding case has been a
long standing problem.
A recent paper6 ’solves’ this by only considering
schemes that are ’symbol separated’ or ’strongly
linear’.
This covers a lot of schemes in the literature and
especially the ones presented here, and they are
indeed capacity achieving under these restrictions.

6Lukas Holzbaur, Ragnar Freij-Hollanti, Jie Li, Camilla Hollanti, Towards
the Capacity of Private Information Retrieval from Coded and Colluding
Servers, arXiv:1903.12552.

Byzantine and Non-Responsive

Private Information Retrieval 23/34

Up till now we have considered honest but curious
servers.
But what if some servers are slow / fail to respond or
introduce errors into their responses.

The previous scheme uses the codes erasure
correction capability to retrieve the data.

(r1, . . . , rn) = (d1.y1, . . . ,dn.yn) + e =

(d1.y1, . . . ,dt+k−1.yt+k−1,dt+k .yt+k+et+k , . . . ,dn.yn+en)

(d1.y1, . . . ,dt+k−1.yt+k−1,dt+k .yt+k + et+k/////////////////// , . . . ,dn.yn+en+bn)

If an entry with an ’error’ is lost, that information is
lost. If it is altered by an additional error then we will
receive a wrong symbol.

Byzantine and Non-Responsive

Private Information Retrieval 23/34

Up till now we have considered honest but curious
servers.
But what if some servers are slow / fail to respond or
introduce errors into their responses.
The previous scheme uses the codes erasure
correction capability to retrieve the data.

(r1, . . . , rn) = (d1.y1, . . . ,dn.yn) + e =

(d1.y1, . . . ,dt+k−1.yt+k−1,dt+k .yt+k+et+k , . . . ,dn.yn+en)

(d1.y1, . . . ,dt+k−1.yt+k−1,dt+k .yt+k + et+k/////////////////// , . . . ,dn.yn+en+bn)

If an entry with an ’error’ is lost, that information is
lost. If it is altered by an additional error then we will
receive a wrong symbol.

Byzantine and Non-Responsive

Private Information Retrieval 23/34

Up till now we have considered honest but curious
servers.
But what if some servers are slow / fail to respond or
introduce errors into their responses.
The previous scheme uses the codes erasure
correction capability to retrieve the data.

(r1, . . . , rn) = (d1.y1, . . . ,dn.yn) + e =

(d1.y1, . . . ,dt+k−1.yt+k−1,dt+k .yt+k+et+k , . . . ,dn.yn+en)

(d1.y1, . . . ,dt+k−1.yt+k−1,dt+k .yt+k + et+k/////////////////// , . . . ,dn.yn+en+bn)

If an entry with an ’error’ is lost, that information is
lost. If it is altered by an additional error then we will
receive a wrong symbol.

Polynomial Scheme

Private Information Retrieval 24/34

Assumptions ≤ r non-responsive servers,
≤ b byzantine servers.
For simplicity assume k = n − k − t − r − 2b + 1.
(This is not necessary but avoids some complications)

polynomial code

files f (z) C=GRS [n, k]
query j 6= i g(z) D=GRS [n, t]

query j = i g(z) + zk+t−1 ⊂GRS [n, k + t]

response j 6= i f (z)g(z) C ? D=GRS [n, k + t − 1]
response j = i f (z)g(z)

+ zk+t−1f i(z) GRS [n,n − r − 2b]

Polynomial Scheme

Private Information Retrieval 24/34

Assumptions ≤ r non-responsive servers,
≤ b byzantine servers.
For simplicity assume k = n − k − t − r − 2b + 1.
(This is not necessary but avoids some complications)

polynomial code

files f (z) C=GRS [n, k]
query j 6= i g(z) D=GRS [n, t]

query j = i g(z) + zk+t−1 ⊂GRS [n, k + t]

response j 6= i f (z)g(z) C ? D=GRS [n, k + t − 1]
response j = i f (z)g(z)

+ zk+t−1f i(z)

GRS [n,n − r − 2b]

Polynomial Scheme

Private Information Retrieval 24/34

Assumptions ≤ r non-responsive servers,
≤ b byzantine servers.
For simplicity assume k = n − k − t − r − 2b + 1.
(This is not necessary but avoids some complications)

polynomial code

files f (z) C=GRS [n, k]
query j 6= i g(z) D=GRS [n, t]
query j = i g(z) + zk+t−1 ⊂GRS [n, k + t]

response j 6= i f (z)g(z) C ? D=GRS [n, k + t − 1]
response j = i f (z)g(z) + zk+t−1f i(z) GRS [n,n − r − 2b]

Polynomial scheme

Private Information Retrieval 25/34

de
gr

ee

0 t−
1

k
−

1

k
+

t−
1

n
−

2b
−

r

n

files
query j 6= i
query j = i

response j 6= i
response j = i

desired file
zk+t−1f i(z)

Polynomial scheme

Private Information Retrieval 25/34

de
gr

ee

0 t−
1

k
−

1

k
+

t−
1

n
−

2b
−

r

n

files
query j 6= i
query j = i

response j 6= i
response j = i

desired file
zk+t−1f i(z)

Computation 26/34

Computation

Linear Functions

Computation 27/34

Server 2

x

Server 1

x

u
= q1

u + ei

= q2

〈x,u + ei〉
= r2

〈x,u〉
= r1

In the simple scheme, we only want to hide the index
i. Hence about log2(m) bits of information. (Assuming
every request is equally likely)
But we use u ∼ U(Fm

q) as a key, which needs
m log2(q) bits of randomness.

Linear Functions

Computation 27/34

Server 2

x

Server 1

x

u
= q1

u + ei

= q2

〈x,u + ei〉
= r2

〈x,u〉
= r1

This is because our scheme can do more! We could
hide any request for a linear combination

∑
`ixi of the

files.

r2 − r1 = 〈x ,u + `〉 − 〈x ,u〉 = 〈x , `〉 =
∑

`ixi

Matrix Multiplication

Computation 28/34

The next step is to utilize helper nodes in order to
perform computations for a user.
The standard example is the mulitplication of two big
matrices A,B.
These matrices might contain sensitive information
and we do not want the helpers to learn anything
about the contents of A and B.

GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein

Computation 29/34

− A1 −
...

− An −




| |

B1 . . . Bm

| |


 =

A1B1 · · · A1Bm
...

AnB1 · · · AnBm




Hide the contents of A and B through secret sharing.

f (z) := A1zα1 + · · ·+ Aαn
n + R(z)

g(z) := B1zβ1 + · · ·+ Bβm
m + S(z)

Send each server the evaluations f (zi) and g(zi) and
ask them to compute their product.
If we have enough evaluations of fg we can recover its
coefficients via interpolation.

GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein

Computation 30/34

f (z) := A1zα1 + · · ·+ Anzαn + R(z)
g(z) := B1zβ1 + · · ·+ Bmzβm + S(z)

Assume we do not care about privacy for a minute,
i.e., R(z) and S(z) are zero.
The term AaBb will appear in the coefficient of zαa+βb

in the product f (z)g(z).

GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein

Computation 30/34

f (z) := A1zα1 + · · ·+ Anzαn + R(z)
g(z) := B1zβ1 + · · ·+ Bmzβm + S(z)

Assume we do not care about privacy for a minute,
i.e., R(z) and S(z) are zero.
The term AaBb will appear in the coefficient of zαa+βb

in the product f (z)g(z).

β1 β2 β3

α1 α1 + β1 α1 + β2 α1 + β3
α2 α2 + β1 α2 + β2 α2 + β3
α3 α3 + β1 α3 + β2 α3 + β3

GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein

Computation 30/34

f (z) := A1zα1 + · · ·+ Anzαn + R(z)
g(z) := B1zβ1 + · · ·+ Bmzβm + S(z)

Assume we do not care about privacy for a minute,
i.e., R(z) and S(z) are zero.
The term AaBb will appear in the coefficient of zαa+βb

in the product f (z)g(z).

0 β2 β3

0 0
1 1
2 2

GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein

Computation 30/34

f (z) := A1zα1 + · · ·+ Anzαn + R(z)
g(z) := B1zβ1 + · · ·+ Bmzβm + S(z)

Assume we do not care about privacy for a minute,
i.e., R(z) and S(z) are zero.
The term AaBb will appear in the coefficient of zαa+βb

in the product f (z)g(z).

0 3 β3

0 0 3
1 1 4
2 2 5

GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein

Computation 30/34

f (z) := A1zα1 + · · ·+ Anzαn + R(z)
g(z) := B1zβ1 + · · ·+ Bmzβm + S(z)

Assume we do not care about privacy for a minute,
i.e., R(z) and S(z) are zero.
The term AaBb will appear in the coefficient of zαa+βb

in the product f (z)g(z).

0 3 6

0 0 3 6
1 1 4 7
2 2 5 8

We need N = 9 evaluations.

GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein

Computation 31/34

Now we add randomness.

0 3 6

0 0 3 6
1 1 4 7
2 2 5 8

9 9 12 15

N = 16?

GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein

Computation 31/34

Now we add randomness.

0 3 6

0 0 3 6
1 1 4 7
2 2 5 8

9 9 12 15

Actually, there are only 12 unknowns, and we only need 12
evaluations.

GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein

Computation 31/34

Now we add randomness.

0 3 6 9

0 0 3 6 9
1 1 4 7 10
2 2 5 8 11

9 9 12 15 18

N = 15

GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein

Computation 31/34

Now we add randomness.

0 3 6 9 10

0 0 3 6 9 10
1 1 4 7 10 11
2 2 5 8 11 12

9 9 12 15 18 13
10 10 13 16 19 20

N = 18

GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein

Computation 31/34

Now we add randomness.

0 3 6 9 10 11

0 0 3 6 9 10 11
1 1 4 7 10 11 12
2 2 5 8 11 12 13

9 9 12 15 18 19 20
10 10 13 16 19 20 21
11 11 14 17 20 21 22

N = 23
Can we improve on this?

GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein

Computation 31/34

Now we add randomness.

0 3 6 9 10 11

0 0 3 6 9 10 11
1 1 4 7 10 11 12
2 2 5 8 11 12 13

9 9 12 15 18 19 20
10 10 13 16 19 20 21
12 12 15 18 21 22 23

N = 22

The coefficients 14 and 17 are missing.

Splitting into Blocks

Computation 32/34

Let A =

A11 A12
A21 A22
A31 A32

 , and B =

[
B11 B12
B21 B22

]
. Then the

blocks of their product are given by the sums

(AB)ik =
∑

j

AijBjk .

We can realize this as coefficients of a polynomial as
well. Let

f (z) := Ai1 + Ai2z
g(z) := B2k + B1kz, then

f (z)g(z) := · · ·+ (Ai1B1k + Ai2B2k)z + · · ·

Splitting into Blocks

Computation 32/34

Let A =

A11 A12
A21 A22
A31 A32

 , and B =

[
B11 B12
B21 B22

]
. Then the

blocks of their product are given by the sums

(AB)ik =
∑

j

AijBjk .

We can realize this as coefficients of a polynomial as
well. Let

f (z) := Ai1 + Ai2z
g(z) := B2k + B1kz, then

f (z)g(z) := · · ·+ (Ai1B1k + Ai2B2k)z + · · ·

Secure Generalized PolyDot 7

Computation 33/34

An example with up to 2 colluding servers.

A =

A11 A12
A21 A22
A31 A32


B =

[
B11 B12
B21 B22

]

B21 B11 B22 B12 S1 S2

0 1 8 9 14 15

A11 0 0 1 8 9 14 15
A12 1 1 2 9 10 15 16
A21 2 2 3 10 11 16 17
A22 3 3 4 11 12 17 18
A31 4 4 5 12 13 18 19
A32 5 5 6 13 14 19 20
R1 6 6 7 14 15 20 21
R2 7 7 8 15 16 21 22

Note that e.g. the coefficient of degree 5 is given by
A31B11 + A32B21 = (AB)31.

7M. Aliasgari, O. Simeone and J. Kliewer, Distributed and Private Coded
Matrix Computation with Flexible Communication Load, 2019 IEEE
International Symposium on Information Theory (ISIT), Paris, France

Ongoing Work

Computation 34/34

Find PIR schemes that do not fall under the restriction
of being ’strongly linear’ and exceed the rate of
previous schemes.
Find improved sets of exponents for the secure
generalized PolyDot construction.
Expand secure distributed computation to matrices
over small fields.
Expand secure distributed computation to other
functions.

Computation 35/34

Thank You!

	Private Information Retrieval
	Computation

