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Anonymity

For example: TOR
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For example: https/TLS/SSL
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Securing Communications

Privacy

PIR
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One-Time Pad

= Message / Information e of 'size’ |e|.
= Key k of size |k| > |e|.

Encryption: c=e+k
Decryption: e=c—k
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One-Time Pad

= Message / Information e of 'size’ |e|.
= Key k of size |k| > |e|.

Encryption: c=e+k
Decryption: e=c—k

= Information theoretically secure.

= But requires a key that is at least as big as the
message.
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One-Time Pad

I.I

Message / Information e of 'size’ |e|.
Key k of size |k| > |e|.

Encryption: c=e+k
Decryption: e=c—k

Information theoretically secure.

But requires a key that is at least as big as the
message.

The advantage is that an eavesdropper needs to have
the ciphertext ¢ AND the key k.
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A first example

— u ‘ u+ e —
— | =g >~ =g > |—
Server 1 Server 2

1.) The user wants file x;. Draws u ~ U(F7') and forms
queries gy =uand g = U+ €;.
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A first example
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1.) The user wants file x;. Draws u ~ U(F7') and forms
queries gy =uand g = U+ €;.
2.) The servers respond with r; := (x, g;).

Private Information Retrieval 5/34



A first example

u-+ e; —

— /:—qz\ —

X X

— utrey | =

— — —
Server 1 Server 2

1.) The user wants file x;. Draws u ~ U(F7') and forms
queries gy =uand g = U+ €;.

2.) The servers respond with r; := (x, g;).

3.) The user calculates r. — r = (x,u+ €;) — (x, u) = X;.
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A first example
‘ u+ e
I lw

/:—qz\
Server 1 Server 2

X

X

Rate
We measure rate as the size of the requested file over the size

of all downloads, R = E"("LA E.g. the rate in the example is

R=1}

Private Information Retrieval 5/34



More Servers

= If all n servers contain the full database X we can
download n — 1 files simultaneously.

= Thisgivesusarateof R=1-1
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Capacity

Capacity for m files replicated on n servers 2

1
C=___n_
1= ()"

2Hua Sun, Syed A. Jafar, The Capacity of Private Information Retrieval,
IEEE Transactions on Information Theory, Volume: 63, Issue: 7, July 2017 )
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Capacity
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2Hua Sun, Syed A. Jafar, The Capacity of Private Information Retrieval,
IEEE Transactions on Information Theory, Volume: 63, Issue: 7, July 2017 )
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Distributed Storage Systems

= Replicating all files across all servers is rather

wasteful.
= To save space a storage code C is employed.

1 1 S 1
x! [X1 Xy ] 4 Yn
" : : e
Q2 : Ge = :
B a7 | v v
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Distributed Storage Systems

= Replicating all files across all servers is rather

wasteful.
= To save space a storage code C is employed.
Server 1 --- Servern
x! [ X] v
[2] o
—
74
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Distributed Storage Systems

= Replicating all files across all servers is rather

wasteful.

= To save space a storage code C is employed.

= Not coding across files enables easy addition or
removal of files.

files

xm [x{”

m+1
X+'X1
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= If the storage is coded, contents from two different
servers no longer cancel out.
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PIR from coded storage

= Letu~ U(F7).
» Define the n queries as q; = u for all servers j. Then

1 =(a;, ;) = (U, yj)-

The vector
m
(ry....m) = (Uy,...,uy,) = UT[y1 Yl :Zuiyi
i=1

is a linear combination of the codewords in the
storage system, and therefore itself a codeword in C.
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PIR from coded storage

= Letu~ U(F7).
= Define the queries as g; = u for all servers but one,
here the last, and let g, = u+ ¢;
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PIR from coded storage

= Letu~ U(F7).
= Define the queries as g; = u for all servers but one,
here the last, and let g, = u+ ¢;

= The vector (r,...,r,) is a linear combination of the
codewords in the storage system, plus one ‘error’ in
the last coordinate

m
(Myeostn) = (WY, YY) = > Uy'+(0,...,0,y)
i=1
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PIR from coded storage

= Letu~ U(F7).

Define the queries as g; = u for all servers but one,

here the last, and let g, = u+ ¢;

= The vector (r,...,r,) is a linear combination of the
codewords in the storage system, plus one ‘error’ in
the last coordinate

m
(Myeostn) = (WY, YY) = > Uy'+(0,...,0,y)
i=1

= We only need k coordinates of a codeword to
uniquely determine it. Hence we can add upto n— k
such ’errors’.
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PIR Rate for coded storage

= We receive n — k blocks of information, when
downloading n blocks total.

Rate for PIR from MDS coded storage

R — n=k

n
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PIR Rate for coded storage

= We receive n — k blocks of information, when
downloading n blocks total.

Rate for PIR from MDS coded storage
__ n—k

R

n

= We compare to the capacity
Capacity for PIR from coded storage 2

c=_"a,
1-(%)

Six

SKarim Banawan, Sennur Ulukus, The Capacity of Private Information
Retrieval From Coded Databases, |IEEE Transactions on Information Theory,
Volume: 64, Issue: 3, March 2018
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Asymptotic vs. Capacity
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More Servers - Collusion

E

= In the replicated storage scenario, each query is
masked with the same random vector.

= If two of them exchange their queries, they can
unmask the request.
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t-Collusion

= We want to design a scheme that remains secure,
even if t < n of the servers combine their queries.

= We use secret sharing to design these queries.
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t-Collusion

= We want to design a scheme that remains secure,
even if t < n of the servers combine their queries.

= We use secret sharing to design these queries.

Shamir Secret Sharing

Let (o) be a list of n pairwise different elements of F,. Let
U, . ... U1~ U(Fq4), and e; our information.
(Uo,...,U; 1,91) G]F

f(z) =Uy+ -+ Ut,1Zt_1 + etzt = (f(Oé1),---’f(an))
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t-Collusion

= We want to design a scheme that remains secure,
even if t < n of the servers combine their queries.

= We use secret sharing to design these queries.

Shamir Secret Sharing

Let (o) be a list of n pairwise different elements of F,. Let
U, . ... U1~ U(Fq4), and e; our information.
(Uo,...,U;1,et)€]F (S1,...,Sn)
J I
f(2)=to+ -+ u 127"+ ezt = (flar),..., f(an))
Any subset of t shares s;, reveals no information about e;.
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t-Collusion

= We want to design a scheme that remains secure,
even if t < n of the servers combine their queries.

= We use secret sharing to design these queries.

Shamir Secret Sharing

Let (o) be a list of n pairwise different elements of F,. Let
U, . ... U1~ U(Fq4), and e; our information.
(Uo,...,U;1,et)€]F (S1,...,Sn)
J I
f(2)=to+ -+ u 127"+ ezt = (flar),..., f(an))
Any subset of t shares s;, reveals no information about e;.

= We use a slightly altered version for our scheme.

Private Information Retrieval
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PIR with Collusion

= The scheme is dual to the coded storage scheme.
Instead of the files, our queries are encoded with an
[n, t{] MDS code D.

0 1 1 . 1
8 [ U1 S Ut ] 5 q1 qn E
c - 39000000000000000003000a00%
g : - -Gp+E= +E
-8 ...............................
m m m m
& [ U Uy ] g4 an
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PIR with Collusion

= The scheme is dual to the coded storage scheme.
Instead of the files, our queries are encoded with an
[n, {] MDS code D.

Query 1 ... Queryn
[u; ug] a | .. |a

: . || Gp+E= : :
[u{" u{”] ar| ... | dy
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PIR with Collusion

= The scheme is dual to the coded storage scheme.
Instead of the files, our queries are encoded with an
[n, {] MDS code D.

Query 1 ... Queryn

ug] al .. [a
I e
[u{" u{”] ar | ... [ df

= The responses now again take the form,

—L:_L

randomness

m
(f,... ) =(dhx,...,dhX)+ =) dx +e

i=1

Private Infor%.atioxg;\faldixi IS a COdeword In D

15/34




Rate and Capacity for t-collusion

= We receive n — t blocks of information, when
downloading n blocks total.

Rate for PIR with ¢-collusion
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Rate and Capacity for t-collusion

= We receive n — t blocks of information, when
downloading n blocks total.

Rate for PIR with ¢-collusion

R = 0=t

n

= We compare to the capacity expression for this
scenario

Capacity for PIR with t-collusion *
t

1=4£
C = 1_(%nm

N—

*Hua Sun, Syed A. Jafar, The capacity of private information retrieval with
colluding databases, 2016 |IEEE Global Conference on Signal and
Information Processing
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Asymptotic vs. Capacity

0.75 T T
o Capacity n=5, t=2
* *  Capacity n=8, t=3
O Capacity n=10, t=5
Rate n=5, t=2
L Rate n=8, t=3 i
07 Rate n=10, t=5
¢
*
0.65 7
D *
L *
T % %%
@ o
o
0.6 [u] o o 4
o
0.55 - 7
o
(o)
o
05 I L (] Q o) Q o o o o o
2 4 6 8 10 12 14 16
number of files
Private Information Retrieval 17/34



Combining both schemes

= We combine both schemes, i.e., encode both the data
and the queries.

= The responses then take a different form

(r1,...,r,,):(d1.y1,...,dn.y,,)+e
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Combining both schemes

= We combine both schemes, i.e., encode both the data
and the queries.

= The responses then take a different form

m
(. ) =(Ghyr,...,dhys)+e=) dxy +e

i=1

where (C1,...,Cp) * (di,...,dy) :=(C1dh, ..., Chdy) is
the Schur product of vectors.
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Combining both schemes

= We combine both schemes, i.e., encode both the data
and the queries.

= The responses then take a different form

m
(. ) =(Ghyr,...,dhys)+e=) dxy +e

i=1
where (C1,...,Cp) * (di,...,dy) :=(C1dh, ..., Chdy) is
the Schur product of vectors.

= Do these responses lie inside some code (plus some
errors) that we can easily describe?
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Products of Codes

Schur Product

Let C and D be two linear codes of length n. Then we define
their product code as the span of all Schur products of
codewords in C with codewords in D.

CxD:={cxd : ceC,de D})
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Products of Codes

Schur Product

Let C and D be two linear codes of length n. Then we define
their product code as the span of all Schur products of
codewords in C with codewords in D.

CxD:=({cxd : ce C,dec D})

= The rate of our scheme will again depend on the
minimum distance of the response code.
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Products of Codes

Schur Product

Let C and D be two linear codes of length n. Then we define
their product code as the span of all Schur products of
codewords in C with codewords in D.

CxD:={c*d : ceC,deD})

Product Singleton Bound®

de.p — 1 Smax{o,n—kc—kp-i-'l}

SH. Randriambololona, An upper bound of Singleton type for
componentwise products of linear codes, IEEE Transactions on Information
Theory vol 59., 2013
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Optimal Products

de.p — 1 <max{0,n— ke — kp+ 1}

= Equality is achieved in a handful of cases only

SH. Randriambololona, An upper bound of Singleton type for
componentwise products of linear codes, IEEE Transactions on Information
private Inbheryrveha9., 2013 20/34
I



Optimal Products

dep — 1 Smax{o,n—kc—kD+1}

= Equality is achieved in a handful of cases only
* Cor D are the repetition code.

= C=Dt.

* Cand D are generalized Reed-Solomon (GRS) codes
on the same evaluation set.

SH. Randriambololona, An upper bound of Singleton type for
componentwise products of linear codes, IEEE Transactions on Information
private Inbhe@ryrvehe9., 2013 20/34
I



Optimal Products

dep — 1 Smax{o,n—kc—kD+1}

= Equality is achieved in a handful of cases only
* Cor D are the repetition code.

Then we have no collusion or no coding.
» C=D'.

* Cand D are generalized Reed-Solomon (GRS) codes
on the same evaluation set.

SH. Randriambololona, An upper bound of Singleton type for
componentwise products of linear codes, IEEE Transactions on Information
private Inbhe@ryrvehe9., 2013 20/34
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Optimal Products

de.p — 1 <max{0,n— ke — kp+ 1}

= Equality is achieved in a handful of cases only
* Cor D are the repetition code.
Then we have no collusion or no coding.
» C=D'.
Then we get a rate 1 scheme.
* Cand D are generalized Reed-Solomon (GRS) codes
on the same evaluation set.

SH. Randriambololona, An upper bound of Singleton type for
componentwise products of linear codes, IEEE Transactions on Information
private Inbhe@ryrvehe9., 2013 20/34
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Optimal Products

de.p — 1 <max{0,n— ke — kp+ 1}

= Equality is achieved in a handful of cases only

* Cor D are the repetition code.
Then we have no collusion or no coding.

* C=D"
Then we get a rate 1 scheme.

* Cand D are generalized Reed-Solomon (GRS) codes
on the same evaluation set.
This allows for a flexible schemes with varied
parameters.

SH. Randriambololona, An upper bound of Singleton type for
componentwise products of linear codes, IEEE Transactions on Information
private Inbhe@ryrvehe9., 2013 20/34
I



PIR - coded storage & collusion

= Use GRS codes for the storage and the queries.

(r1,,rn):(d1y17,dnyn)+e
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PIR - coded storage & collusion

= Use GRS codes for the storage and the queries.

m

(Fiyeeost) = (ch-Yrs- s Gy + =3 dlxy + e

i=1

Then >, d'« y' is again a codeword in an
[n,k + t— 1] GRS code

Private Information Retrieval 21/34



PIR - coded storage & collusion

= Use GRS codes for the storage and the queries.

m

(.. ) =(dhyr,...,dnys) +e=) dxy +e
i=1
Then >, d'« y' is again a codeword in an
[n,k + t— 1] GRS code

= Hencewe canaddupton—k —t+ 1 ’errors’ via e
that we can correct.

= We therefore achieve a rate of Z=*-£1 whenever this
is positive.

Private Information Retrieval 21/34
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= The capacity for the coded, colluding case has been a
long standing problem.

5L ukas Holzbaur, Ragnar Freij-Hollanti, Jie Li, Camilla Hollanti, Towards
the Capacity of Private Information Retrieval from Coded and Colluding
Private Inﬁ@ﬁ‘f@fﬁetﬁf\)&w:‘l 903.12552. 20/34
I,



= The capacity for the coded, colluding case has been a
long standing problem.

» A recent paper® 'solves’ this by only considering
schemes that are 'symbol separated’ or 'strongly
linear’.

= This covers a lot of schemes in the literature and
especially the ones presented here, and they are
indeed capacity achieving under these restrictions.

8|ukas Holzbaur, Ragnar Freij-Hollanti, Jie Li, Camilla Hollanti, Towards
the Capacity of Private Information Retrieval from Coded and Colluding
Private Inﬁ@ﬁ“@fﬁeta&)‘giv:‘l 903.12552. 20/34
I,



Byzantine and Non-Responsive

= Up till now we have considered honest but curious
servers.

= But what if some servers are slow / fail to respond or
introduce errors into their responses.
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Byzantine and Non-Responsive

= Up till now we have considered honest but curious
servers.

= But what if some servers are slow / fail to respond or
introduce errors into their responses.

= The previous scheme uses the codes erasure
correction capability to retrieve the data.

(r1’...7rn) — (d1y1,,dnyn)+e:
(Y1, Okt Yisk—1, Qryk-Yerk+€tiks - - -, An.Yn+t€n)
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Byzantine and Non-Responsive

= Up till now we have considered honest but curious

servers.

But what if some servers are slow / fail to respond or
introduce errors into their responses.

The previous scheme uses the codes erasure
correction capability to retrieve the data.

(I’1,...,fn) = (d1.y1,...,d,,.yn)—|—e:
(di- Y1, -, Aerket-YVirk—1, Ori-Yirk+ €tiky - - -, An-Yn+€n)
(d1 Y, dt+k—1 Yitk—1, MA//[/.V[MF/HL/H/JQZ&? coog dn-}/n‘i‘en‘f‘&)
If an entry with an ’error’ is lost, that information is

lost. If it is altered by an additional error then we will
receive a wrong symbol.
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Polynomial Scheme

= Assumptions < r non-responsive servers,
< b byzantine servers.

= For simplicity assume k=n—k—t—r—2b+1.
(This is not necessary but avoids some complications)

polynomial code
files f(z) C=GRS [n, k]
queryj#i  g(z) D=GRS [n, {]
response j # i f(2)g(z) C+D=GRS [n,k +t—1]
response j =i f(2)g(z)
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Polynomial Scheme

= Assumptions < r non-responsive servers,
< b byzantine servers.

= For simplicity assume k=n—k—t—r—2b+1.
(This is not necessary but avoids some complications)

polynomial code
files f(z) C=GRS [n, k]
queryj#i  g(2) D=GRS [n, t]
response j # i f(2)g(z) C+D=GRS [n,k +t—1]
response j =i f(2)g(z) GRS [n,n—r —2b]
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Polynomial Scheme

= Assumptions < r non-responsive servers,
< b byzantine servers.

= For simplicity assume k=n—k—t—r—2b+1.
(This is not necessary but avoids some complications)

polynomial code
files f(z) C=GRS [n, k]
queryj#i  g(2) D=GRS [n, t]
queryj=i  g(z)+zT CGRS [n, k + 1]
response j # i f(2)g(z) C+D=GRS [n,k +t—1]

response j =i f(2)g(z) + z"-1f(z) GRS [n,n—r— 2b]

Private Information Retrieval 24/34



Polynomial scheme

“
= I
e ! Q
et — — —~ Al
(@)
3 | + |
T O ~ x x < c
T T T T T T T : T T T T : T T T 1
files IEE—— 1 l
5 g I I
query j # i | |
query j =i - :
| |
| |
| |
| |
I I
| |
| |
| |
| |
| |
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Polynomial scheme

L .
— [
o |
o - N P
54 | + |
© o — x x < c
files I 1 :
query j # i | |
query j =i - |
response j # i |
response j = i
' desired file
ZkHt=11i(2)
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Computation

Computation




Linear Functions

x

[11K]1]

Server 1 Server 2

= In the simple scheme, we only want to hide the index
i. Hence about log,(m) bits of information. (Assuming
every request is equally likely)

= Butwe use u ~ U(F7) as a key, which needs
mlog,(q) bits of randomness.
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Linear Functions

x

[11K]1]

Server 1 Server 2

= This is because our scheme can do more! We could
hide any request for a linear combination > ¢;x; of the
files.

rn—rn—= (X,U+€>—<X7u> = <X?€> :Zﬁ,‘X,‘
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Matrix Multiplication

= The next step is to utilize helper nodes in order to
perform computations for a user.

= The standard example is the mulitplication of two big

matrices A, B.

= These matrices might contain sensitive information
and we do not want the helpers to learn anything
about the contents of A and B.

Computation 28/34
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GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein

- A - | | AiBy --- AiBnp

- An - ’ ‘ AnB1 st Aan

= Hide the contents of A and B through secret sharing.

f(z) = Az +---+ A" + R(2)
9(2) =B 2% + ...+ Bir + S(2)

= Send each server the evaluations f(z;) and g(z;) and
ask them to compute their product.

= If we have enough evaluations of fg we can recover its
coefficients via interpolation.

Computation 29/34



GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein

f(z) = A1z + -+ Apz®" + R(2)
9(2) == Bi1Z°' + .- + BpzPm + S(2)
= Assume we do not care about privacy for a minute,
i.e., R(z) and S(z) are zero.

» The term A,B, will appear in the coefficient of zva+5»
in the product f(z)g(z).

Computation 30/34



GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein

f(z) = A1z + -+ Apz®" + R(2)
9(2) :i= B1Z% + -+ BpzPm + S(2)
= Assume we do not care about privacy for a minute,
i.e., R(z) and S(z) are zero.

» The term A,B, will appear in the coefficient of zva+5»
in the product f(z)g(z).

| B B2 B3

a1 |+ B ar+f2 ar+ 3
ag | a2+ B ax+ B2 azx+fB3
az | a3+ P31 az+ B2 a3+ B3
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GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein

f(z) = A1z + -+ Apz®" + R(2)
9(2) :i= B1Z% + -+ BpzPm + S(2)

= Assume we do not care about privacy for a minute,
i.e., R(z) and S(z) are zero.

» The term A,B, will appear in the coefficient of zva+5»
in the product f(z)g(z).

B2 B3

N = O
N =+ O | O
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GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein

f(z) = A1z + -+ Apz®" + R(2)
9(2) :i= B1Z% + -+ BpzPm + S(2)

= Assume we do not care about privacy for a minute,
i.e., R(z) and S(z) are zero.

» The term A,B, will appear in the coefficient of zva+5»
in the product f(z)g(z).

B3

N = O
N =+ O | O
OO Wl W
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GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein

f(z) = A1z + -+ Apz®" + R(2)
9(2) :i= B1Z% + -+ BpzPm + S(2)
= Assume we do not care about privacy for a minute,
i.e., R(z) and S(z) are zero.

» The term A,B, will appear in the coefficient of zva+5»
in the product f(z)g(z).

We need N = 9 evaluations.

N = O

N =+ O | O
OO Wl W
0N | O

Computation 30/34



GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein
= Now we add randomness.

|0 3 6|
0,0 3 6
111 4 7
22 5 8
9/9 12 15|
N =167
Computation 31/34



GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein
= Now we add randomness.

6
6
7
8

0
1
22
9/9 12 15|

Actually, there are only 12 unknowns, and we only need 12
evaluations.

Computation 31/34



GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein
= Now we add randomness.

0 3 69
0|0 3 6|9
111 4 7 |10
212 &5 8 |11
9/9 12 15|18
N =15
Computation 31/34



GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein
= Now we add randomness.

o 3 6|9 10
oo 3 6]9 10
101 4 7/[10 11
22 5 8|11 12
99 12 1518 13
1010 13 16|19 20
N =18

Computation
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GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein
= Now we add randomness.

o 3 6|9 10 11
ol0 3 6]9 10 1
111 4 7/[10 11 12
22 5 8|11 12 13
9|9 12 15|18 19 20
1010 13 16|19 20 21
1111 14 1720 21 22

N =23

= Can we improve on this?

Computation



GASP D’Oliveira, El Rouayheb, Karpuk, Heinlein
= Now we add randomness.

o 3 6|9 10 11
ol0 3 6]9 10 1
111 4 7/[10 11 12
22 5 8|11 12 13
9|9 12 15|18 19 20
1010 13 16|19 20 21
12|12 15 18|21 22 23

= The coefficients 14 and 17 are missing.

Computation



Splitting into Blocks

A11 A12 B B
* LetA= [Ay Axn|,andB=|_"" _'?|.Then the
821 BZZ
Asy Az

blocks of their product are given by the sums

(AB)ik =) _ AyBi.
j
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Splitting into Blocks

A11 A12 B B
* Let A= |Ay Ax|,and B= {Bﬁ B12] . Then the
A A 21 22
31 As2

blocks of their product are given by the sums

(AB)ik =) _ AyBi.
j

= We can realize this as coefficients of a polynomial as

well. Let
f(Z) = Al + Apz
9(2) := Bk + Bz, then
f(Z)g(Z) ;= ocooeF (A,'1 Bk + A,‘ngk)Z S oo
Computation 32/34



Secure Generalized PolyDot

= An example with up to 2 colluding servers.
| |Bx Byt B Bz S S

A1 Arp | o 1 8 9 14 15

A= Ay Ax A1 |0] O 1 8 9 14 15
Ai A Ap [ 1] 1 2 9 10 15 16

731 /132 Av 2| 2 3 10 11 16 17

i An |3 3 4 11 12 17 18
B_ Bi1 Bio Az |4 4 5 12 18 19
= |Boy B Ap |5| 5 6 14 19 20
- R |6| 6 7 14 15 20 21

R |7| 7 8 15 16 21 22

= Note that e.g. the coefficient of degree 5 is given by
Az1Bi1 + Az2Bz1 = (AB)3.

M. Aliasgari, O. Simeone and J. Kliewer, Distributed and Private Coded
Matrix Computation with Flexible Communication Load, 2019 IEEE
International Symposium on Information Theory (ISIT), Paris, France
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Ongoing Work

= Find PIR schemes that do not fall under the restriction
of being ’strongly linear’ and exceed the rate of
previous schemes.

= Find improved sets of exponents for the secure
generalized PolyDot construction.

= Expand secure distributed computation to matrices
over small fields.

= Expand secure distributed computation to other
functions.
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Thank You!
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