Codes for Privacy and Reliability

in Information Retrieval and Distributed Computation

by

Oliver W. Gnilke owg@math.aau.dk

September 2, 2020

Private Information Retrieval

Private Information Retrieval

For example: TOR

For example: https/TLS/SSL

Privacy

PIR

One-Time Pad

- Message / Information *e* of 'size' |*e*|.
- Key k of size $|k| \ge |e|$.
 - Encryption:c := e + kDecryption:e = c k

One-Time Pad

- Message / Information *e* of 'size' |*e*|.
- Key k of size $|k| \ge |e|$.

Encryption:c := e + kDecryption:e = c - k

- Information theoretically secure.
- But requires a key that is at least as big as the message.

One-Time Pad

- Message / Information *e* of 'size' |*e*|.
- Key k of size $|k| \ge |e|$.

Encryption:c := e + kDecryption:e = c - k

- Information theoretically secure.
- But requires a key that is at least as big as the message.
- The advantage is that an eavesdropper needs to have the ciphertext c AND the key k.

1.) The user wants file x_i . Draws $u \sim U(\mathbb{F}_q^m)$ and forms queries $q_1 = u$ and $q_2 = u + e_i$.

- 1.) The user wants file x_i . Draws $u \sim U(\mathbb{F}_q^m)$ and forms queries $q_1 = u$ and $q_2 = u + e_i$.
- 2.) The servers respond with $r_j := \langle x, q_j \rangle$.

- 1.) The user wants file x_i . Draws $u \sim U(\mathbb{F}_q^m)$ and forms queries $q_1 = u$ and $q_2 = u + e_i$.
- 2.) The servers respond with $r_j := \langle x, q_j \rangle$.
- 3.) The user calculates $r_2 r_1 = \langle x, u + e_i \rangle \langle x, u \rangle = x_i$.

Rate

We measure *rate* as the size of the requested file over the size of all downloads, $R = \frac{|x_i|}{\sum |r_j|}$. E.g. the rate in the example is $R = \frac{1}{2}$

More Servers

If all *n* servers contain the full database X we can download *n* – 1 files simultaneously.

This gives us a rate of
$$R = 1 - \frac{1}{n}$$

Capacity for *m* files replicated on *n* servers ²

$$C = \frac{1 - \frac{1}{n}}{1 - \left(\frac{1}{n}\right)^m}$$

²Hua Sun, Syed A. Jafar, *The Capacity of Private Information Retrieval*, IEEE Transactions on Information Theory, Volume: 63, Issue: 7, July 2017) Private Information Retrieval

Capacity

²Hua Sun, Syed A. Jafar, *The Capacity of Private Information Retrieval*, IEEE Transactions on Information Theory, Volume: 63, Issue: 7, July 2017) Private Information Retrieval

Distributed Storage Systems

- Replicating all files across all servers is rather wasteful.
- To save space a storage code *C* is employed.

Distributed Storage Systems

- Replicating all files across all servers is rather wasteful.
- To save space a storage code *C* is employed.

Distributed Storage Systems

- Replicating all files across all servers is rather wasteful.
- To save space a storage code *C* is employed.
- Not coding across files enables easy addition or removal of files.

More Servers - Coded

If the storage is coded, contents from two different servers no longer cancel out.

- Let $u \sim U(\mathbb{F}_q^m)$.
- Define the *n* queries as $q_j = u$ for all servers *j*. Then

$$r_j = \langle q_j, y_j \rangle = \langle u, y_j \rangle.$$

The vector

$$(r_1,\ldots,r_n)=(u.y_1,\ldots,u.y_n)=u^T[y_1\cdots y_n]=\sum_{i=1}^m u^i y^i$$

is a linear combination of the codewords in the storage system, and therefore itself a codeword in *C*.

- Let $u \sim U(\mathbb{F}_q^m)$.
- Define the queries as $q_j = u$ for all servers but one, here the last, and let $q_n = u + e_i$

- Let $u \sim U(\mathbb{F}_q^m)$.
- Define the queries as $q_j = u$ for all servers but one, here the last, and let $q_n = u + e_i$
- The vector (r₁,..., r_n) is a linear combination of the codewords in the storage system, plus one 'error' in the last coordinate

$$(r_1,\ldots,r_n)=(u.y_1,\ldots,u.y_n+y_n^i)=\sum_{i=1}^m u^i y^i+(0,\ldots,0,y_n^i)$$

- Let $u \sim U(\mathbb{F}_q^m)$.
- Define the queries as $q_j = u$ for all servers but one, here the last, and let $q_n = u + e_i$
- The vector (r₁,...,r_n) is a linear combination of the codewords in the storage system, plus one 'error' in the last coordinate

$$(r_1,\ldots,r_n)=(u.y_1,\ldots,u.y_n+y_n^i)=\sum_{i=1}^m u^i y^i+(0,\ldots,0,y_n^i)$$

We only need k coordinates of a codeword to uniquely determine it. Hence we can add up to n − k such 'errors'.

PIR Rate for coded storage

We receive n – k blocks of information, when downloading n blocks total.

Rate for PIR from MDS coded storage

$$R = \frac{n-k}{n}$$

PIR Rate for coded storage

We receive n – k blocks of information, when downloading n blocks total.

Rate for PIR from MDS coded storage

$$R = \frac{n-k}{n}$$

We compare to the capacity

Capacity for PIR from coded storage ³

$$C = rac{1-rac{k}{n}}{1-\left(rac{k}{n}
ight)^m}$$

³Karim Banawan, Sennur Ulukus, *The Capacity of Private Information Retrieval From Coded Databases*, IEEE Transactions on Information Theory, Volume: 64, Issue: 3, March 2018

Private Information Retrieval

Asymptotic vs. Capacity

More Servers - Collusion

- In the replicated storage scenario, each query is masked with the same random vector.
- If two of them exchange their queries, they can unmask the request.

- We want to design a scheme that remains secure, even if *t* < *n* of the servers combine their queries.
- We use secret sharing to design these queries.

- We want to design a scheme that remains secure, even if *t* < *n* of the servers combine their queries.
- We use secret sharing to design these queries.

Shamir Secret Sharing

Let (α_i) be a list of *n* pairwise different elements of \mathbb{F}_q . Let $u_0, \dots, u_{t-1} \sim U(\mathbb{F}_q)$, and e_t our information. $(u_0, \dots, u_{t-1}, e_t) \in \mathbb{F}_q^k$ \downarrow $f(z) = u_0 + \dots + u_{t-1}z^{t-1} + e_tz^t \mapsto (f(\alpha_1), \dots, f(\alpha_n))$

- We want to design a scheme that remains secure, even if *t* < *n* of the servers combine their queries.
- We use secret sharing to design these queries.

Shamir Secret Sharing

Let (α_i) be a list of *n* pairwise different elements of \mathbb{F}_q . Let $u_0, \ldots, u_{t-1} \sim U(\mathbb{F}_q)$, and e_t our information. $(u_0, \ldots, u_{t-1}, e_t) \in \mathbb{F}_q^k$ (s_1, \ldots, s_n) \downarrow $f(z) = u_0 + \cdots + u_{t-1}z^{t-1} + e_tz^t \mapsto (f(\alpha_1), \ldots, f(\alpha_n))$ Any subset of *t* shares s_i , reveals no information about e_t .

- We want to design a scheme that remains secure, even if *t* < *n* of the servers combine their queries.
- We use secret sharing to design these queries.

Shamir Secret Sharing

Let (α_i) be a list of *n* pairwise different elements of \mathbb{F}_q . Let $u_0, \ldots, u_{t-1} \sim U(\mathbb{F}_q)$, and e_t our information. $(u_0, \ldots, u_{t-1}, e_t) \in \mathbb{F}_q^k$ (s_1, \ldots, s_n) \downarrow $f(z) = u_0 + \cdots + u_{t-1}z^{t-1} + e_tz^t \mapsto (f(\alpha_1), \ldots, f(\alpha_n))$ Any subset of *t* shares s_i , reveals no information about e_t .

• We use a slightly altered version for our scheme.

PIR with Collusion

The scheme is dual to the coded storage scheme. Instead of the files, our queries are encoded with an [n, t] MDS code D.

PIR with Collusion

The scheme is dual to the coded storage scheme. Instead of the files, our queries are encoded with an [n, t] MDS code D.

PIR with Collusion

The scheme is dual to the coded storage scheme. Instead of the files, our queries are encoded with an [n, t] MDS code D.

The responses now again take the form,

$$(r_1,...,r_n) = (d_1.x,...,d_n.x) + e = \sum_{i=1}^m d^i x^i + e.$$

 $\mathcal{D}_{\text{rivate Information}} = \sum_{i=1}^{m} d^{i} x^{i}$ is a codeword in D

Rate and Capacity for t-collusion

We receive n – t blocks of information, when downloading n blocks total.

Rate for PIR with *t*-collusion $R = \frac{n-t}{n}$

Rate and Capacity for t-collusion

We receive n – t blocks of information, when downloading n blocks total.

Rate for PIR with *t*-collusion

$$R = \frac{n-t}{n}$$

We compare to the capacity expression for this scenario

Capacity for PIR with *t*-collusion ⁴

$$C = rac{1-rac{t}{n}}{1-\left(rac{t}{n}
ight)^m}$$

⁴Hua Sun, Syed A. Jafar, *The capacity of private information retrieval with colluding databases*, 2016 IEEE Global Conference on Signal and Information Processing

Private Information Retrieval

Asymptotic vs. Capacity

Private Information Retrieval

Combining both schemes

- We combine both schemes, *i.e.*, encode both the data and the queries.
- The responses then take a different form

$$(r_1,\ldots,r_n)=(d_1.y_1,\ldots,d_n.y_n)+e$$

Combining both schemes

- We combine both schemes, *i.e.*, encode both the data and the queries.
- The responses then take a different form

$$(r_1,\ldots,r_n)=(d_1.y_1,\ldots,d_n.y_n)+e=\sum_{i=1}^m d^i\star y^i+e$$

where $(c_1, \ldots, c_n) \star (d_1, \ldots, d_n) := (c_1 d_1, \ldots, c_n d_n)$ is the Schur product of vectors.

Combining both schemes

- We combine both schemes, *i.e.*, encode both the data and the queries.
- The responses then take a different form

$$(r_1,\ldots,r_n)=(d_1.y_1,\ldots,d_n.y_n)+e=\sum_{i=1}^m d^i\star y^i+e$$

where $(c_1, \ldots, c_n) \star (d_1, \ldots, d_n) := (c_1 d_1, \ldots, c_n d_n)$ is the Schur product of vectors.

Do these responses lie inside some code (plus some errors) that we can easily describe?

Schur Product

Let *C* and *D* be two linear codes of length *n*. Then we define their product code as the span of all Schur products of codewords in *C* with codewords in *D*.

$$C \star D := \langle \{ c \star d : c \in C, d \in D \} \rangle$$

Schur Product

Let *C* and *D* be two linear codes of length *n*. Then we define their product code as the span of all Schur products of codewords in *C* with codewords in *D*.

$$C \star D := \langle \{ c \star d : c \in C, d \in D \} \rangle$$

The rate of our scheme will again depend on the minimum distance of the response code.

Products of Codes

Schur Product

Let *C* and *D* be two linear codes of length *n*. Then we define their product code as the span of all Schur products of codewords in *C* with codewords in *D*.

$$C \star D := \langle \{ c \star d : c \in C, d \in D \} \rangle$$

Product Singleton Bound⁵

$$d_{C\star D}-1\leq \max\{0,n-k_C-k_D+1\}$$

⁵H. Randriambololona, *An upper bound of Singleton type for componentwise products of linear codes*, IEEE Transactions on Information Theory vol 59., 2013

Private Information Retrieval

Product Singleton Bound⁵

$$d_{C\star D}-1\leq \max\{0,n-k_C-k_D+1\}$$

Equality is achieved in a handful of cases only

⁵H. Randriambololona, *An upper bound of Singleton type for componentwise products of linear codes*, IEEE Transactions on Information Private InTheory: vol. 59., 2013

Product Singleton Bound⁵

$$d_{C\star D}-1\leq \max\{0,n-k_C-k_D+1\}$$

- Equality is achieved in a handful of cases only
 - *C* or *D* are the repetition code.

$$\bullet \quad C=D^{\perp}.$$

 C and D are generalized Reed-Solomon (GRS) codes on the same evaluation set.

⁵H. Randriambololona, *An upper bound of Singleton type for componentwise products of linear codes*, IEEE Transactions on Information Private InTheory RVol. 59., 2013

Product Singleton Bound⁵

$$d_{C\star D}-1\leq \max\{0,n-k_C-k_D+1\}$$

- Equality is achieved in a handful of cases only
 - C or D are the repetition code.
 Then we have no collusion or no coding.
 - $C = D^{\perp}.$
 - C and D are generalized Reed-Solomon (GRS) codes on the same evaluation set.

⁵H. Randriambololona, *An upper bound of Singleton type for componentwise products of linear codes*, IEEE Transactions on Information Private InTheory RVol. 59., 2013

Product Singleton Bound⁵

$$d_{C\star D}-1\leq \max\{0,n-k_C-k_D+1\}$$

Equality is achieved in a handful of cases only

C or D are the repetition code.
 Then we have no collusion or no coding.

•
$$C = D^{\perp}$$
.

Then we get a rate $\frac{1}{n}$ scheme.

 C and D are generalized Reed-Solomon (GRS) codes on the same evaluation set.

⁵H. Randriambololona, *An upper bound of Singleton type for componentwise products of linear codes*, IEEE Transactions on Information Private InTheory Prvol. 59., 2013

Product Singleton Bound⁵

$$d_{C\star D}-1\leq \max\{0,n-k_C-k_D+1\}$$

Equality is achieved in a handful of cases only

C or D are the repetition code.
 Then we have no collusion or no coding.

•
$$C = D^{\perp}$$
.

Then we get a rate $\frac{1}{n}$ scheme.

 C and D are generalized Reed-Solomon (GRS) codes on the same evaluation set. This allows for a flexible schemes with varied parameters.

⁵H. Randriambololona, *An upper bound of Singleton type for componentwise products of linear codes*, IEEE Transactions on Information Private InTheory Avol 59., 2013

PIR - coded storage & collusion

Use GRS codes for the storage and the queries.

$$(r_1,\ldots,r_n)=(d_1.y_1,\ldots,d_n.y_n)+e$$

PIR - coded storage & collusion

Use GRS codes for the storage and the queries.

$$(r_1,\ldots,r_n)=(d_1.y_1,\ldots,d_n.y_n)+e=\sum_{i=1}^m d^i\star y^i+e.$$

Then $\sum_{i=1}^{m} d^{i} \star y^{i}$ is again a codeword in an [n, k + t - 1] GRS code

PIR - coded storage & collusion

Use GRS codes for the storage and the queries.

$$(r_1,\ldots,r_n)=(d_1.y_1,\ldots,d_n.y_n)+e=\sum_{i=1}^m d^i\star y^i+e.$$

Then $\sum_{i=1}^{m} d^{i} \star y^{i}$ is again a codeword in an [n, k + t - 1] GRS code

- Hence we can add up to n k t + 1 'errors' via e that we can correct.
- We therefore achieve a rate of $\frac{n-k-t+1}{n}$, whenever this is positive.

Capacity

The capacity for the coded, colluding case has been a long standing problem.

⁶Lukas Holzbaur, Ragnar Freij-Hollanti, Jie Li, Camilla Hollanti, *Towards the Capacity of Private Information Retrieval from Coded and Colluding* Private InServersetarXiv:1903.12552.

Capacity

- The capacity for the coded, colluding case has been a long standing problem.
- A recent paper⁶ 'solves' this by only considering schemes that are 'symbol separated' or 'strongly linear'.
- This covers a lot of schemes in the literature and especially the ones presented here, and they are indeed capacity achieving under these restrictions.

⁶Lukas Holzbaur, Ragnar Freij-Hollanti, Jie Li, Camilla Hollanti, *Towards the Capacity of Private Information Retrieval from Coded and Colluding* Private InSecures_{et}arXiv:1903.12552.

Byzantine and Non-Responsive

- Up till now we have considered honest but curious servers.
- But what if some servers are slow / fail to respond or introduce errors into their responses.

Byzantine and Non-Responsive

- Up till now we have considered honest but curious servers.
- But what if some servers are slow / fail to respond or introduce errors into their responses.
- The previous scheme uses the codes erasure correction capability to retrieve the data.

 $(r_1,\ldots,r_n) = (d_1.y_1,\ldots,d_n.y_n) + e = (d_1.y_1,\ldots,d_{t+k-1},d_{t+k},y_{t+k}+e_{t+k},\ldots,d_n.y_n+e_n)$

Byzantine and Non-Responsive

- Up till now we have considered honest but curious servers.
- But what if some servers are slow / fail to respond or introduce errors into their responses.
- The previous scheme uses the codes erasure correction capability to retrieve the data.

$$(r_{1},...,r_{n}) = (d_{1}.y_{1},...,d_{n}.y_{n}) + e = (d_{1}.y_{1},...,d_{t+k-1},d_{t+k-1},d_{t+k}.y_{t+k} + e_{t+k},...,d_{n}.y_{n} + e_{n})$$
$$(d_{1}.y_{1},...,d_{t+k-1}.y_{t+k-1},d_{t+k}.y_{t+k}.y_{t+k}...,d_{n}.y_{n} + e_{n} + b_{n})$$

If an entry with an 'error' is lost, that information is lost. If it is altered by an additional error then we will receive a wrong symbol.

Polynomial Scheme

- Assumptions ≤ r non-responsive servers,
 ≤ b byzantine servers.
- For simplicity assume k = n k t r 2b + 1.
 (This is not necessary but avoids some complications)

	polynomial	code
files query $j \neq i$	f(z) g(z)	C=GRS [n, k] D=GRS [n, t]
response $j \neq i$ response $j = i$		<i>C</i> * <i>D</i> =GRS [<i>n</i> , <i>k</i> + <i>t</i> - 1]

Polynomial Scheme

- Assumptions ≤ r non-responsive servers,
 ≤ b byzantine servers.
- For simplicity assume k = n k t r 2b + 1.
 (This is not necessary but avoids some complications)

	polynomial	code
files query $j \neq i$	$ \begin{array}{c} f(z) \\ g(z) \end{array} $	C=GRS [<i>n</i> , <i>k</i>] D=GRS [<i>n</i> , <i>t</i>]
response $j \neq i$ response $j = i$		<i>C</i> ★ <i>D</i> =GRS [<i>n</i> , <i>k</i> + <i>t</i> − 1] GRS [<i>n</i> , <i>n</i> − <i>r</i> − 2 <i>b</i>]

Polynomial Scheme

- Assumptions ≤ r non-responsive servers,
 ≤ b byzantine servers.
- For simplicity assume k = n k t r 2b + 1.
 (This is not necessary but avoids some complications)

	polynomial	code
files query $j \neq i$ query $j = i$	$f(z)$ $g(z)$ $g(z) + z^{k+t-1}$	C=GRS [n, k] D=GRS [n, t] $\subset GRS [n, k + t]$
response $j \neq i$ response $j = i$	f(z)g(z) $f(z)g(z) + z^{k+t-1}f^{i}(z)$	$C \star D$ =GRS [$n, k + t - 1$] GRS [$n, n - r - 2b$]

Polynomial scheme

Polynomial scheme

Computation

Linear Functions

- In the simple scheme, we only want to hide the index *i*. Hence about log₂(*m*) bits of information. (Assuming every request is equally likely)
- But we use u ~ U(F^m_q) as a key, which needs mlog₂(q) bits of randomness.

Linear Functions

This is because our scheme can do more! We could hide any request for a linear combination ∑ ℓ_ix_i of the files.

$$r_2 - r_1 = \langle x, u + \ell \rangle - \langle x, u \rangle = \langle x, \ell \rangle = \sum \ell_i x_i$$

Matrix Multiplication

- The next step is to utilize helper nodes in order to perform computations for a user.
- The standard example is the mulitplication of two big matrices A, B.
- These matrices might contain sensitive information and we do not want the helpers to learn anything about the contents of A and B.

$$\begin{pmatrix} & - & A_1 & - \\ & \vdots & \\ & - & A_n & - \end{pmatrix} \begin{pmatrix} & | & & | \\ & B_1 & \dots & B_m \\ & | & & | \end{pmatrix} = \begin{pmatrix} & A_1B_1 & \cdots & A_1B_m \\ & \vdots & \ddots & \vdots \\ & A_nB_1 & \cdots & A_nB_m \end{pmatrix}$$

Hide the contents of *A* and *B* through secret sharing.

$$f(z) := A_1 z^{\alpha_1} + \dots + A_n^{\alpha_n} + R(z)$$

$$g(z) := B_1 z^{\beta_1} + \dots + B_m^{\beta_m} + S(z)$$

- Send each server the evaluations f(z_i) and g(z_i) and ask them to compute their product.
- If we have enough evaluations of fg we can recover its coefficients via interpolation.

$$f(z) := A_1 z^{\alpha_1} + \dots + A_n z^{\alpha_n} + R(z)$$

$$g(z) := B_1 z^{\beta_1} + \dots + B_m z^{\beta_m} + S(z)$$

- Assume we do not care about privacy for a minute, i.e., R(z) and S(z) are zero.
- The term $A_a B_b$ will appear in the coefficient of $z^{\alpha_a + \beta_b}$ in the product f(z)g(z).

$$f(z) := A_1 z^{\alpha_1} + \dots + A_n z^{\alpha_n} + R(z)$$

$$g(z) := B_1 z^{\beta_1} + \dots + B_m z^{\beta_m} + S(z)$$

- Assume we do not care about privacy for a minute, i.e., R(z) and S(z) are zero.
- The term $A_a B_b$ will appear in the coefficient of $z^{\alpha_a + \beta_b}$ in the product f(z)g(z).

$$f(z) := A_1 z^{\alpha_1} + \dots + A_n z^{\alpha_n} + R(z)$$

$$g(z) := B_1 z^{\beta_1} + \dots + B_m z^{\beta_m} + S(z)$$

- Assume we do not care about privacy for a minute, i.e., R(z) and S(z) are zero.
- The term $A_a B_b$ will appear in the coefficient of $z^{\alpha_a + \beta_b}$ in the product f(z)g(z).

$$f(z) := A_1 z^{\alpha_1} + \dots + A_n z^{\alpha_n} + R(z)$$

$$g(z) := B_1 z^{\beta_1} + \dots + B_m z^{\beta_m} + S(z)$$

- Assume we do not care about privacy for a minute, i.e., R(z) and S(z) are zero.
- The term $A_a B_b$ will appear in the coefficient of $z^{\alpha_a + \beta_b}$ in the product f(z)g(z).

	0	3	β_{3}
0	0	3	
1	1	4	
2	2	5	

$$f(z) := A_1 z^{\alpha_1} + \dots + A_n z^{\alpha_n} + R(z)$$

$$g(z) := B_1 z^{\beta_1} + \dots + B_m z^{\beta_m} + S(z)$$

- Assume we do not care about privacy for a minute, i.e., R(z) and S(z) are zero.
- The term $A_a B_b$ will appear in the coefficient of $z^{\alpha_a + \beta_b}$ in the product f(z)g(z).

Now we add randomness.

N = 16?

Now we add randomness.

Actually, there are only 12 unknowns, and we only need 12 evaluations.

Now we add randomness.

	0	3	6	9
0	0	3	6	9
0 1 2	1	4 5	7	10
2	2	5	8	11
9	9	12	15	18

N = 15

Now we add randomness.

	0	3	6	9	10	
0	0	3 4 5	6	9 10 11	10	
1 2	1	4	7	10	11	
2	2	5	8	11	12	
9	9	12	15	18 19	13	
9 10	10	13	16	19	20	
<i>N</i> = 18						

Now we add randomness.

		3				
0	0	3 4 5	6	9	10	11
1	1	4	7	10	11	12
9	9	12 13 14	15	18	19	20
10	10	13	16	19	20	21
11	11	14	17	20	21	22

N = 23

Can we improve on this?

Now we add randomness.

				•	10	
0	0	3	6	9	10 11 12	11
1	1	4	7	10	11	12
2	2	5	8	11	12	13
9	9	12	15	18	19 20 22	20
10	10	13	16	19	20	21
12	12	15	18	21	22	23
N = 22						

The coefficients 14 and 17 are missing.

Splitting into Blocks

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, and $B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$. Then the blocks of their product are given by the sums

$$(AB)_{ik} = \sum_{j} A_{ij} B_{jk}.$$

Splitting into Blocks

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, and $B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$. Then the blocks of their product are given by the sums
$$(AB)_{ik} = \sum A_{ij}B_{jk}.$$

We can realize this as coefficients of a polynomial as well. Let

$$f(z) := A_{i1} + A_{i2}z$$

 $g(z) := B_{2k} + B_{1k}z$, then
 $f(z)g(z) := \cdots + (A_{i1}B_{1k} + A_{i2}B_{2k})z + \cdots$

Secure Generalized PolyDot⁷

An example with up to 2 colluding servers.

				<i>B</i> ₂₁	B ₁₁	B ₂₂	<i>B</i> ₁₂	S_1	S_2
$\lceil A_{11} \rceil$	A12]			0	1	8	9	14	15
$A = \begin{bmatrix} A_{11} \\ A_{21} \\ A_{31} \end{bmatrix}$	Ana	A ₁₁	0	0	1	8 9 10	9	14	15
	A	A ₁₂	1	1	2	9	10	15	16
L A 31	A ₃₂]	A ₂₁	2	2	3	10	11	16	17
F –	_ 7	A ₂₂	3	3		11			
$B_{B_{11}}$	B ₁₂	A ₃₁	4	4	5	12		18	19
$B = \begin{bmatrix} B_{11} \\ B_{21} \end{bmatrix}$	B22	A ₃₂	5	5	6	13	14	19	20
L 21]	R_1	6	6	7	14	15	20	21
		R_2	7	7	8	15	16	21	22

Note that *e.g.* the coefficient of degree 5 is given by $A_{31}B_{11} + A_{32}B_{21} = (AB)_{31}$.

⁷M. Aliasgari, O. Simeone and J. Kliewer, *Distributed and Private Coded Matrix Computation with Flexible Communication Load*, 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France

- Find PIR schemes that do not fall under the restriction of being 'strongly linear' and exceed the rate of previous schemes.
- Find improved sets of exponents for the secure generalized PolyDot construction.
- Expand secure distributed computation to matrices over small fields.
- Expand secure distributed computation to other functions.

Thank You!