Codes for Privacy and Reliability

in Information Retrieval and Distributed Computation

Oliver W. Gnilke
owg@math.aau.dk

AALBORG UNIVERSITY

Private Information Retrieval

Securing Communications

Securing Communications

For example: TOR

Securing Communications

For example: https/TLS/SSL

Securing Communications

Privacy
PIR

One-Time Pad

:- Message / Information e of 'size' $|e|$.
:- Key k of size $|k| \geq|e|$.
Encryption:

$$
c:=e+k
$$

Decryption:

$$
e=c-k
$$

One-Time Pad

:- Message / Information e of 'size' |e|.
: Key k of size $|k| \geq|e|$.

$$
\begin{array}{ll}
\text { Encryption: } & c:=e+k \\
\text { Decryption: } & e=c-k
\end{array}
$$

:- Information theoretically secure.
:- But requires a key that is at least as big as the message.

One-Time Pad

: Message / Information e of 'size' $|e|$.
:- Key k of size $|k| \geq|e|$.

$$
\begin{array}{ll}
\text { Encryption: } & c:=e+k \\
\text { Decryption: } & e=c-k
\end{array}
$$

:- Information theoretically secure.
: But requires a key that is at least as big as the message.
:- The advantage is that an eavesdropper needs to have the ciphertext c AND the key k.

A first example

1.) The user wants file x_{i}. Draws $u \sim U\left(\mathbb{F}_{q}^{m}\right)$ and forms queries $q_{1}=u$ and $q_{2}=u+e_{i}$.

A first example

1.) The user wants file x_{i}. Draws $u \sim U\left(\mathbb{F}_{q}^{m}\right)$ and forms queries $q_{1}=u$ and $q_{2}=u+e_{i}$.
2.) The servers respond with $r_{j}:=\left\langle x, q_{j}\right\rangle$.

A first example

$$
\begin{gathered}
u+e_{i} \\
=q_{2} \\
\frac{\bar{Z}}{=r_{2}} \\
\overline{\bar{x}} \\
\bar{Z} \\
=
\end{gathered}
$$

Server 2

Server 1
1.) The user wants file x_{i}. Draws $u \sim U\left(\mathbb{F}_{q}^{m}\right)$ and forms queries $q_{1}=u$ and $q_{2}=u+e_{i}$.
2.) The servers respond with $r_{j}:=\left\langle x, q_{j}\right\rangle$.
3.) The user calculates $r_{2}-r_{1}=\left\langle x, u+e_{i}\right\rangle-\langle x, u\rangle=x_{i}$.

A first example

Rate
We measure rate as the size of the requested file over the size of all downloads, $R=\frac{\left|x_{i}\right|}{\sum\left|r_{j}\right|}$. E.g. the rate in the example is $R=\frac{1}{2}$

More Servers

:- If all n servers contain the full database X we can download $n-1$ files simultaneously.
: This gives us a rate of $R=1-\frac{1}{n}$

Capacity

Capacity for m files replicated on n servers ${ }^{2}$

$$
C=\frac{1-\frac{1}{n}}{1-\left(\frac{1}{n}\right)^{m}}
$$

[^0]
Capacity

[^1]
Distributed Storage Systems

:- Replicating all files across all servers is rather wasteful.
:To save space a storage code C is employed.

Distributed Storage Systems

:- Replicating all files across all servers is rather wasteful.
: To save space a storage code C is employed.

Distributed Storage Systems

:- Replicating all files across all servers is rather wasteful.
:- To save space a storage code C is employed.
:- Not coding across files enables easy addition or removal of files.

Server 1 ... Server n

More Servers - Coded

:- If the storage is coded, contents from two different servers no longer cancel out.

PIR from coded storage

Let $u \sim U\left(\mathbb{F}_{q}^{m}\right)$.

- Define the n queries as $q_{j}=u$ for all servers j. Then

$$
r_{j}=\left\langle q_{j}, y_{j}\right\rangle=\left\langle u, y_{j}\right\rangle
$$

:- The vector

$$
\left(r_{1}, \ldots, r_{n}\right)=\left(u \cdot y_{1}, \ldots, u \cdot y_{n}\right)=u^{T}\left[y_{1} \cdots y_{n}\right]=\sum_{i=1}^{m} u^{i} y^{i}
$$

is a linear combination of the codewords in the storage system, and therefore itself a codeword in C.

PIR from coded storage

. Let $u \sim U\left(\mathbb{F}_{q}^{m}\right)$.
:- Define the queries as $q_{j}=u$ for all servers but one, here the last, and let $q_{n}=u+e_{i}$

PIR from coded storage

= Let $u \sim U\left(\mathbb{F}_{q}^{m}\right)$.
:- Define the queries as $q_{j}=u$ for all servers but one, here the last, and let $q_{n}=u+e_{i}$
= The vector $\left(r_{1}, \ldots, r_{n}\right)$ is a linear combination of the codewords in the storage system, plus one 'error' in the last coordinate

$$
\left(r_{1}, \ldots, r_{n}\right)=\left(u \cdot y_{1}, \ldots, u \cdot y_{n}+y_{n}^{i}\right)=\sum_{i=1}^{m} u^{i} y^{i}+\left(0, \ldots, 0, y_{n}^{i}\right)
$$

PIR from coded storage

- Let $u \sim U\left(\mathbb{F}_{q}^{m}\right)$.
:- Define the queries as $q_{j}=u$ for all servers but one, here the last, and let $q_{n}=u+e_{i}$
- The vector $\left(r_{1}, \ldots, r_{n}\right)$ is a linear combination of the codewords in the storage system, plus one 'error' in the last coordinate

$$
\left(r_{1}, \ldots, r_{n}\right)=\left(u \cdot y_{1}, \ldots, u \cdot y_{n}+y_{n}^{i}\right)=\sum_{i=1}^{m} u^{i} y^{i}+\left(0, \ldots, 0, y_{n}^{i}\right)
$$

:- We only need k coordinates of a codeword to uniquely determine it. Hence we can add up to $n-k$ such 'errors'.

PIR Rate for coded storage

:- We receive $n-k$ blocks of information, when downloading n blocks total.

Rate for PIR from MDS coded storage

$$
R=\frac{n-k}{n}
$$

PIR Rate for coded storage

:- We receive $n-k$ blocks of information, when downloading n blocks total.

Rate for PIR from MDS coded storage

$$
R=\frac{n-k}{n}
$$

:- We compare to the capacity

Capacity for PIR from coded storage ${ }^{3}$

$$
\boldsymbol{C}=\frac{1-\frac{K}{n}}{1-\left(\frac{\kappa}{n}\right)^{m}}
$$

[^2]
Asymptotic vs. Capacity

More Servers - Collusion

:- In the replicated storage scenario, each query is masked with the same random vector.
:- If two of them exchange their queries, they can unmask the request.

t-Collusion

:- We want to design a scheme that remains secure, even if $t<n$ of the servers combine their queries.
:- We use secret sharing to design these queries.

t-Collusion

:- We want to design a scheme that remains secure, even if $t<n$ of the servers combine their queries.
:- We use secret sharing to design these queries.

Shamir Secret Sharing

Let $\left(\alpha_{i}\right)$ be a list of n pairwise different elements of \mathbb{F}_{q}. Let $u_{0}, \ldots, u_{t-1} \sim U\left(\mathbb{F}_{q}\right)$, and e_{t} our information.

$$
\left(u_{0}, \ldots, u_{t-1}, e_{t}\right) \in \mathbb{F}_{q}^{k}
$$

$$
f(z)=u_{0}+\cdots+u_{t-1} z^{t-1}+e_{t} z^{t} \quad \mapsto \quad\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right)
$$

t-Collusion

:- We want to design a scheme that remains secure, even if $t<n$ of the servers combine their queries.
:- We use secret sharing to design these queries.

Shamir Secret Sharing

Let $\left(\alpha_{i}\right)$ be a list of n pairwise different elements of \mathbb{F}_{q}. Let $u_{0}, \ldots, u_{t-1} \sim U\left(\mathbb{F}_{q}\right)$, and e_{t} our information.

$$
\begin{equation*}
\left(u_{0}, \ldots, u_{t-1}, e_{t}\right) \in \mathbb{F}_{q}^{k} \tag{1}
\end{equation*}
$$

II
$f(z)=u_{0}+\cdots+u_{t-1} z^{t-1}+e_{t} z^{t} \quad \mapsto \quad\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right)$
Any subset of t shares s_{i}, reveals no information about e_{t}.

t-Collusion

- We want to design a scheme that remains secure, even if $t<n$ of the servers combine their queries.
:- We use secret sharing to design these queries.

Shamir Secret Sharing

Let $\left(\alpha_{i}\right)$ be a list of n pairwise different elements of \mathbb{F}_{q}. Let $u_{0}, \ldots, u_{t-1} \sim U\left(\mathbb{F}_{q}\right)$, and e_{t} our information.

$$
\begin{gather*}
\left(u_{0}, \ldots, u_{t-1}, e_{t}\right) \in \mathbb{F}_{q}^{k} \tag{1}\\
\downarrow
\end{gather*}
$$

II

$$
f(z)=u_{0}+\cdots+u_{t-1} z^{t-1}+e_{t} z^{t} \quad \mapsto \quad\left(f\left(\alpha_{1}\right), \ldots, f\left(\alpha_{n}\right)\right)
$$

Any subset of t shares s_{i}, reveals no information about e_{t}.
:- We use a slightly altered version for our scheme.

PIR with Collusion

.- The scheme is dual to the coded storage scheme. Instead of the files, our queries are encoded with an $[n, t]$ MDS code D.

PIR with Collusion

:- The scheme is dual to the coded storage scheme. Instead of the files, our queries are encoded with an $[n, t]$ MDS code D.

PIR with Collusion

:- The scheme is dual to the coded storage scheme. Instead of the files, our queries are encoded with an $[n, t]$ MDS code D.

:- The responses now again take the form,

$$
\left(r_{1}, \ldots, r_{n}\right)=\left(d_{1} \cdot x, \ldots, d_{n} \cdot x\right)+e=\sum_{i=1}^{m} d^{i} x^{i}+e .
$$

Private Intomatioo $\sum_{\text {zeimel }}^{m} d^{i} x^{i}$ is a codeword in D

Rate and Capacity for t-collusion

:- We receive $n-t$ blocks of information, when downloading n blocks total.

Rate for PIR with t-collusion

$$
R=\frac{n-t}{n}
$$

Rate and Capacity for t-collusion

"- We receive $n-t$ blocks of information, when downloading n blocks total.

Rate for PIR with t-collusion

$$
R=\frac{n-t}{n}
$$

:- We compare to the capacity expression for this scenario

Capacity for PIR with t-collusion ${ }^{4}$

$$
C=\frac{1-\frac{t}{n}}{1-\left(\frac{t}{n}\right)^{m}}
$$

[^3]
Asymptotic vs. Capacity

Combining both schemes

:" We combine both schemes, i.e., encode both the data and the queries.
:- The responses then take a different form

$$
\left(r_{1}, \ldots, r_{n}\right)=\left(d_{1} \cdot y_{1}, \ldots, d_{n} \cdot y_{n}\right)+e
$$

Combining both schemes

:- We combine both schemes, i.e., encode both the data and the queries.
:- The responses then take a different form

$$
\left(r_{1}, \ldots, r_{n}\right)=\left(d_{1} \cdot y_{1}, \ldots, d_{n} \cdot y_{n}\right)+e=\sum_{i=1}^{m} d^{i} \star y^{i}+e
$$

where $\left(c_{1}, \ldots, c_{n}\right) \star\left(d_{1}, \ldots, d_{n}\right):=\left(c_{1} d_{1}, \ldots, c_{n} d_{n}\right)$ is the Schur product of vectors.

Combining both schemes

:- We combine both schemes, i.e., encode both the data and the queries.
:- The responses then take a different form

$$
\left(r_{1}, \ldots, r_{n}\right)=\left(d_{1} \cdot y_{1}, \ldots, d_{n} \cdot y_{n}\right)+e=\sum_{i=1}^{m} d^{i} \star y^{i}+e
$$

where $\left(c_{1}, \ldots, c_{n}\right) \star\left(d_{1}, \ldots, d_{n}\right):=\left(c_{1} d_{1}, \ldots, c_{n} d_{n}\right)$ is the Schur product of vectors.
:- Do these responses lie inside some code (plus some errors) that we can easily describe?

Products of Codes

Schur Product

Let C and D be two linear codes of length n. Then we define their product code as the span of all Schur products of codewords in C with codewords in D.

$$
C \star D:=\langle\{c \star d: c \in C, d \in D\}\rangle
$$

Products of Codes

Schur Product

Let C and D be two linear codes of length n. Then we define their product code as the span of all Schur products of codewords in C with codewords in D.

$$
C \star D:=\langle\{c \star d: c \in C, d \in D\}\rangle
$$

:- The rate of our scheme will again depend on the minimum distance of the response code.

Products of Codes

Schur Product

Let C and D be two linear codes of length n. Then we define their product code as the span of all Schur products of codewords in C with codewords in D.

$$
C \star D:=\langle\{c \star d: c \in C, d \in D\}\rangle
$$

Product Singleton Bound ${ }^{5}$

$$
d_{C \star D}-1 \leq \max \left\{0, n-k_{C}-k_{D}+1\right\}
$$

[^4]
Optimal Products

Product Singleton Bound ${ }^{5}$

$$
d_{C \star D}-1 \leq \max \left\{0, n-k_{C}-k_{D}+1\right\}
$$

:- Equality is achieved in a handful of cases only

[^5]
Optimal Products

Product Singleton Bound ${ }^{5}$

$$
d_{C \star D}-1 \leq \max \left\{0, n-k_{C}-k_{D}+1\right\}
$$

:- Equality is achieved in a handful of cases only
: $\quad C$ or D are the repetition code.
$\Rightarrow C=D^{\perp}$.
$: \quad C$ and D are generalized Reed-Solomon (GRS) codes on the same evaluation set.

[^6]
Optimal Products

Product Singleton Bound ${ }^{5}$

$$
d_{C \star D}-1 \leq \max \left\{0, n-k_{C}-k_{D}+1\right\}
$$

:- Equality is achieved in a handful of cases only
: C or D are the repetition code.
Then we have no collusion or no coding.
$\Rightarrow \quad C=D^{\perp}$.
$: \quad C$ and D are generalized Reed-Solomon (GRS) codes on the same evaluation set.

[^7]
Optimal Products

Product Singleton Bound ${ }^{5}$

$$
d_{C \star D}-1 \leq \max \left\{0, n-k_{C}-k_{D}+1\right\}
$$

: Equality is achieved in a handful of cases only
: C or D are the repetition code.
Then we have no collusion or no coding.
$\Rightarrow C=D^{\perp}$.
Then we get a rate $\frac{1}{n}$ scheme.
$: \quad C$ and D are generalized Reed-Solomon (GRS) codes on the same evaluation set.

[^8]
Optimal Products

Product Singleton Bound ${ }^{5}$

$$
d_{C \star D}-1 \leq \max \left\{0, n-k_{C}-k_{D}+1\right\}
$$

:- Equality is achieved in a handful of cases only
: C or D are the repetition code.
Then we have no collusion or no coding.
$\Rightarrow C=D^{\perp}$.
Then we get a rate $\frac{1}{n}$ scheme.
: $\quad C$ and D are generalized Reed-Solomon (GRS) codes on the same evaluation set.
This allows for a flexible schemes with varied parameters.

[^9]
PIR - coded storage \& collusion

:- Use GRS codes for the storage and the queries.

$$
\left(r_{1}, \ldots, r_{n}\right)=\left(d_{1} \cdot y_{1}, \ldots, d_{n} \cdot y_{n}\right)+e
$$

PIR - coded storage \& collusion

: Use GRS codes for the storage and the queries.

$$
\left(r_{1}, \ldots, r_{n}\right)=\left(d_{1} \cdot y_{1}, \ldots, d_{n} \cdot y_{n}\right)+e=\sum_{i=1}^{m} d^{i} \star y^{i}+e
$$

Then $\sum_{i=1}^{m} d^{i} \star y^{i}$ is again a codeword in an [$n, k+t-1]$ GRS code

PIR - coded storage \& collusion

: Use GRS codes for the storage and the queries.

$$
\left(r_{1}, \ldots, r_{n}\right)=\left(d_{1} \cdot y_{1}, \ldots, d_{n} \cdot y_{n}\right)+e=\sum_{i=1}^{m} d^{i} \star y^{i}+e .
$$

Then $\sum_{i=1}^{m} d^{i} \star y^{i}$ is again a codeword in an [$n, k+t-1$] GRS code
: Hence we can add up to $n-k-t+1$ 'errors' via e that we can correct.
:- We therefore achieve a rate of $\frac{n-k-t+1}{n}$, whenever this is positive.

Capacity

:- The capacity for the coded, colluding case has been a long standing problem.

[^10]
Capacity

:- The capacity for the coded, colluding case has been a long standing problem.
:- A recent paper ${ }^{6}$ 'solves' this by only considering schemes that are 'symbol separated' or 'strongly linear'.
:- This covers a lot of schemes in the literature and especially the ones presented here, and they are indeed capacity achieving under these restrictions.

[^11]
Byzantine and Non-Responsive

:- Up till now we have considered honest but curious servers.
:- But what if some servers are slow / fail to respond or introduce errors into their responses.

Byzantine and Non-Responsive

:- Up till now we have considered honest but curious servers.
:- But what if some servers are slow / fail to respond or introduce errors into their responses.
:- The previous scheme uses the codes erasure correction capability to retrieve the data.

$$
\begin{aligned}
& \quad\left(r_{1}, \ldots, r_{n}\right)=\left(d_{1} \cdot y_{1}, \ldots, d_{n} \cdot y_{n}\right)+e= \\
& \left(d_{1} \cdot y_{1}, \ldots, d_{t+k-1} \cdot y_{t+k-1}, d_{t+k} \cdot y_{t+k}+e_{t+k}, \ldots, d_{n} \cdot y_{n}+e_{n}\right)
\end{aligned}
$$

Byzantine and Non-Responsive

:- Up till now we have considered honest but curious servers.
:- But what if some servers are slow / fail to respond or introduce errors into their responses.
:- The previous scheme uses the codes erasure correction capability to retrieve the data.

$$
\begin{aligned}
& \quad\left(r_{1}, \ldots, r_{n}\right)=\left(d_{1} \cdot y_{1}, \ldots, d_{n} \cdot y_{n}\right)+e= \\
& \left(d_{1} \cdot y_{1}, \ldots, d_{t+k-1} \cdot y_{t+k-1}, d_{t+k} \cdot y_{t+k}+e_{t+k}, \ldots, d_{n} \cdot y_{n}+e_{n}\right) \\
& \left(d_{1} \cdot y_{1}, \ldots, d_{t+k-1} \cdot y_{t+k-1}, d_{t|+|k| y| H|/|/ H| A| t k}, \ldots, d_{n} \cdot y_{n}+e_{n}+\underline{b_{n}}\right)
\end{aligned}
$$

:- If an entry with an 'error' is lost, that information is lost. If it is altered by an additional error then we will receive a wrong symbol.

Polynomial Scheme

- Assumptions $\leq r$ non-responsive servers, $\leq b$ byzantine servers.
F- For simplicity assume $k=n-k-t-r-2 b+1$. (This is not necessary but avoids some complications)

	polynomial	code
files	$f(z)$	$C=\operatorname{GRS}[n, k]$
query $j \neq i$	$g(z)$	$D=\operatorname{GRS}[n, t]$
response $j \neq i$ $f(z) g(z)$ response $j=i$ $f(z) g(z)$		

Polynomial Scheme

- Assumptions $\leq r$ non-responsive servers, $\leq b$ byzantine servers.
F- For simplicity assume $k=n-k-t-r-2 b+1$. (This is not necessary but avoids some complications)

	polynomial	code
files	$f(z)$	$C=\operatorname{GRS}[n, k]$
query $j \neq i$	$g(z)$	$D=\operatorname{GRS}[n, t]$
response $j \neq i$	$f(z) g(z)$	$C \star D=\operatorname{GRS}[n, k+t-1]$
response $j=i$	$f(z) g(z)$	GRS $[n, n-r-2 b]$

Polynomial Scheme

- Assumptions $\leq r$ non-responsive servers, $\leq b$ byzantine servers.
F- For simplicity assume $k=n-k-t-r-2 b+1$. (This is not necessary but avoids some complications)

	polynomial	code
files	$f(z)$	$C=\operatorname{GRS}[n, k]$
query $j \neq i$	$g(z)$	$D=\operatorname{GRS}[n, t]$
query $j=i$	$g(z)+z^{k+t-1}$	CGRS $[n, k+t]$
response $j \neq i$	$f(z) g(z)$	$C \star D=\operatorname{GRS}[n, k+t-1]$
response $j=i$	$f(z) g(z)+z^{k+t-1} f^{i}(z)$	GRS $[n, n-r-2 b]$

Polynomial scheme

Polynomial scheme

Computation

Linear Functions

:- In the simple scheme, we only want to hide the index i. Hence about $\log _{2}(m)$ bits of information. (Assuming every request is equally likely)
:- But we use $u \sim U\left(\mathbb{F}_{q}^{m}\right)$ as a key, which needs $m \log _{2}(q)$ bits of randomness.

Linear Functions

:- This is because our scheme can do more! We could hide any request for a linear combination $\sum \ell_{i} x_{i}$ of the files.

$$
r_{2}-r_{1}=\langle x, u+\ell\rangle-\langle x, u\rangle=\langle x, \ell\rangle=\sum \ell_{i} x_{i}
$$

Matrix Multiplication

:- The next step is to utilize helper nodes in order to perform computations for a user.
:- The standard example is the mulitplication of two big matrices A, B.
:- These matrices might contain sensitive information and we do not want the helpers to learn anything about the contents of A and B.

$$
\left(\begin{array}{ccc}
- & A_{1} & - \\
\vdots & \\
- & A_{n} & -
\end{array}\right)\left(\begin{array}{ccc}
\mid & & \mid \\
B_{1} & \ldots & B_{m} \\
\mid & & \mid
\end{array}\right)=\left(\begin{array}{ccc}
A_{1} B_{1} & \cdots & A_{1} B_{m} \\
\vdots & \ddots & \vdots \\
A_{n} B_{1} & \cdots & A_{n} B_{m}
\end{array}\right)
$$

:- Hide the contents of A and B through secret sharing.

$$
\begin{array}{r}
f(z):=A_{1} z^{\alpha_{1}}+\cdots+A_{n}^{\alpha_{n}}+R(z) \\
g(z):=B_{1} z^{\beta_{1}}+\cdots+B_{m}^{\beta_{m}}+S(z)
\end{array}
$$

:- Send each server the evaluations $f\left(z_{i}\right)$ and $g\left(z_{i}\right)$ and ask them to compute their product.
:" If we have enough evaluations of $f g$ we can recover its coefficients via interpolation.

$$
\begin{aligned}
& f(z):=A_{1} z^{\alpha_{1}}+\cdots+A_{n} z^{\alpha_{n}}+R(z) \\
& g(z):=B_{1} z^{\beta_{1}}+\cdots+B_{m} z^{\beta_{m}}+S(z)
\end{aligned}
$$

:- Assume we do not care about privacy for a minute, i.e., $R(z)$ and $S(z)$ are zero.
: The term $A_{a} B_{b}$ will appear in the coefficient of $z^{\alpha_{a}+\beta_{b}}$ in the product $f(z) g(z)$.

$$
\begin{aligned}
& f(z):=A_{1} z^{\alpha_{1}}+\cdots+A_{n} z^{\alpha_{n}}+R(z) \\
& g(z):=B_{1} z^{\beta_{1}}+\cdots+B_{m} z^{\beta_{m}}+S(z)
\end{aligned}
$$

:- Assume we do not care about privacy for a minute, i.e., $R(z)$ and $S(z)$ are zero.
:- The term $A_{a} B_{b}$ will appear in the coefficient of $z^{\alpha_{a}+\beta_{b}}$ in the product $f(z) g(z)$.

	β_{1}	β_{2}	β_{3}
α_{1}	$\alpha_{1}+\beta_{1}$	$\alpha_{1}+\beta_{2}$	$\alpha_{1}+\beta_{3}$
α_{2}	$\alpha_{2}+\beta_{1}$	$\alpha_{2}+\beta_{2}$	$\alpha_{2}+\beta_{3}$
α_{3}	$\alpha_{3}+\beta_{1}$	$\alpha_{3}+\beta_{2}$	$\alpha_{3}+\beta_{3}$

$$
\begin{aligned}
& f(z):=A_{1} z^{\alpha_{1}}+\cdots+A_{n} z^{\alpha_{n}}+R(z) \\
& g(z):=B_{1} z^{\beta_{1}}+\cdots+B_{m} z^{\beta_{m}}+S(z)
\end{aligned}
$$

:- Assume we do not care about privacy for a minute, i.e., $R(z)$ and $S(z)$ are zero.
:The term $A_{a} B_{b}$ will appear in the coefficient of $z^{\alpha_{a}+\beta_{b}}$ in the product $f(z) g(z)$.

	0	β_{2}	β_{3}
0	0		
1	1		
2	2		

$$
\begin{aligned}
& f(z):=A_{1} z^{\alpha_{1}}+\cdots+A_{n} z^{\alpha_{n}}+R(z) \\
& g(z):=B_{1} z^{\beta_{1}}+\cdots+B_{m} z^{\beta_{m}}+S(z)
\end{aligned}
$$

:- Assume we do not care about privacy for a minute, i.e., $R(z)$ and $S(z)$ are zero.
:The term $A_{a} B_{b}$ will appear in the coefficient of $z^{\alpha_{a}+\beta_{b}}$ in the product $f(z) g(z)$.

	0	3	β_{3}
0	0	3	
1	1	4	
2	2	5	

$$
\begin{aligned}
& f(z):=A_{1} z^{\alpha_{1}}+\cdots+A_{n} z^{\alpha_{n}}+R(z) \\
& g(z):=B_{1} z^{\beta_{1}}+\cdots+B_{m} z^{\beta_{m}}+S(z)
\end{aligned}
$$

:- Assume we do not care about privacy for a minute, i.e., $R(z)$ and $S(z)$ are zero.
:- The term $A_{a} B_{b}$ will appear in the coefficient of $z^{\alpha_{a}+\beta_{b}}$ in the product $f(z) g(z)$.

	0	3	6
0	0	3	6
1	1	4	7
2	2	5	8

We need $N=9$ evaluations.

CASP D'Oliveira, El Rouayheb, Karpuk, Heinlein

:- Now we add randomness.

	0	3	6	
0	0	3	6	
1	1	4	7	
2	2	5	8	
9	9	12	15	

$N=16 ?$
:- Now we add randomness.

	0	3	6	
0	0	3	6	
1	1	4	7	
2	2	5	8	
9	9	12	15	

Actually, there are only 12 unknowns, and we only need 12 evaluations.

CASP D'Oliveira, El Rouayheb, Karpuk, Heinlein

:- Now we add randomness.

	0	3	6	9
0	0	3	6	9
1	1	4	7	10
2	2	5	8	11
9	9	12	15	18

$N=15$
:- Now we add randomness.

	0	3	6	9	10
0	0	3	6	9	10
1	1	4	7	10	11
2	2	5	8	11	12
9	9	12	15	18	13
10	10	13	16	19	20

$N=18$
:- Now we add randomness.

	0	3	6	9	10	11
0	0	3	6	9	10	11
1	1	4	7	10	11	12
2	2	5	8	11	12	13
9	9	12	15	18	19	20
10	10	13	16	19	20	21
11	11	14	17	20	21	22

$N=23$
: Can we improve on this?
:- Now we add randomness.

	0	3	6	9	10	11
0	0	3	6	9	10	11
1	1	4	7	10	11	12
2	2	5	8	11	12	13
9	9	12	15	18	19	20
10	10	13	16	19	20	21
12	12	15	18	21	22	23

$N=22$
:- The coefficients 14 and 17 are missing.

Splitting into Blocks

Let $A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32}\end{array}\right]$, and $B=\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right]$. Then the blocks of their product are given by the sums

$$
(A B)_{i k}=\sum_{j} A_{i j} B_{j k} .
$$

Splitting into Blocks

\therefore Let $A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32}\end{array}\right]$, and $B=\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right]$. Then the blocks of their product are given by the sums

$$
(A B)_{i k}=\sum_{j} A_{i j} B_{j k} .
$$

:- We can realize this as coefficients of a polynomial as well. Let

$$
\begin{aligned}
f(z) & :=A_{i 1}+A_{i 2} z \\
g(z) & :=B_{2 k}+B_{1 k} z, \text { then } \\
f(z) g(z) & :=\cdots+\left(A_{i 1} B_{1 k}+A_{i 2} B_{2 k}\right) z+\cdots
\end{aligned}
$$

Secure Generalized PolyDot ${ }^{7}$

:- An example with up to 2 colluding servers.

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22} \\
A_{31} & A_{32}
\end{array}\right] \\
& B=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]
\end{aligned}
$$

		B_{21}	B_{11}	B_{22}	B_{12}	S_{1}	S_{2}
		0	1	8	9	14	15
A_{11}	0	0	1	8	9	14	15
A_{12}	1	1	2	9	10	15	16
A_{21}	2	2	3	10	11	16	17
A_{22}	3	3	4	11	12	17	18
A_{31}	4	4	5	12	13	18	19
A_{32}	5	5	6	13	14	19	20
R_{1}	6	6	7	14	15	20	21
R_{2}	7	7	8	15	16	21	22

:- Note that e.g. the coefficient of degree 5 is given by $A_{31} B_{11}+A_{32} B_{21}=(A B)_{31}$.

[^12]
Ongoing Work

:- Find PIR schemes that do not fall under the restriction of being 'strongly linear' and exceed the rate of previous schemes.
: Find improved sets of exponents for the secure generalized PolyDot construction.
:- Expand secure distributed computation to matrices over small fields.
:- Expand secure distributed computation to other functions.

Thank You!

[^0]: ${ }^{2}$ Hua Sun, Syed A. Jafar, The Capacity of Private Information Retrieval, IEEE Transactions on Information Theory, Volume: 63, Issue: 7, July 2017)

[^1]: ${ }^{2}$ Hua Sun, Syed A. Jafar, The Capacity of Private Information Retrieval, IEEE Transactions on Information Theory, Volume: 63, Issue: 7, July 2017)

[^2]: ${ }^{3}$ Karim Banawan, Sennur Ulukus, The Capacity of Private Information Retrieval From Coded Databases, IEEE Transactions on Information Theory, Volume: 64, Issue: 3, March 2018

[^3]: ${ }^{4}$ Hua Sun, Syed A. Jafar, The capacity of private information retrieval with colluding databases, 2016 IEEE Global Conference on Signal and Information Processing

[^4]: ${ }^{5} \mathrm{H}$. Randriambololona, An upper bound of Singleton type for componentwise products of linear codes, IEEE Transactions on Information Theory vol 59., 2013

[^5]: ${ }^{5} \mathrm{H}$. Randriambololona, An upper bound of Singleton type for componentwise products of linear codes, IEEE Transactions on Information infheory ${ }^{\text {Pvolw 59., } 2013}$

[^6]: ${ }^{5} \mathrm{H}$. Randriambololona, An upper bound of Singleton type for componentwise products of linear codes, IEEE Transactions on Information

[^7]: ${ }^{5} \mathrm{H}$. Randriambololona, An upper bound of Singleton type for componentwise products of linear codes, IEEE Transactions on Information

[^8]: ${ }^{5} \mathrm{H}$. Randriambololona, An upper bound of Singleton type for componentwise products of linear codes, IEEE Transactions on Information

[^9]: ${ }^{5} \mathrm{H}$. Randriambololona, An upper bound of Singleton type for componentwise products of linear codes, IEEE Transactions on Information

[^10]: ${ }^{6}$ Lukas Holzbaur, Ragnar Freij-Hollanti, Jie Li, Camilla Hollanti, Towards the Capacity of Private Information Retrieval from Coded and Colluding

[^11]: ${ }^{6}$ Lukas Holzbaur, Ragnar Freij-Hollanti, Jie Li, Camilla Hollanti, Towards the Capacity of Private Information Retrieval from Coded and Colluding

[^12]: ${ }^{7}$ M. Aliasgari, O. Simeone and J. Kliewer, Distributed and Private Coded Matrix Computation with Flexible Communication Load, 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France

