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Message / Information e of ’size’ |e|.
Key k of size |k | ≥ |e|.

Encryption: c := e + k
Decryption: e = c − k

Information theoretically secure.
But requires a key that is at least as big as the
message.

The advantage is that an eavesdropper needs to have
the ciphertext c AND the key k .
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Server 2

x

Server 1

x

u
= q1

u + ei

= q2

〈x,u + ei〉
= r2

〈x,u〉
= r1

1.) The user wants file xi . Draws u ∼ U(Fm
q ) and forms

queries q1 = u and q2 = u + ei .

2.) The servers respond with rj := 〈x ,qj〉.
3.) The user calculates r2 − r1 = 〈x ,u + ei〉 − 〈x ,u〉 = xi .
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Server 1

x

u
= q1

u + ei

= q2

〈x,u + ei〉
= r2

〈x,u〉
= r1

Rate
We measure rate as the size of the requested file over the size
of all downloads, R = |xi |∑

|rj |
. E.g. the rate in the example is

R = 1
2
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x x . . . x

If all n servers contain the full database X we can
download n − 1 files simultaneously.
This gives us a rate of R = 1− 1

n
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Capacity for m files replicated on n servers 2

C =
1− 1

n

1−
(1

n
)m

2Hua Sun, Syed A. Jafar, The Capacity of Private Information Retrieval,
IEEE Transactions on Information Theory, Volume: 63, Issue: 7, July 2017 )
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2Hua Sun, Syed A. Jafar, The Capacity of Private Information Retrieval,
IEEE Transactions on Information Theory, Volume: 63, Issue: 7, July 2017 )
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Replicating all files across all servers is rather
wasteful.
To save space a storage code C is employed.

Not coding across files enables easy addition or
removal of files.
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y1 y2
. . . yn

If the storage is coded, contents from two different
servers no longer cancel out.
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Let u ∼ U(Fm
q ).

Define the n queries as qj = u for all servers j . Then
rj = 〈qj , yj〉 = 〈u, yj〉.

The vector

(r1, . . . , rn) = (u.y1, . . . ,u.yn) = uT [y1 · · · yn] =
m∑

i=1

uiy i

is a linear combination of the codewords in the
storage system, and therefore itself a codeword in C.

Define the queries as qj = u for all servers but one,
here the last, and let qn = u + ei
The vector (r1, . . . , rn) is a linear combination of the
codewords in the storage system, plus one ’error’ in
the last coordinate

(r1, . . . , rn) = (u.y1, . . . ,u.yn+y i
n) =

m∑
i=1

uiy i+(0, . . . ,0, y i
n)

We only need k coordinates of a codeword to
uniquely determine it. Hence we can add up to n − k
such ’errors’.
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We receive n − k blocks of information, when
downloading n blocks total.

Rate for PIR from MDS coded storage
R = n−k

n

We compare to the capacity

Capacity for PIR from coded storage 3

C =
1− k

n

1−( k
n)

m
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downloading n blocks total.

Rate for PIR from MDS coded storage
R = n−k

n

We compare to the capacity

Capacity for PIR from coded storage 3

C =
1− k

n

1−( k
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m

3Karim Banawan, Sennur Ulukus, The Capacity of Private Information
Retrieval From Coded Databases, IEEE Transactions on Information Theory,
Volume: 64, Issue: 3, March 2018
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2 4 6 8 10 12 14 16

number of files

0.3
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R
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Capacity n=10 ,k=7
Rate n=5, k=3
Rate n=8, k=5
Rate n=10, k=7
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x x . . . x

In the replicated storage scenario, each query is
masked with the same random vector.
If two of them exchange their queries, they can
unmask the request.
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We want to design a scheme that remains secure,
even if t < n of the servers combine their queries.
We use secret sharing to design these queries.

Shamir Secret Sharing
Let (αi) be a list of n pairwise different elements of Fq. Let
u0, . . . ,ut−1∼ U(Fq), and et our information.

(u0, . . . ,ut−1,et) ∈ Fk
q

↓
f (z) = u0 + · · ·+ ut−1z t−1 + etz t 7→ (f (α1), . . . , f (αn))

Any subset of t shares si , reveals no information about et .

We use a slightly altered version for our scheme.
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The scheme is dual to the coded storage scheme.
Instead of the files, our queries are encoded with an
[n, t ] MDS code D.
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n
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Query 1 Query n. . .

+E

The responses now again take the form,

(r1, . . . , rn) = (d1.x , . . . ,dn.x) + e =
m∑

i=1

d ix i + e.

∑m
i=1 d ix i is a codeword in D
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We receive n − t blocks of information, when
downloading n blocks total.

Rate for PIR with t-collusion
R = n−t

n

We compare to the capacity expression for this
scenario

Capacity for PIR with t-collusion 4

C =
1− t

n

1−( t
n)

m
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scenario
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m

4Hua Sun, Syed A. Jafar, The capacity of private information retrieval with
colluding databases, 2016 IEEE Global Conference on Signal and
Information Processing
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Combining both schemes
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We combine both schemes, i.e., encode both the data
and the queries.
The responses then take a different form

(r1, . . . , rn) = (d1.y1, . . . ,dn.yn) + e

=
m∑

i=1

d i ? y i + e

where (c1, . . . , cn) ? (d1, . . . ,dn) := (c1d1, . . . , cndn) is
the Schur product of vectors.
Do these responses lie inside some code (plus some
errors) that we can easily describe?
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Schur Product
Let C and D be two linear codes of length n. Then we define
their product code as the span of all Schur products of
codewords in C with codewords in D.

C ? D := 〈{c ? d : c ∈ C,d ∈ D}〉
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Schur Product
Let C and D be two linear codes of length n. Then we define
their product code as the span of all Schur products of
codewords in C with codewords in D.

C ? D := 〈{c ? d : c ∈ C,d ∈ D}〉

The rate of our scheme will again depend on the
minimum distance of the response code.
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Schur Product
Let C and D be two linear codes of length n. Then we define
their product code as the span of all Schur products of
codewords in C with codewords in D.

C ? D := 〈{c ? d : c ∈ C,d ∈ D}〉

Product Singleton Bound5

dC?D − 1 ≤ max{0,n − kC − kD + 1}

5H. Randriambololona, An upper bound of Singleton type for
componentwise products of linear codes, IEEE Transactions on Information
Theory vol 59., 2013
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Product Singleton Bound5

dC?D − 1 ≤ max{0,n − kC − kD + 1}

Equality is achieved in a handful of cases only

C or D are the repetition code.

Then we have no collusion or no coding.

C = D⊥.

Then we get a rate 1
n scheme.

C and D are generalized Reed-Solomon (GRS) codes
on the same evaluation set.

This allows for a flexible schemes with varied
parameters.

5H. Randriambololona, An upper bound of Singleton type for
componentwise products of linear codes, IEEE Transactions on Information
Theory vol 59., 2013
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PIR - coded storage & collusion
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Use GRS codes for the storage and the queries.

(r1, . . . , rn) = (d1.y1, . . . ,dn.yn) + e

=
m∑

i=1

d i ? y i + e

.

Then
∑m

i=1 d i ? y i is again a codeword in an
[n, k + t − 1] GRS code
Hence we can add up to n − k − t + 1 ’errors’ via e
that we can correct.
We therefore achieve a rate of n−k−t+1

n , whenever this
is positive.
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The capacity for the coded, colluding case has been a
long standing problem.

A recent paper6 ’solves’ this by only considering
schemes that are ’symbol separated’ or ’strongly
linear’.
This covers a lot of schemes in the literature and
especially the ones presented here, and they are
indeed capacity achieving under these restrictions.

6Lukas Holzbaur, Ragnar Freij-Hollanti, Jie Li, Camilla Hollanti, Towards
the Capacity of Private Information Retrieval from Coded and Colluding
Servers, arXiv:1903.12552.
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Up till now we have considered honest but curious
servers.
But what if some servers are slow / fail to respond or
introduce errors into their responses.

The previous scheme uses the codes erasure
correction capability to retrieve the data.

(r1, . . . , rn) = (d1.y1, . . . ,dn.yn) + e =

(d1.y1, . . . ,dt+k−1.yt+k−1,dt+k .yt+k+et+k , . . . ,dn.yn+en)

(d1.y1, . . . ,dt+k−1.yt+k−1,dt+k .yt+k + et+k/////////////////// , . . . ,dn.yn+en+bn)

If an entry with an ’error’ is lost, that information is
lost. If it is altered by an additional error then we will
receive a wrong symbol.
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Assumptions ≤ r non-responsive servers,
≤ b byzantine servers.
For simplicity assume k = n − k − t − r − 2b + 1.
(This is not necessary but avoids some complications)

polynomial code

files f (z) C=GRS [n, k]
query j 6= i g(z) D=GRS [n, t ]

query j = i g(z) + zk+t−1 ⊂GRS [n, k + t ]

response j 6= i f (z)g(z) C ? D=GRS [n, k + t − 1]
response j = i f (z)g(z)

+ zk+t−1f i(z) GRS [n,n − r − 2b]
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Server 2

x

Server 1

x

u
= q1

u + ei

= q2

〈x,u + ei〉
= r2

〈x,u〉
= r1

In the simple scheme, we only want to hide the index
i. Hence about log2(m) bits of information. (Assuming
every request is equally likely)
But we use u ∼ U(Fm

q ) as a key, which needs
m log2(q) bits of randomness.
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Server 2

x

Server 1

x

u
= q1

u + ei

= q2

〈x,u + ei〉
= r2

〈x,u〉
= r1

This is because our scheme can do more! We could
hide any request for a linear combination

∑
`ixi of the

files.

r2 − r1 = 〈x ,u + `〉 − 〈x ,u〉 = 〈x , `〉 =
∑

`ixi
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The next step is to utilize helper nodes in order to
perform computations for a user.
The standard example is the mulitplication of two big
matrices A,B.
These matrices might contain sensitive information
and we do not want the helpers to learn anything
about the contents of A and B.
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− A1 −
...

− An −




| |

B1 . . . Bm

| |


 =

A1B1 · · · A1Bm
... . . . ...

AnB1 · · · AnBm




Hide the contents of A and B through secret sharing.

f (z) := A1zα1 + · · ·+ Aαn
n + R(z)

g(z) := B1zβ1 + · · ·+ Bβm
m + S(z)

Send each server the evaluations f (zi) and g(zi) and
ask them to compute their product.
If we have enough evaluations of fg we can recover its
coefficients via interpolation.
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f (z) := A1zα1 + · · ·+ Anzαn + R(z)
g(z) := B1zβ1 + · · ·+ Bmzβm + S(z)

Assume we do not care about privacy for a minute,
i.e., R(z) and S(z) are zero.
The term AaBb will appear in the coefficient of zαa+βb

in the product f (z)g(z).
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β1 β2 β3

α1 α1 + β1 α1 + β2 α1 + β3
α2 α2 + β1 α2 + β2 α2 + β3
α3 α3 + β1 α3 + β2 α3 + β3
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The term AaBb will appear in the coefficient of zαa+βb

in the product f (z)g(z).

0 β2 β3

0 0
1 1
2 2
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f (z) := A1zα1 + · · ·+ Anzαn + R(z)
g(z) := B1zβ1 + · · ·+ Bmzβm + S(z)

Assume we do not care about privacy for a minute,
i.e., R(z) and S(z) are zero.
The term AaBb will appear in the coefficient of zαa+βb

in the product f (z)g(z).

0 3 β3

0 0 3
1 1 4
2 2 5
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f (z) := A1zα1 + · · ·+ Anzαn + R(z)
g(z) := B1zβ1 + · · ·+ Bmzβm + S(z)

Assume we do not care about privacy for a minute,
i.e., R(z) and S(z) are zero.
The term AaBb will appear in the coefficient of zαa+βb

in the product f (z)g(z).

0 3 6

0 0 3 6
1 1 4 7
2 2 5 8

We need N = 9 evaluations.
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Now we add randomness.

0 3 6

0 0 3 6
1 1 4 7
2 2 5 8

9 9 12 15

N = 16?
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Now we add randomness.

0 3 6

0 0 3 6
1 1 4 7
2 2 5 8

9 9 12 15

Actually, there are only 12 unknowns, and we only need 12
evaluations.
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Now we add randomness.

0 3 6 9

0 0 3 6 9
1 1 4 7 10
2 2 5 8 11

9 9 12 15 18

N = 15
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Now we add randomness.

0 3 6 9 10

0 0 3 6 9 10
1 1 4 7 10 11
2 2 5 8 11 12

9 9 12 15 18 13
10 10 13 16 19 20

N = 18
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Now we add randomness.

0 3 6 9 10 11

0 0 3 6 9 10 11
1 1 4 7 10 11 12
2 2 5 8 11 12 13

9 9 12 15 18 19 20
10 10 13 16 19 20 21
11 11 14 17 20 21 22

N = 23
Can we improve on this?
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Now we add randomness.

0 3 6 9 10 11

0 0 3 6 9 10 11
1 1 4 7 10 11 12
2 2 5 8 11 12 13

9 9 12 15 18 19 20
10 10 13 16 19 20 21
12 12 15 18 21 22 23

N = 22

The coefficients 14 and 17 are missing.
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Let A =

A11 A12
A21 A22
A31 A32

 , and B =

[
B11 B12
B21 B22

]
. Then the

blocks of their product are given by the sums

(AB)ik =
∑

j

AijBjk .

We can realize this as coefficients of a polynomial as
well. Let

f (z) := Ai1 + Ai2z
g(z) := B2k + B1kz, then

f (z)g(z) := · · ·+ (Ai1B1k + Ai2B2k)z + · · ·
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An example with up to 2 colluding servers.

A =

A11 A12
A21 A22
A31 A32


B =

[
B11 B12
B21 B22

]

B21 B11 B22 B12 S1 S2

0 1 8 9 14 15

A11 0 0 1 8 9 14 15
A12 1 1 2 9 10 15 16
A21 2 2 3 10 11 16 17
A22 3 3 4 11 12 17 18
A31 4 4 5 12 13 18 19
A32 5 5 6 13 14 19 20
R1 6 6 7 14 15 20 21
R2 7 7 8 15 16 21 22

Note that e.g. the coefficient of degree 5 is given by
A31B11 + A32B21 = (AB)31.

7M. Aliasgari, O. Simeone and J. Kliewer, Distributed and Private Coded
Matrix Computation with Flexible Communication Load, 2019 IEEE
International Symposium on Information Theory (ISIT), Paris, France



Ongoing Work
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Find PIR schemes that do not fall under the restriction
of being ’strongly linear’ and exceed the rate of
previous schemes.
Find improved sets of exponents for the secure
generalized PolyDot construction.
Expand secure distributed computation to matrices
over small fields.
Expand secure distributed computation to other
functions.
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Thank You!
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