
Learning-based approach for
designing error-correcting codes

Shan LU
Gifu University

第９回 誤り訂正符号のワークショップ

２０２０年９月２日～９月３日
＠オンライン開催 1

Noisy-Channel Coding Theorem

Given a noisy channel with channel capacity C,
for arbitrary small 𝜖𝜖 > 0, if information transmitted rate 𝑅𝑅 < 𝐶𝐶 and code
length n is sufficiently large,
there exists an [n, k] code of rate 𝑘𝑘/𝑛𝑛 ≥ 𝑅𝑅 with error probability 𝑝𝑝

𝑝𝑝 ≤ 𝜖𝜖.

Transmitter Noisy
Channel Receiver

Noisy-Channel Coding Theorem

2

https://en.wikipedia.org/wiki/Channel_capacity

The model of coding system

Encoder
𝑓𝑓𝑛𝑛

Noisy
Channel

Decoder
𝑔𝑔𝑛𝑛

message codeword

3

Traditional error-correcting codes (linear codes)
• Generator Matrix G

• Parity-Check Matrix

G: generator matrix
w: message vector

x: codeword

Short code (design Generator Matrix or Parity-Check Matrix)
Hamming Distance: block codes using finite field algebra

Such as: Hamming codes, Golay codes, RM codes, BCH codes, RS codes, etc.
Free distance: convolutional codes by increasing memory order/selecting polynomials

Such as: convolutional code/ Turbo code
Long code: design the property for code ensemble, choose one code from code ensemble.

• Fixed design of error-correcting codes

(If failed to transmit, ARQ (Automatic repeat-request) is used.) 4

Flexible design of error-correcting codes

ACK/NACK

• HARQ:(Hybrid Automatic repeat-request)
• Rateless code
• Rate-compatibility code

Encoder
𝑓𝑓𝑛𝑛

Noisy
Channel

Decoder
𝑔𝑔𝑛𝑛

message codeword

5

Learning design of error-correcting code

• AI techniques: machine learning/ deep learning/Reinforcement learning
• AI techniques is a natural choice for learning the encoding and decoding

functions due to their ability to perform universal function approximation.

• How: Neural network + optimization algorithm
(ニューラルネットワーク + 最適化アルゴリズム)

• fixed design of error-correcting codes
• Supervised learning: Learning with a labeled training set

• flexible design of error-correcting codes
• Reinforcement learning: Learn to act based on feedback/reward

6

Design of error-correcting codes

Fixed design Flexible design
traditional

design
Differential evolution

algorithm
Rateless code

Rate-compatibility code

Design by
learning

Supervised learning Reinforcement learning

7

Traditional design of error-correcting code

Fixed design Flexible design
Differential evolution algorithm

差分進化法

(Example of LDPC)

Rateless code
Rate-compatibility code

8

LDPC code：Low-Density Parity-Check code

Design a code with coderate 𝑹𝑹 = 𝒌𝒌/𝒏𝒏 is to find a parity check matrix 𝑯𝑯 ∈ {𝟎𝟎,𝟏𝟏}(𝒏𝒏−𝒌𝒌)×𝒏𝒏

Find a sparse H
or

a sparse Tanner
graph

Sparse parity check matrix

sparse Tanner graph

9

Idea: fixed design of code ensemble
• Long code: design the code ensemble
• Code ensemble: a set of code with same property.
Example of property: convolutional/Turbo code : weight enumerator

LDPC code : degree/ degree distribution/girth

Idea of design code ensemble:
① Random choose one parameter of code ensemble.
② Estimate the average performance of code ensemble.
③ Iteratively update the parameter of the code ensemble until

obtain the excellent performance.
④ Pick a code at random from the ensemble and expect

excellent performance.

Constructor:
code ensemble

Estimator:
average

performance

10

Example: Regular (𝑑𝑑𝑐𝑐,𝑑𝑑𝑑𝑑)-LDPC Code Ensemble

11

protograph

Tanner graph
(a specific code)

(code ensemble: codes set with
all of possible permutations)

Fixed
permutation

permutations codelength：n = 3Q

code rate：R = 1/3

copy

Q = 3

permute

Example: Matrix presentation of regular LDPC Code Ensemble

12

(code ensemble: all of
possible permutations)

Base matrix

copy

Q = 3

Fixed
permutation

permute

codelength：n = 3Q

code rate：R = 1/3

Tanner graph
(a specific code)

Example: Differential Evolution Algorithm
(差分進化法)

① Initiation: Given a degree (𝑑𝑑𝑐𝑐,𝑑𝑑𝑑𝑑) of LDPC code.

② Estimate the average performance (Decoding
Threshold: in terms of the noise standard deviation)
by density evolution(密度進化)/EXIT chart over a
code ensemble (𝑑𝑑𝑐𝑐,𝑑𝑑𝑑𝑑)

③ Update the degree (𝑑𝑑𝑐𝑐,𝑑𝑑𝑑𝑑) , find the parameter of
code ensemble with excellent performance.

④ Pick a code at random from the ensemble and expect
excellent performance.

Constructor
(degree (𝑑𝑑𝑐𝑐, 𝑑𝑑𝑑𝑑))

Evaluator
(Decoding
Threshold)

13

Idea: Flexible Design of error-correcting code (HARQ)

ACK/NACK

Encoder
𝑓𝑓𝑛𝑛

Noisy
Channel

message codeword Decoder
𝑔𝑔𝑛𝑛

HARQ

14

Transmitter

Receiver

ACK： acknowledgement 肯定応答
NACK: negative-acknowledgement, 否定応答

Flexible design: Rateless code/Rate-compatibility code

Parity check matrix of
Rate-compatibility code

Encoder
𝑓𝑓𝑛𝑛

Noisy
Channel

message codeword Decoder
𝑔𝑔𝑛𝑛

Rateless code (fountain code)

ACK/NACK

15

Learning-based approach of
designing error-correcting codes

Fixed design:
Supervised Learning (Autoencoder)

16

Supervised Learning Basic: Training and Testing
• Training stage: (Learning with a labeled training set: input data, desired results)

• Testing stage:

Input Data Learning
system

Output
Data

New
Input Data

Learning
system

Output/
Testing

Neural Network(NN)
ニューラルネットワーク

17

Neural Network

18

The operation in the neural network
Weights

Activation
functions

𝑾𝑾𝟏𝟏, 𝒃𝒃𝟏𝟏 𝑾𝑾𝟐𝟐 , 𝒃𝒃𝟐𝟐 𝑾𝑾𝟑𝟑, 𝒃𝒃𝟑𝟑

𝒉𝒉𝟏𝟏 𝒉𝒉𝟐𝟐

Input
x

Iteration of “Linear” and “non-linear” operation

𝒉𝒉𝟑𝟑

𝑾𝑾1x +b1 𝒉𝒉𝟏𝟏(𝑾𝑾1x+b1)x 𝑾𝑾2𝒉𝒉𝟏𝟏(𝑾𝑾1x+b1) +b2 … …
Input Linear

Transform
Non-Linear
Transform

Linear
Transform

𝒉𝒉𝟐𝟐(𝑾𝑾2𝒉𝒉𝟏𝟏(𝑾𝑾1x+b1) +b2)
Non-Linear
Transform

Example: activation functions (活性化関数)
(non-linear)

ReLU(Rectified Linear Unit):

Sigmoid function:

19

How Neural Network Learning: Backpropagation
誤差逆伝播法

• Forward Pass:

Input Data Neural
Network Prediction

• Backward Pass: Neural
Network

Measure of
Error

(loss function)
Update weights

by SGD
to decrease loss function

quantifies gap between
prediction and
desired results.

Constructor Evaluator

SGD: stochastic gradient descent
確率的勾配降下法

Loss function
For regression:
Mean Squared Error

For classification:
Cross Entropy Loss

20

Autoencoders of error-correcting codes system

Encoder
𝑓𝑓𝑛𝑛

Noisy
Channel

Decoder
𝑔𝑔𝑛𝑛

message codeword

Tim O’Shea, and Jakob Hoydis, “An Introduction to Deep Learning for the Physical Layer”, IEEE Transactions on Cognitive Communications and Networking, Vol.
3-4, PP. 563-575, Dec. 2017.

Encoder

Decoder

energy constraint

• An autoencoder is a neural network that is trained to attempt to copy its input to its output.

21

𝒙𝒙 ≤ 𝑛𝑛

Autoencoders of error-correcting codes system (training process)

① Loss function:

② Update weights by SGD:

Constructor (autoencoder)

Noisy
channel

NN Encoder NN Decoder

EvaluatorUpdated weights

22

BLER vs Eb/N0 for the autoencoder and baseline communication schemes

Training Eb/N0 = 7dB

Tim O’Shea, and Jakob Hoydis, “An Introduction to Deep Learning for the Physical Layer”, IEEE Transactions on Cognitive Communications and Networking, Vol.
3-4, PP. 563-575, Dec. 2017.

23

Autoencoder for NN Error-Correcting Systems

https://mlc.committees.comsoc.org/research-library/

Advantages:
• Possible to design non-linear code with good performance

(suitable for coding and decoding for multi-access channel)

• Simper design for construction
(suitable for designing decoding algorithm of the code)

Disadvantage:
• Difficult to design long code

(try to design the parameters of the code ensemble)

24

Further design of NN for error-correcting systems
Decoding algorithm
• E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein and Y. Be’ery, “Deep learning methods for improved decoding of linear codes,” IEEE

Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp.119-131, February 2018.

• L. Lugosch and W. J. Gross, “Neural offset min-sum decoding,” in Proc. IEEE International Symposium on Information Theory (ISIT), June 2017.

• F. Liang, C. Shen and F. Wu, “An iterative BP-CNN architecture for channel decoding,” in IEEE Journal of Selected Topics in Signal Processing, vol. 12,
no. 1, pp. 144-159, February 2018.

• W. Xu, X. You, C. Zhang and Y. Be’ery, “Polar decoding on sparse graphs with deep learning,” in Proc. IEEE Asilomar Conference on Signal, System,
Computers, October 2018.

Coding and decoding for multi-access channel
• L. WEI, S. Lu, H. Kamabe, J. Cheng, “User Identification and Channel Estimation by DNN-Based Decoder on Multiple-Access Channel,” to be presented

in 2020 IEEE Global Communications Conference.

• S. Takabe, Y. Yamauchi, and T. Wadayama, “Trainable projected gradient detector for sparsely spread code division multiple access,” preprint
arXiv:1910.10336, 2019.

• J. Lin, S. Feng, Z. Yang, Y. Zhang and Y. Zhang, “A novel deep neural network-based approach for sparse code multiple access,” preprint
arXiv:1906.03169, 2019.

• I. Abidi, M. Hizem, I. Ahriz, M. Cherif and R. Bouallegue, “Convolutional neural networks for blind decoding in sparse code multiple
access,” in Proc.International Wireless Communications & Mobile Computing Conference (IWCMC), 2019.

Joint design of source-channel coding
• Y. M. Saidutta, A. Abdi and F. Fekri, “M to 1 joint source-channel coding of Gaussian sources via dichotomy of the input space based on deep learning,” in

Proc. Data Compression Conference (DCC), 2019.

https://mlc.committees.comsoc.org/research-library/
25

Learning-based approach of designing
error-correcting codes

Reinforcement learning (強化学習)
(Flexible design of error-correcting codes)

Instead of trying to produce a program to simulate the adult mind, why not rather
try to produce one which simulates the child’s ?

——Alan Turing 26

Reinforcement Learning
• Task

• Learn how to behave successfully to achieve a goal while interacting with
an external environment

• How to design?
Reinforcement Learning problems can be modeled by a so-called

Markov Decision Process (MDP) (マルコフ決定プロセス)

• Examples
• Game playing: player knows whether it win or lose, but not know how to move at each step
• Control: a traffic system can measure the delay of cars, but not know how to decrease it.
• Error-correcting codes: a system knows how to measure the performance of the codes, but not know

how to construct it at each system .

27

Markov Decision Process (MDP) model
• State: s / S: state set
• Action: 𝑎𝑎 / A: actions space

Agent
• Policy(方針): 𝜋𝜋(𝑎𝑎|𝑠𝑠)

function to map states 𝑠𝑠 to actions 𝑎𝑎

Environment
• 𝑷𝑷𝒂𝒂(𝒔𝒔′|𝒔𝒔,𝒂𝒂)

probability of action 𝑎𝑎 in state 𝑠𝑠 at time 𝑡𝑡
to state 𝑠𝑠′ at time 𝑡𝑡 + 1.

• 𝑟𝑟(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′)
immediate reward(即時報酬): feedback after

transitioning from state 𝑠𝑠 to state 𝑠𝑠𝑠, triggered by action 𝑎𝑎.

Environment
𝑷𝑷𝒂𝒂(𝒔𝒔′|𝒔𝒔,𝒂𝒂)
𝑟𝑟(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′)

Agent
𝜋𝜋(𝑎𝑎|𝑠𝑠)

action a
reward r

new state s’

Neural network

28

Return (long-run reward長期報酬)

MDP model to reinforcement learning

• How to define the rewards 𝑟𝑟(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) and return
• How to change the policy based on experience
• How to change transitions 𝑝𝑝(𝑠𝑠′|𝑠𝑠, 𝑎𝑎)

The agent task:
To find an optimal policy 𝜋𝜋(𝑎𝑎|𝑠𝑠) that maximize Return (long-run reward)

𝒔𝒔 1

𝑎𝑎 2 𝑎𝑎 3 𝑎𝑎 4 𝑎𝑎 5𝑎𝑎 1

𝒔𝒔 2 𝒔𝒔 3 𝒔𝒔 4S: state set

A: actions space

𝜋𝜋(𝑎𝑎|𝑠𝑠)

29

Example of RL for designing error-correcting code

Feedback

Encoder
𝑓𝑓𝑛𝑛

Noisy
Channel

message codeword Decoder
𝑔𝑔𝑛𝑛

Environment
(Estimator)
𝑷𝑷𝒂𝒂(𝒔𝒔′|𝒔𝒔,𝒂𝒂)
𝑟𝑟(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′)

Agent
(constructor)

𝜋𝜋(𝑎𝑎|𝑠𝑠)
action a

reward r
new state S’

Neural network

• S (state set): SNR (by step)
• A: actions space: parity check matrix H

(“1”’s positions of P in H=[IK , P])

• Reward 𝑟𝑟(𝑠𝑠, 𝑎𝑎, 𝑠𝑠′) : BER
• Return:

• 𝜋𝜋(𝑎𝑎|𝑠𝑠): depend parity check matrix by NN
• 𝑝𝑝(𝑠𝑠′|𝑠𝑠, 𝑎𝑎) : depend SNR by NN
• How to change the 𝑝𝑝(𝑠𝑠′|𝑠𝑠, 𝑎𝑎)/𝜋𝜋(𝑎𝑎|𝑠𝑠):

update based on SGD… 30

System model of error-correcting codes with feedback

Encoder
𝑓𝑓𝑛𝑛

Noisy
Channel

Decoder
𝑔𝑔𝑛𝑛

message codeword

energy constraint

31

Error-correcting codes RL model (training)

Encoder
𝑓𝑓𝑛𝑛

Noisy
Channel

Decoder
𝑔𝑔𝑛𝑛

codeword

energy constraint

𝑟𝑟(𝑠𝑠, 𝑎𝑎, 𝑠𝑠’):
immediate reward

Learning 𝜋𝜋(𝑎𝑎|𝑠𝑠)

32

p(SNR1)
p(SNR2)

...

Learning 𝑝𝑝(𝑠𝑠’|𝑠𝑠, 𝑎𝑎)

p(H1)
p(H2)
...

Hi

Compute
Loss

Supervised Learning

Unsupervised Learning system also can be constructed.

Error-correcting codes after training

SNR1

H 2 H 3 H4 H 5H 1

S: SNR set

A: Code space

𝜋𝜋(𝑎𝑎|𝑠𝑠)

SNR 2 SNR3 SNR4

33

Extension of RL for error-correcting systems

Advantages:
• Possible to design code corresponding state of channel information(SCI)

Polar codes: (such as frozen positions of polar codes)
• L. Huang, H. Zhang, R. Li, Y. Ge and J. Wang, “Reinforcement learning for nested polar code construction,” preprint

arXiv:1904.07511, 2019
• F. Carpi, C. Häger, M. Martalò, R. Raheli and H. D. Pfister, “Reinforcement learning for channel coding: Learned bit-flipping

decoding,” in Proc. 57th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2019.
MIMO system (state of channel information)
• Y.-S. Jeon, J. Li, N. Tavangaran, and H. V. Poor, “Data-Aided Channel Estimator for MIMO Systems via Reinforcement

Learning,” preprint arXiv:2003.10084, 2020.
• Y.-S. Jeon, N. Lee and H. V. Poor, “Robust data detection for MIMO systems with one-bit ADCs: A reinforcement learning

approach,” preprint arXiv:1903.12546, 2019.
• M. Goutay, F. Ait Aoudia and J. Hoydis, “Deep reinforcement learning autoencoder with noisy feedback,” preprint

arXiv:1810.05419, 2018.

Disadvantage:
• Difficult to design long code

34

Conclusion
fixed design flexible design

Traditional design Differential evolution
algorithm

Rateless code/
Rate-compatibility code

Design by learning
• perform universal function

approximation
• Automatic design

Supervised learning Reinforcement learning
(for feedback channel)

Constructor

Estimator

• Code design is a code property optimization problems.

35

Constructor: code/ code ensemble (G or NN)
Estimator: BER/threshold performance (G or NN)

	Learning-based approach for �designing error-correcting codes
	Noisy-Channel Coding Theorem
	The model of coding system
	Traditional error-correcting codes (linear codes)
	Flexible design of error-correcting codes
	Learning design of error-correcting code
	Design of error-correcting codes
	Traditional design of error-correcting code
	スライド番号 9
	Idea: fixed design of code ensemble
	Example: Regular (𝑑𝑐,𝑑𝑣)-LDPC Code Ensemble
	Example: Matrix presentation of regular LDPC Code Ensemble
	Example: Differential Evolution Algorithm�(差分進化法)
	Idea: Flexible Design of error-correcting code (HARQ)
	Flexible design: Rateless code/Rate-compatibility code
	Learning-based approach of designing error-correcting codes
	Supervised Learning Basic: Training and Testing
	Neural Network
	The operation in the neural network
	How Neural Network Learning: Backpropagation　　�　　　　　　　　　　　　　誤差逆伝播法
	Autoencoders of error-correcting codes system
	Autoencoders of error-correcting codes system (training process)
	BLER vs Eb/N0 for the autoencoder and baseline communication schemes
	Autoencoder for NN Error-Correcting Systems
	Further design of NN for error-correcting systems
	Learning-based approach of designing error-correcting codes��Reinforcement learning (強化学習)�(Flexible design of error-correcting codes)�
	Reinforcement Learning
	Markov Decision Process (MDP) model
	MDP model to reinforcement learning
	Example of RL for designing error-correcting code
	System model of error-correcting codes with feedback
	Error-correcting codes RL model (training)
	Error-correcting codes after training
	Extension of RL for error-correcting systems
	Conclusion

