
Lattices and Their Applications to Wireless
Communications

Brian M. Kurkoski
Japan Advanced Institute of Science and Technology

September 5, 2018
IT Ken

Morioka, Iwate, Japan

Contributors

�2

Fan ZhouMohammad Nur
Hasan

Siyu Chen

Lattices and Their Applications to Wireless Communications

Central question: How might lattices effectively be used in wireless
communication systems?

1. Lattice shaping is a practical way to gain 1.53 dB in SNR

2. Lattice-based physical layer network coding brings benefits of network coding to wireless communications

 3

How much is 1.53 dB?

330 mW 230 mW

Factor of 1.4

Significant reduction in transmit power:
• Smartphone battery lasts longer, efficient base stations
• Typical smartphone battery is 10000 mW-hour

0 R1

R2

MAC  
Capacity
Region

From MAC to Wireless Networks

Outline of Semi-Tutorial

1. Introduction to Lattices

- Tutorial and background on lattices

2. Lattices from Construction D and D’

- Form lattices from binary codes

- Since binary codes are well understood, promising candidate for practical lattices

- Lattices based on quasi-cyclic LDPC codes

3. Nested Lattices Codes for the AWGN Channel

- Classify nested lattice codes. Lattices with inflated lattice decoding achieve capacity

- Convolutional code lattices with good shaping gain

4. Physical Layer Network Coding

- Compute-Forward: Network coding when wireless signals add over the air

- Two channels: Bidirectional relay channel and the multiple access relay channel (MARC)

 4

Lattice Definition

 5

Chapter 6

Lattices and Lattice Codes

6.1 Lattices and Their Properties

6.1.1 Lattice Definition

Definition 1 An n-dimensional lattice ⇤ is a discrete additive subgroup of Rn.

Since Rn is a vector space, and ⇤ is a subgroup, ⇤ is also vector subspace.
Accordingly, a lattice has the following properties.

• If lattice points x,y 2 ⇤, then x + y 2 ⇤. The linearity property can be
stated: if you could stand at any lattice point x, and look around, you
would see the same thing, if you were standing at any other point in the
lattice.

• The zero point is a lattice point.

• A lattice ⇤ is a set of infinite size. For example, since x 2 ⇤, then
x+ x+ · · ·+ x 2 ⇤.

• If x 2 ⇤ and a 2 Z is an integer, then a · x 2 ⇤.

To emphasize the point, ⇤ is group under vector addition. A lattice is also
a Euclidean-space code, of the type defined in Section ??.

Example 1 There are interesting 2-dimensional lattices, which are helpful for
illustrating concepts. Fig. 6.1 shows the n = 2 hexagonal lattice, called A2. It
is easy to verify the four properties above.

Since a lattice ⇤ is an n-dimensional subspace of Rn, this space can be
spanned by a set of n linearly independent basis vectors g1,g2, . . . ,gn

, where,

g =

2

6664

g1
g2
...
g
n

3

7775
(6.1)

5

Intuition A lattice is an error-correcting code defined on the real numbers
(rather than a finite field)

Lattice Definition

 6

Chapter 6

Lattices and Lattice Codes

6.1 Lattices and Their Properties

6.1.1 Lattice Definition

Definition 1 An n-dimensional lattice ⇤ is a discrete additive subgroup of Rn.

Since Rn is a vector space, and ⇤ is a subgroup, ⇤ is also vector subspace.
Accordingly, a lattice has the following properties.

• If lattice points x,y 2 ⇤, then x + y 2 ⇤. The linearity property can be
stated: if you could stand at any lattice point x, and look around, you
would see the same thing, if you were standing at any other point in the
lattice.

• The zero point is a lattice point.

• A lattice ⇤ is a set of infinite size. For example, since x 2 ⇤, then
x+ x+ · · ·+ x 2 ⇤.

• If x 2 ⇤ and a 2 Z is an integer, then a · x 2 ⇤.

To emphasize the point, ⇤ is group under vector addition. A lattice is also
a Euclidean-space code, of the type defined in Section ??.

Example 1 There are interesting 2-dimensional lattices, which are helpful for
illustrating concepts. Fig. 6.1 shows the n = 2 hexagonal lattice, called A2. It
is easy to verify the four properties above.

Since a lattice ⇤ is an n-dimensional subspace of Rn, this space can be
spanned by a set of n linearly independent basis vectors g1,g2, . . . ,gn

, where,

g =

2

6664

g1
g2
...
g
n

3

7775
(6.1)

5

Vector addition in Rn
:

x = [x1 , . . . , xn]

y = [y1 , . . . , yn]

x+ y = [x1 + y1, . . . , xn + yn]

Group properties:

• has identity

• associative

• commutative

• closure

Vector addition in Rn
:

x = [x1 , . . . , xn]

y = [y1 , . . . , yn]

x+ y = [x1 + y1, . . . , xn + yn]

Group properties:

• has identity

• has inverse

• associative

• closure

• (commutative)

Lattices in R2

0
identity

0

Lattices in R2

a

Lattices in R2

a

0

a + a
a + a + a

…

closure

Lattices in R2

a

0
–a inverse

a + a
a + a + a

…

Lattices in R2

ab

0

 12

Lattices in R2

ab

0

6.1. LATTICES AND THEIR PROPERTIES 5

and the integer vector b is:

b =

2

6664

b1

b2
...
bn

3

7775
. (6.5)

Generally, the n vectors g1, . . . ,gn are linearly independent, so G is full rank.
Example 6.2 Continuing Example 6.1, the hexagonal lattice has a generator
matrix:

G =

"p
3
2 0

1
2 1

#
(6.6)

Hasan asked, what does “uncoded” mean in the case of the Zn lattices?
Javier asked, I know that LDPC matrices can be rank deficient, or do not need
to be full rank. Why do these matrices need to be full rank?

The simplest lattice is the integer lattice, Zn. In one dimension, this is just
the integers . . . ,�2,�1, 0, 1, 2, 3, In n dimensions, the generator matrix is
the identity matrix.

6.1.2 Fundamental Region and Lattice Determinant

A fundamental region is a subset of Rn that which repeated, will cover the whole
space with one lattice point for each copy.
Definition 6.2 A fundamental region V ⇢ Rn is a shape that, if shifted by
each lattice point, will exactly cover the whole real space Rn.

In particular, each point should be in only one fundamental region:

Rn
=

[

x2⇤

V + x and (6.7)

{V + x} \ {V + y} = ?, (6.8)

for any x 6= y.

The fundamental region for a lattice is not unique, but there are several
important ones.
Definition 6.3 For x 2 ⇤, the Voronoi region V(x) is is the region of space
closer to x than to any other point in ⇤:

V(x) = {u 2 Rn | ||u� x|| < ||u� y||,y 2 ⇤ \ x} (6.9)

The notation V means the Voronoi region V(0), because it is particularly
important. The Voronoi region does not depend on the generator matrix.

Another fundamental region is the parallelotope2, which is defined with re-
spect to a basis G.

2
Sometimes called a parallelepiped

Lattice Generator Matrix

 13
g1 g2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

1.5

2

g1
g2

0

Example
The n-by-n generator matrix G is:

G =

2

66664

���
���

���
g1 g2 · · · gn���

���
���

3

77775

so that:

x = G · b

where b 2 Zn
is a vector of integers.

Fundamental Region

 14

Voronoi region

parallelotope
(hyper-) rectangle

A fundamental region F ⇢ Rn
is a shape that, if shifted by each

lattice point, will exactly cover the whole real space.

Volume of F is V (⇤) = | detG|, and is a constant.

-3 -2 -1 0 1 2 3

-1.5

-1

-0.5

0

0.5

1

1.5

 15

-3 -2 -1 0 1 2 3

-1.5

-1

-0.5

0

0.5

1

1.5

 16

-3 -2 -1 0 1 2 3

-1.5

-1

-0.5

0

0.5

1

1.5

 17

-3 -2 -1 0 1 2 3

-1.5

-1

-0.5

0

0.5

1

1.5

 19

 20

M C Escher  
マウリッツ・エッシャー

Images removed due to copyright restrictions
see images at:

http://bit.ly/2NlnyzX

http://bit.ly/2NlnyzX

Quantization and Modulo

�21

0

Q(y)

y

�22

0

Quantization and Modulo

Voronoi region
at origin

�23

0

x

Q(x)
x – Q(x)

Quantization and Modulo

Construction D and Construction D’

Construction D and D’ are methods to construct lattices from binary codes

Many binary codes have lattice counterpart through Construction D or D’:

• Barnes-Wall lattice (from Reed-Muller code)

• LDPC code lattices

• Polar code lattices

• Turbo code lattices

Construction D: Uses binary code’s generator matrix

Construction D’: Uses binary code’s parity-check matrix

Because binary codes are very well studied, Construction D/D’ are the most promising
method to construct practical lattices

 24

A Tale of Construction D

Chapter 1 Early Days
Once upon a time, Barnes and Sloane made lattices from binary codes, which
they called “Construction D” [CJM 1985]

Soon after that, Forney created the Code Formula construction, to show
special lattices can be written as coset codes [IT 1988]

Chapter 2 Glory Days
Many years pass. Invigorated by Zamir’s lattices, Forney shows that the Code
Formula Construction achieves capacity & gives multilevel decoding [IT 2000].

Excited by Code Formula decoding, several researchers create new codes from
LDPC, turbo and & codes (2006, 2011, 2013). Multilevel decoding is excellent.

All seems well in the kingdom, until…

Chapter 3 Dark Days
It is a dark time for Construction D/D’. Kositwattanarerk and Oggier show that
Construction D/D’ and the Code Formula Construction agree only in some
special cases [DCC 2014].

Code Formula Construction is not a lattice, generally.

In some papers, LDPC “lattices”, turbo “lattices”, polar “lattices” are valid
structures, but multilevel decoding is their Code Formula version.

 27

Actually, you showed that.

How to decode Construction D is known.

Those previous “lattices” were decoded
as Code Formula, not lattices. How to

decode Construction D/D’ lattices?

Krishna Narayanan,  
Texas A&M Univ

Not clear yet how to decode Construction D’.

How to Decode Construction D?

(at that time)

Chapter 3 Dark Days
It is a dark time for Construction D/D’. Kositwattanarerk and Oggier show that
Construction D/D’ and the Code Formula Construction agree only in some
special cases [DCC 2014].

Code Formula Construction is not a lattice, generally.

LDPC “lattices”, turbo “lattices”, polar “lattices” are valid structures, but
multilevel decoding is their Code Formula version.

Chapter 4 A New Beginning
Vem, Huang, Narayanan, Pfister make a decoder for Construction D (but not for
Construction D’) [ISIT 2014]

Finally a decoder for Construction D’! Branco da Silva and Silva show how to
decode lattice based on binary LDPC codes. [ISIT 2018]

And the lattices lived happily ever after.

Construction D’: LDPC-like Example

 29

LDPC check matrix 9 × 12 for two nested codes

1.2. CONSTRUCTION D AND D’ LATTICES 9

Example 1.4. The parity check matrices for two codes used in Example 1.1
are:

eH
0

=

1 1 0
1 1 1

�
and eH

1

=
⇥
1 1 1

⇤
(1.45)

Then a check matrix for the corresponding Construction D’ lattice is given by:

H =

2

4
1 0 0
1

2

1

2

0
1

4

1

4

1

4

3

5 (1.46)

The correponding generator matrix G = H�1 is

G =

2

4
1 0 0

�1 2 0
0 �2 4

3

5
. (1.47)

This lattice generated by Construction D’ is distinct from the lattice generated
by Construction D, given in (??). Note also that the lattice depends on the
choice of generator vectors as well, since there are many possible bases for the
codes Ci.

Example 1.5. The following example uses a binary LDPC-like code to con-
struct a lattice. Let C

0

have a parity-check matrix:

eH
0

=

2

6666666666664

0 1 0 1 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0
1 0 0 0 0 1 0 1 0 0 0 0
0 1 0 1 0 0 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1

3

7777777777775 C
1

C
0

and let code C
1

have a parity-check matrix eH
1

using the bottom 3 rows of H
0

.
This matrix is based on modified array codes. Then the a = 2 Construction D
lattice has check matrix:

H =

2

6666666666666666664

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 1/2 0 1/2 0 0 0 0 0 0 0 0
0 0 1/2 0 1/2 0 0 0 0 0 0 0

1/2 0 0 0 0 1/2 0 0 0 0 0 0
0 0 1/2 0 1/2 0 1/2 0 0 0 0 0

1/2 0 0 0 0 1/2 0 1/2 0 0 0 0
0 1/2 0 1/2 0 0 0 0 1/2 0 0 0

1/4 0 0 1/4 0 0 1/4 0 0 1/4 0 0
0 1/4 0 0 1/4 0 0 1/4 0 0 1/4 0
0 0 1/4 0 0 1/4 0 0 1/4 0 0 1/4

3

7777777777777777775

(1.48)

Construction D’: LDPC-like Example

 30

1.2. CONSTRUCTION D AND D’ LATTICES 9

Example 1.4. The parity check matrices for two codes used in Example 1.1
are:

eH
0

=

1 1 0
1 1 1

�
and eH

1

=
⇥
1 1 1

⇤
(1.45)

Then a check matrix for the corresponding Construction D’ lattice is given by:

H =

2

4
1 0 0
1

2

1

2

0
1

4

1

4

1

4

3

5 (1.46)

The correponding generator matrix G = H�1 is

G =

2

4
1 0 0

�1 2 0
0 �2 4

3

5
. (1.47)

This lattice generated by Construction D’ is distinct from the lattice generated
by Construction D, given in (??). Note also that the lattice depends on the
choice of generator vectors as well, since there are many possible bases for the
codes Ci.

Example 1.5. The following example uses a binary LDPC-like code to con-
struct a lattice. Let C

0

have a parity-check matrix:

eH
0

=

2

6666666666664

0 1 0 1 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0
1 0 0 0 0 1 0 1 0 0 0 0
0 1 0 1 0 0 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1

3

7777777777775 C
1

C
0

and let code C
1

have a parity-check matrix eH
1

using the bottom 3 rows of H
0

.
This matrix is based on modified array codes. Then the a = 2 Construction D
lattice has check matrix:

H =

2

6666666666666666664

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 1/2 0 1/2 0 0 0 0 0 0 0 0
0 0 1/2 0 1/2 0 0 0 0 0 0 0

1/2 0 0 0 0 1/2 0 0 0 0 0 0
0 0 1/2 0 1/2 0 1/2 0 0 0 0 0

1/2 0 0 0 0 1/2 0 1/2 0 0 0 0
0 1/2 0 1/2 0 0 0 0 1/2 0 0 0

1/4 0 0 1/4 0 0 1/4 0 0 1/4 0 0
0 1/4 0 0 1/4 0 0 1/4 0 0 1/4 0
0 0 1/4 0 0 1/4 0 0 1/4 0 0 1/4

3

7777777777777777775

(1.48)

1.2. CONSTRUCTION D AND D’ LATTICES 9

Example 1.4. The parity check matrices for two codes used in Example 1.1
are:

eH
0

=

1 1 0
1 1 1

�
and eH

1

=
⇥
1 1 1

⇤
(1.45)

Then a check matrix for the corresponding Construction D’ lattice is given by:

H =

2

4
1 0 0
1

2

1

2

0
1

4

1

4

1

4

3

5 (1.46)

The correponding generator matrix G = H�1 is

G =

2

4
1 0 0

�1 2 0
0 �2 4

3

5
. (1.47)

This lattice generated by Construction D’ is distinct from the lattice generated
by Construction D, given in (??). Note also that the lattice depends on the
choice of generator vectors as well, since there are many possible bases for the
codes Ci.

Example 1.5. The following example uses a binary LDPC-like code to con-
struct a lattice. Let C

0

have a parity-check matrix:

eH
0

=

2

6666666666664

0 1 0 1 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0
1 0 0 0 0 1 0 1 0 0 0 0
0 1 0 1 0 0 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1

3

7777777777775 C
1

C
0

and let code C
1

have a parity-check matrix eH
1

using the bottom 3 rows of H
0

.
This matrix is based on modified array codes. Then the a = 2 Construction D
lattice has check matrix:

H =

2

6666666666666666664

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 1/2 0 1/2 0 0 0 0 0 0 0 0
0 0 1/2 0 1/2 0 0 0 0 0 0 0

1/2 0 0 0 0 1/2 0 0 0 0 0 0
0 0 1/2 0 1/2 0 1/2 0 0 0 0 0

1/2 0 0 0 0 1/2 0 1/2 0 0 0 0
0 1/2 0 1/2 0 0 0 0 1/2 0 0 0

1/4 0 0 1/4 0 0 1/4 0 0 1/4 0 0
0 1/4 0 0 1/4 0 0 1/4 0 0 1/4 0
0 0 1/4 0 0 1/4 0 0 1/4 0 0 1/4

3

7777777777777777775

(1.48)

Lattice check matrix 12 × 12

Two Methods for LDPC Lattice Construction

 31

1.2. CONSTRUCTION D AND D’ LATTICES 9

Example 1.4. The parity check matrices for two codes used in Example 1.1
are:

eH
0

=

1 1 0
1 1 1

�
and eH

1

=
⇥
1 1 1

⇤
(1.45)

Then a check matrix for the corresponding Construction D’ lattice is given by:

H =

2

4
1 0 0
1

2

1

2

0
1

4

1

4

1

4

3

5 (1.46)

The correponding generator matrix G = H�1 is

G =

2

4
1 0 0

�1 2 0
0 �2 4

3

5
. (1.47)

This lattice generated by Construction D’ is distinct from the lattice generated
by Construction D, given in (??). Note also that the lattice depends on the
choice of generator vectors as well, since there are many possible bases for the
codes Ci.

Example 1.5. The following example uses a binary LDPC-like code to con-
struct a lattice. Let C

0

have a parity-check matrix:

eH
0

=

2

6666666666664

0 1 0 1 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0
1 0 0 0 0 1 0 1 0 0 0 0
0 1 0 1 0 0 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1

3

7777777777775 C
1

C
0

and let code C
1

have a parity-check matrix eH
1

using the bottom 3 rows of H
0

.
This matrix is based on modified array codes. Then the a = 2 Construction D
lattice has check matrix:

H =

2

6666666666666666664

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 1/2 0 1/2 0 0 0 0 0 0 0 0
0 0 1/2 0 1/2 0 0 0 0 0 0 0

1/2 0 0 0 0 1/2 0 0 0 0 0 0
0 0 1/2 0 1/2 0 1/2 0 0 0 0 0

1/2 0 0 0 0 1/2 0 1/2 0 0 0 0
0 1/2 0 1/2 0 0 0 0 1/2 0 0 0

1/4 0 0 1/4 0 0 1/4 0 0 1/4 0 0
0 1/4 0 0 1/4 0 0 1/4 0 0 1/4 0
0 0 1/4 0 0 1/4 0 0 1/4 0 0 1/4

3

7777777777777777775

(1.48)

Solution 1: Check node splitting Design code C0 such that linear combination of two rows
has no overlaps, and can be used to form rows of higher degree for code C1. Designed using
PEG algorithm and extensive simulations [Branco da Silva and Silva]

Solution 2: Minimum distance design Code C1 should have dmin = 4. Code C0 should
have dmin = 16. C1 is a product code of single-parity check codes. C0 is a quasi-cyclic LDPC
code from IEEE 802.16e with dmin ≈ 16 [Chen, K, Rosnes]

Problem: Both Code C0 and C1 should
have column weight 3. Code C0 should
have higher row weight than Code C1.
(assuming regular codes)

Error Rate for LDPC Code Lattices

 32

VNR (dB)
0.0 0.5 1.0 1.5 2.0 2.5

Bl
oc

k-
er

ro
r r

ate

10-5

10-4

10-3

10-2

10-1

100

QC-LDPC lattice, IEEE 802.16e
LDPC lattice, generalized D'
Polar lattice
Poltyrev-limit

Proposed QC-LPDC code lattices
loose about 0.1 dB w.r.t PEG

Minimum distance design rule is a
more systematic design approach
than PEG/simulations

QC-LDPC codes are widely used in
practice. If lattices are to be used
in practice, construction D’ with
QC-LDPC codes are a likely
candidate.

S. Chen, B. M. Kurkoski and E. Rosnes, “Construction D' lattices from quasi-cyclic low-density parity-check codes,” in 10th International Symposium on Turbo
Codes & Iterative Information Processing (ISTC'18), (Hong Kong, P. R. China), December 2018

Nested Lattice Codes 
(Voronoi Codes, Voronoi Constellations)

 33

4 CHAPTER 1. NESTED LATTICE CODES

nested lattice shaping
code with gain e�cient

group structure possible encoding isomorphic
self-similar

non-self similar
cubic

systematic encoding

A table that lists the various methods and the properties they posses. E�-
cient encoding, group, group isomorphism.

1.1 Nested Lattice Codes

1.1.1 Definition and Group Properties

Lattice codes were given in Definition ?? as the intersection of a lattice and a
shaping region. In nested lattice codes, the shaping region is the fundamental
region of some other lattice, usually the Voronoi region of that lattice.

Nested lattice codes are defined using using two lattices. The coding lattice
⇤c is used to give the lattice code its error-correcting properties. The shaping
lattice is ⇤s and a fundamental region F is the shaping region for a lattice code.
The coding lattice has a generator matrix Gc and corresponding check matrix
Hc. The shaping lattice ⇤s has a generator matrix Gs and corresponding check
matrix Hs.

Nested lattice codes require that ⇤s is a sublattice of ⇤c. If the generator
and check matrices are known, then there is a simple test for ⇤s ✓ ⇤c to hold.

Proposition 1. ⇤s ✓ ⇤c if and only if HcGs is a matrix of integers.

Proof Let Gsb 2 ⇤s. The point Gsb is a point in ⇤c if and only if HcGsb
is a vector of integers. For arbitrary b 2 Zn, this is true if and only if HcGs is
a matrix of integers.

A nested lattice code is formed by choosing the shaping region to be a
fundamental region F of a sublattice. Recall that there are many choices of a
fundamental region for a lattice, but only one Voronoi region. When the Voronoi
region is used as the shaping region, the code C will possess group properties,
and often as good shaping properties as well.

Definition 1.1. Let ⇤c and ⇤s be two lattices with ⇤s ✓ ⇤c. Let F be a
fundamental region for ⇤s. Then:

C = ⇤c \ F (1.1)

is a nested lattice code.

Instead of ⇤c, it is also possible to use a coset ⇤c + a, so that the lattice
code is

�
⇤c + a

�\F . This can reduce the average transmit power of the lattice
code.

⇤c is called the coding lattice, ⇤s is called the shaping lattice.

The code rate of a nested lattice code is:

R =

1

n
log

V (⇤s)

V (⇤c)
=

1

n
log

| det(Gs)|
| det(Gc)|

.

 34

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

Gs =

4 0
4 8

�
Gc =

 4
3

2
9

4
3

8
9

�
Example

⇤s ⇤c

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

Classification of Lattice Codes

Isomorphism is important for compute-and-forward.

Self-Similar 
Codes

Isomorphic Lattice Codes

Nested Lattice Codes

Lattice 
Codes Cubic Lattice

Codes

Self-Similar & Cubic Lattice Codes
Cubic Lattice Code

Shaping lattice is a cube 

❌ No shaping gain

✅ Group isomorphism

✅ Low encoding complexity

General Nested Lattice Code

Shaping lattice is sub lattice of
coding lattice

✅ Good shaping gain

❌ No gr. isomorphism (in general)

✅ Low encoding complexity

Self-Similar Lattice Code

Shaping lattice is scaled
version of coding lattice

✅ Good shaping gain

✅ Group isomorphism

❌ High encoding complexity

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10
-10

-8

-6

-4

-2

0

2

4

6

8

10

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8

-4

-3

-2

-1

0

1

2

3

4

5

6

7

8

9

Encoding and Indexing

 38

encode

Main result encoding and
indexing is possible if generator
matrices are both in triangular
form.

[00]

[01]

[02]

[03]

[10]

[11]

[12]

[13]

[20]

[21]

[22]

[23]

[30]

[31]

[32]

[33]

B. M. Kurkoski, “Encoding and indexing of lattice codes,” IEEE Transactions on Information Theory, vol. 64, pp. 6320-6332, September 2018.

index

information b

information b

Indexing is the inverse of encoding maps, code-

words x 2 C to information (indices) b.

An encoding function maps information (in-

dices) b to codewords x 2 C

Not decoding: there is no noise.

A Nested Lattice Code is a Group

 39

c1

c2

c1 + c2

• Lattice ⇤ is a group: a,b 2 ⇤) a+ b 2 ⇤

• ⇤s ✓ ⇤c. Thus ⇤s is a subgroup of ⇤c.

• The quotient group is ⇤c/⇤s, and is the set

of all cosets of ⇤s in ⇤c.

• Group operation. Let c1, c2 2 ⇤c/⇤s, then:

c1 � c2 = (c1 + c2) mod ⇤s

AWGN Channel Capacity

Gaussian codebook maximizes
capacity, uniform codebook

(QAM) cannot

Claude Shannon
father of information theory

Gaussian Codebook

Uniform Codebook

Capacity is:

R < C =

1

2

log(1 +

P

�2
)

Input power constraint P :

1

n
||x||2 P

Gaussian Codebook vs QAM (Uniform)

 41
Signal-to-Noise ratio (dB)

A
ch

ie
va

bl
e

R
at

es
/C

ap
ac

ity

bi
ts

/u
ni

t
tim

e

Ga
us

sia
n C

od
eb

oo
k

1.53 dB = 10 log10
⇡e

6 1.53 dB
8
>>>
>>>
>>>
>>>
>>>
<

>>>
>>>
>>>
>>>
>>>
:

U
ni

fo
rm

 C
od

eb
oo

k

http://www.wikiwand.com/en/

No special benefit to
using Gaussian
codebook at low
rates/low SNR

At high SNR, high
rates, using a
Gaussian codebook
(sphere-like) gain
1.53 dB

https://commons.wikimedia.org/wiki/File:QAM_Mutual_Information_in_AWGN.svg

Shaping Gain is Reduction of Transmit Power

 42

A spherical codebook has a
Gaussian input distribution, as n
to infinity.

The shaping gain of various
lattices is shown at the left

Proposed convolutional code
lattices have excellent
performance-complexity tradeoff
[ZK17]

[ZK17] F. Zhou and B. M. Kurkoski, “Shaping LDLC lattices using convolutional code lattices,” IEEE Communications Letters, pp. 730-733, April 2017.

4 10 20 36 60 90 130 200
 0.1

0.3

0.5

0.7

0.87
0.94

1.1

1.24

1.4

1.53

Sph
er e

b ou
nd

Asymp tot i c l im i t

BW 1 6 0.86 dB

E 8 0.65 dB

Lattic e d im ension n

S
h
a
p
in

g
g
a
in

(d
B
)

ν = 1
ν = 2
ν = 3
ν = 4
ν = 5
ν = 6
ν = 7
ν = 8
ν = 9
ν = 10
ν = 11
ν = 12
ν = 13

lattice dimension

sh
ap

in
g

ga
in

 (
dB

)

Memory length

conv
olut

iona
l co

de l
atti

ces

Lattice Code ML Decoding Achieves Capacity

Lattice decoding approaches:

• Maximum likelihood decoding achieves capacity C =

1
2 log(1 + P/�2

) [de

Buda. Urbanke and Rimoldi]. But this is not practical.

• Lattice decoding only achieves R < 1
2 log(P/�

2
) [Loeliger]. Practical, but

“lattice decoding” ignores the codebook boundaries.

• Lattice decoding with lattice inflation achieves C =

1
2 log(1+P/�2

) [Erez

and Zamir] Amazing!

ML Decoder
b
x

Lattice Codes with Lattice Decoding

Lattice decoding approaches:

• Maximum likelihood decoding achieves capacity C =

1
2 log(1 + P/�2

) [de

Buda. Urbanke and Rimoldi]. But this is not practical.

• Lattice decoding only achieves R < 1
2 log(P/�

2
) [Loeliger]. Practical, but

“lattice decoding” ignores the codebook boundaries.

• Lattice decoding with lattice inflation achieves C =

1
2 log(1+P/�2

) [Erez

and Zamir] Amazing!

Lattice  
Decoder

b
x

Lattice Codes with Inflated Lattice Decoding

Lattice decoding approaches:

• Maximum likelihood decoding achieves capacity C =

1
2 log(1 + P/�2

) [de

Buda. Urbanke and Rimoldi]. But this is not practical.

• Lattice decoding only achieves R < 1
2 log(P/�

2
) [Loeliger]. Practical, but

“lattice decoding” ignores the codebook boundaries.

• Lattice decoding with lattice inflation achieves C =

1
2 log(1+P/�2

) [Erez

and Zamir] Amazing!

Lattice  
Decoder

b
x

↵

Decoding Nested Lattice Codes

Lattice  
Decoder

b
x

↵
1

n
||x||2 P

↵ =

P

P + �2
MMSE coe�cient

“inflates” lattice by ↵�1

Intuition for Lattice Inflation

 47

n = 1
p1 = 0.5

Assume codeword c is on the surface of n-ball. Noise is added to get y
What is the probability pn that y is outside of the ball?

1-dim 
ball

x

0

p
P −4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

Variance = 10 N=500

0

p
P

p
�2

n = 2
p2 > 0.5

n = 3
p3 > p2 > 0.5

As n → ∞ the noise tends to be outside of the ball

Codebook for transmission

Lattice for decoding

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

Variance = 10 N=500

Codebook for transmission

Lattice for decoding

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

Variance = 10 N=500

Lattice “inflation” by

↵ =

P

P + �2

Shaping LDLC using E8 Lattice

 51

23.5 24 24.5 25 25.5 26 26.5

10
−5

10
−4

10
−3

10
−2

10
−1

Average SNR in dB

S
E

R

Hypercube shaping [7]

Nested lattice shaping |7]

Proposed shaping

Uniform input capacity

AWGN capacity

0.4 dB

0.65dB

Hypercube shaping
(QAM-like constellation)

Some competing algorithm

E8  
systematic shaping

Shannon  
capacity

Reduction in transmit power
by 0.65 dB. More reduction by
using more powerful lattices.

�52

relay

Routing vs. 
Network Coding

Capacity: max rate from source to destination

Routing

• Internal nodes only forward one incoming packet

• Capacity = 3/2

Network Coding

• Internal nodes perform linear operations

• Capacity = 2

Forwarding combinations of messages can increase capacity

matrix form…

Source has
messages w1w2w3

Destinations wants messages w1w2w3

Matrix Form Recovery of Messages

�53

w 1 w 1 w 2

relay

u 1,u 2

received messages desired messages

w, u, q in a field. Allow relay to multiply by q
2 received messages and 2 desired messages:

u1

u2

�
=

q11 q12
q21 q22

�

| {z }
Q

·

w1

w2

�

q11 q12
q21 q22

��1

·

u1

u2

�
=

w1

w2

�

Destination should receive sufficient linear
combinations such that Q is invertible

q11w1 � q12w2q21w1

PLNC = Physical Layer Network Coding

User 1

User M

User 2
Relay

Wireless multiple-access channel
Fading coefficient hi

h1 x1

h2 x2

hM xM

y = h1 x1 + … + hM xM

 + noise

�54

Addition occurs over the air

• Relay eliminates noise by decoding
• Relay does not need to separate inference
• Converted a noisy network into a noiseless
network

xrelay

= q1x1 � · · ·� qMxM

Bidirectional Relay Channel

�55

User 1

Relay

User 2
has x 1

wants x 2

has x 2

wants x 1

• Orthogonal: uses 4 time slots
• Network coding: uses 3 time slots
• Physical layer network coding (PLNC): 2 time slots

x 2x 1

Bidirectional Relay Channel

�56

User 1

Relay

User 2
has x 1

wants x 2

has x 2

wants x 1

• Orthogonal: uses 4 time slots
• Network coding: uses 3 time slots
• Physical layer network coding (PLNC): 2 time slots

x 2x 1

lattice
decode

Relay Using PLNC

x 1

x 2

lattice
modulo

x1 � x2

Bidirectional Relay Channel

�57

User 1

Relay

User 2
has x 1

wants x 2

has x 2

wants x 1

• Orthogonal: uses 4 time slots
• Network coding: uses 3 time slots
• Physical layer network coding (PLNC): 2 time slots

lattice
decode

Relay Using PLNC

x 1

x 2

lattice
modulo

x1 � x2

x1 � x2

Relay Using PLNC

�58

x1

x2 z

y

�59

z noise

x1⊕x2

x1+x2

What if channel coefficients are not integers?
Compute-and-Forward

In practice, fading coefficients h are
arbitrary values, not integers.

PLNC can still work. This is
“compute and forward”

 60

x U

w1

w2 x2

x1
zh1

h2

E1

E2

↵ y0
Q(·)

Lattice Decoder

q1w1 � q2w2

Finding a1, a2 is an optimization problem

y

0
= ↵h1x1 + ↵h2x2 + ↵z fading coe�cients h 2 R

y

0
= a1x1 + a2x2 + ze↵ integer approximation a 2 Z

Q(y

0
) = q1w1 � q2w2 conversion to finite field q,w 2 Fn

Compute-Forward for Multiple Access Relay Channel

 61

User 1

User 2

relay

Destination

MARC — Multiple Access Relay Channel
User 1 and User 2 each send one message to

Destination with the help of Relay

Existing Cooperation Protocols

s2 x2w2

s1 x1w1

r

Ar,Rr

d

Ad,Rd

ŵ1, ŵ2

xr

Phase 1
Phase 2

Destination: Ad = {a(1)d , ...,a(L)
d },

Rd = {R(a
(1)
d), ...,R(a

(L)
d)}

Relay: Ar = {a(1)r , ...,a(L)
r },

Rr = {R(a
(1)
r), ...,R(a

(L)
r)}

a

(1)
d and a

(1)
r : local optimal

coefficient vectors.

Naive cooperation protocol

Destination and relay choose their local optimal coefficient vectors (a(1)
d and

a(1)
r) independently.

May result in linear dependent coefficient vectors.

Full cooperation protocol

2

Destination sends feedback containing Ad,Rd (large amount of feedback).
Relay selects linearly independent afull

r and afull
d (global optimal).

2L. Wei and W. Chen, Compute-and-forward network coding design over multi-source

multi-relay channels, IEEE Trans. on Wireless Comm.,Sept. 2012.
Hasan & Kurkoski Cooperation Protocols for MARC-CF Cooperation Protocols 6 / 17

Naive application of CF to MARC
Relay and Destination independently choose coefficient vectors
destination gets two independent vectors

But Q may not be invertible, with significant probability.

Full cooperation protocol
Destination sends q vector to relay
Relay selects linearly independent q, to guarantee Q is full rank

q11 q12
q21 q22

��1

·

u1

u2

�
=

w1

w2

�

Compute-Forward for Multiple Access Relay Channel

 62

User 1

User 2

relay

Destination

MARC — Multiple Access Relay Channel
User 1 and User 2 each send one message to

Destination with the help of Relay

Existing Cooperation Protocols

s2 x2w2

s1 x1w1

r

Ar,Rr

d

Ad,Rd

ŵ1, ŵ2

xr

Phase 1
Phase 2

Destination: Ad = {a(1)d , ...,a(L)
d },

Rd = {R(a
(1)
d), ...,R(a

(L)
d)}

Relay: Ar = {a(1)r , ...,a(L)
r },

Rr = {R(a
(1)
r), ...,R(a

(L)
r)}

a

(1)
d and a

(1)
r : local optimal

coefficient vectors.

Naive cooperation protocol

Destination and relay choose their local optimal coefficient vectors (a(1)
d and

a(1)
r) independently.

May result in linear dependent coefficient vectors.

Full cooperation protocol

2

Destination sends feedback containing Ad,Rd (large amount of feedback).
Relay selects linearly independent afull

r and afull
d (global optimal).

2L. Wei and W. Chen, Compute-and-forward network coding design over multi-source

multi-relay channels, IEEE Trans. on Wireless Comm.,Sept. 2012.
Hasan & Kurkoski Cooperation Protocols for MARC-CF Cooperation Protocols 6 / 17

A list Ficke-Pohst algorithm finds L best rates:

R(a⇤) � R(a2) � · · · � R(aL)

and the corresponding coe�cient vectors:

a⇤,a2, . . . ,aL

The destination attempts to decode using the two best a’s

Proposal: Form Multiple Linear Combinations at Destination
1. Destination attempts to decode both u and u by forming linearly independent combinations. Relay does nothing.
2. If this fails, destination sends a* to relay. Relay chooses its best linearly independent combination. Using this, data

is transmitted from relay to destination.

Proposed Method has Lower Outage Probability

 63

20 25 30 35 40 45 50 55 60 65 70
10�7

10�6

10�5

10�4

10�3

10�2

10�1

100

0.02

Rc = 2 log(7) ⇡ 5.61
�sr = �sd + 8 dB
�rd = �sd + 8 dB
L = 3
Rank is evaluated over F7

Average S-D SNR, �sd, (dB)

O
u
ta
ge

P
ro
b
ab

il
it
y

Prop. cooperation
Full Cooperation
Naive cooperation

• Maximum diversity order of 2
(competing systems have diversity
order less than 2)

[HK17] M. N. Hasan and B. M. Kurkoski, “Practical Compute-and-Forward approaches for the multiple access relay channel,” IEEE ICC, (Paris, France), May 2017

100% increase in throughput

 64

20 25 30 35 40 45 50 55 60 65 70

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

E8/7E8 nested lattice code

Rc = 2 log(7) ⇡ 5.61
wm 2 F16

7

�sr = �sd + 8 dB

�rd = �sd + 8 dB

L = 3

Average S-D SNR, �sd, (dB)

N
e
t
w
o
r
k
T
h
r
o
u
g
h
p
u
t
(
m
s
g
.
/
t
r
a
n
s
.
)

Prop. cooperation

Full cooperation

Naive cooperation

100% improvement
network throughput

• Network throughput increases 100% [HK18]

[HK18] M. N. Hasan and B. M. Kurkoski, “Cooperation protocols for multiple access relay channel with compute-and-forward,” Submitted to IEEE Trans. Comm.

Conclusion

Central question: How might lattices effectively be used in wireless
communication systems?

Lattices with practical encoding and decoding are needed — Construction
D’ using QC-LDPC codes is a strong candidate

Lattices can provide shaping gain which is difficult otherwise —
Convolutional code lattices provide > 1.0 dB of shaping gain

Physical layer network coding provides significant throughput benefit —
lattices enable PLNC

 65

