Lattices and Their Applications to Wireless Communications

Brian M. Kurkoski Japan Advanced Institute of Science and Technology

IT Ken

北弦瑞科学技術大学院

September 5, 2018 Morioka, Iwate, Japan

Contributors

Mohammad Nur Hasan

Fan Zhou

Siyu Chen

Lattices and Their Applications to Wireless Communications

Central question: How might lattices effectively be used in wireless communication systems?

- 1. Lattice shaping is a practical way to gain 1.53 dB in SNR

How much is 1.53 dB?

Significant reduction in transmit power.

- Smartphone battery lasts longer, efficient base stations
- Typical smartphone battery is 10000 mW-hour

2. Lattice-based physical layer network coding brings benefits of network coding to wireless communications

From MAC to Wireless Networks

Outline of Semi-Tutorial

1. Introduction to Lattices

Tutorial and background on lattices

2. Lattices from Construction D and D'

- Form lattices from binary codes
- Since binary codes are well understood, promising candidate for practical lattices Lattices based on quasi-cyclic LDPC codes
- -

3. Nested Lattices Codes for the AWGN Channel

- Classify nested lattice codes. Lattices with inflated lattice decoding achieve capacity Convolutional code lattices with good shaping gain

4. Physical Layer Network Coding

- Compute-Forward: Network coding when wireless signals add over the air Two channels: Bidirectional relay channel and the multiple access relay channel (MARC)

Definition 1 An *n*-dimensional *lattice* Λ is a discrete additive subgroup of \mathbb{R}^n .

Intuition A lattice is an error-correcting code defined on the real numbers (rather than a finite field)

Lattice Definition

Definition 1 An *n*-dimensional *lattice* Λ is a discrete additive subgroup of \mathbb{R}^n .

Vector addition in \mathbb{R}^n :

$$\mathbf{x} = \begin{bmatrix} x_1 & \dots, x_n \end{bmatrix}$$
$$\mathbf{y} = \begin{bmatrix} y_1 & \dots, y_n \end{bmatrix}$$
$$\mathbf{x} + \mathbf{y} = \begin{bmatrix} x_1 + y_1, \dots, x_n + y_n \end{bmatrix}$$

Lattice Definition

Group properties:

- has identity
- has inverse
- associative
- closure
- (commutative)

Lattices in \mathbb{R}^2

identity

Lattices in \mathbb{R}^2

a

Lattice Generator Matrix

The *n*-by-n generator matrix G is:

so that:

 $\mathbf{x} = \mathbf{G} \cdot \mathbf{b}$

where $\mathbf{b} \in \mathbb{Z}^n$ is a vector of integers.

The Voronoi region of a lattice point x, is the space which is closer to **x** than to any other lattice point.

- parallelotope

A fundamental region $\mathcal{F} \subset \mathbb{R}^n$ is a shape that, if shifted by each lattice point, will exactly cover the whole real space. Volume of \mathcal{F} is $V(\Lambda) = |\det \mathbf{G}|$, and is a constant.

Images removed due to copyright restrictions see images at: http://bit.ly/2NlnyzX

M C Escher マウリッツ・エッシャー

Quantization and Modulo

Quantization and Modulo

Voronoi region at origin

Quantization and Modulo

Construction D and Construction D'

- Construction D and D' are methods to construct lattices from <u>binary codes</u> Many binary codes have lattice counterpart through Construction D or D': • Barnes-Wall lattice (from Reed-Muller code)
 - LDPC code lattices
 - Polar code lattices
 - Turbo code lattices

Construction D: Uses binary code's generator matrix

Construction D': Uses binary code's parity-check matrix

method to construct practical lattices

- Because binary codes are very well studied, Construction D/D' are the most promising

Chapter 1 Early Days

they called "Construction D" [CJM 1985] Soon after that, Forney created the Code Formula construction, to show special lattices can be written as coset codes [IT 1988]

Chapter 2 Glory Days

All seems well in the kingdom, until...

A Tale of Construction D

- Once upon a time, Barnes and Sloane made lattices from binary codes, which

Many years pass. Invigorated by Zamir's lattices, Forney shows that the Code Formula Construction achieves capacity & gives multilevel decoding [IT 2000]. Excited by Code Formula decoding, several researchers create new codes from LDPC, turbo and & codes (2006, 2011, 2013). Multilevel decoding is excellent.

Chapter 3 Dark Days

It is a dark time for Construction D/D'. Kositwattanarerk and Oggier show that Construction D/D' and the Code Formula Construction agree only in some special cases [DCC 2014].

Code Formula Construction is not a lattice, generally.

In some papers, LDPC "lattices", turbo "lattices", polar "lattices" are valid structures, but multilevel decoding is their Code Formula version.

How to Decode Construction D?

Krishna Narayanan, Texas A&M Univ

Those previous "lattices" were decoded as Code Formula, not lattices. How to decode Construction D/D' lattices?

How to decode Construction D is known.

Actually, you showed that.

Not clear yet how to decode Construction D'. (at that time)

Chapter 3 Dark Days

It is a dark time for Construction D/D'. Kositwattanarerk and Oggier show that Construction D/D' and the Code Formula Construction agree only in some special cases [DCC 2014].

Code Formula Construction is not a lattice, generally.

LDPC "lattices", turbo "lattices", polar "lattices" are valid structures, but multilevel decoding is their Code Formula version.

Chapter 4 A New Beginning

Vem, Huang, Narayanan, Pfister make a decoder for Construction D (but not for Construction D') [ISIT 2014]

Finally a decoder for Construction D'! Branco da Silva and Silva show how to decode lattice based on binary LDPC codes. [ISIT 2018]

And the lattices lived happily ever after.

Construction D': LDPC-like Example

LDPC check matrix 9×12 for two nested codes

Construction D': LDPC-like Example Lattice check matrix 12×12 $\mathbf{0}$ $\mathbf{0}$ $\mathbf{0}$ ()() $\left(\right)$ () $\mathbf{0}$ $\mathbf{0}$ $\left(\right)$ \mathbf{O} $\left(\right)$ $\left(\right)$ $^{1}/_{2}$ $^{1}/_{2}$ $\left(\right)$ $\mathbf{0}$ $\mathbf{0}$ $\left(\right)$ $^{1}/_{2}$ $^{1}/_{2}$ $^{1}/_{2}$ $^{1}/_{2}$ $\mathbf{H} =$ $\left(\right)$ $^{1}/_{2}$ $^{1}/_{2}$ $^{1}/_{2}$ \mathcal{C}_0 $^{1}/_{2}$ $^{1}/_{2}$ $^{1}/_{2}$ $\left(\right)$ \mathbf{O} $^{1}/_{2}$ $^{1}/_{2}$ $^{1}/_{2}$ $\left(\right)$ () $^{1}/_{4}$ $^{1}/_{4}$ $^{1}/_{4}$ $^{1}/_{4}$ $\mathbf{0}$ $^{1}/_{4}$ $^{1}/_{4}$ $^{1}/_{4}$ $^{1}/_{4}$

Two Methods for LDPC Lattice Construction

Solution 1: Check node splitting Design code C0 such that linear combination of two rows has no overlaps, and can be used to form rows of higher degree for code C1. Designed using PEG algorithm and extensive simulations [Branco da Silva and Silva]

Solution 2: Minimum distance design Code C1 should have dmin = 4. Code C0 should have dmin = 16. C1 is a product code of single-parity check codes. C0 is a quasi-cyclic LDPC code from IEEE 802.16e with dmin ≈ 16 [Chen, K, Rosnes]

Problem: Both Code C0 and C1 should have column weight 3. Code C0 should have higher row weight than Code C1. (assuming regular codes)

Error Rate for LDPC Code Lattices

Proposed QC-LPDC code lattices loose about 0.1 dB w.r.t PEG

Minimum distance design rule is a more systematic design approach than PEG/simulations

QC-LDPC codes are widely used in practice. If lattices are to be used in practice, construction D' with QC-LDPC codes are a likely candidate.

S. Chen, B. M. Kurkoski and E. Rosnes, "Construction D' lattices from quasi-cyclic low-density parity-check codes," in 10th International Symposium on Turbo Codes & Iterative Information Processing (ISTC'18), (Hong Kong, P. R. China), December 2018

Nested Lattice Codes (Voronoi Codes, Voronoi Constellations)

fundamental region for Λ_s . Then:

is a nested lattice code.

 $\Lambda_{\rm c}$ is called the coding lattice, $\Lambda_{\rm s}$ is called the shaping lattice. The code rate of a nested lattice code is:

$$R = \frac{1}{n} \log \frac{V(\Lambda_{\rm s})}{V(\Lambda_{\rm c})} = \frac{1}{n} \log \frac{|\det(\mathbf{G}_{\rm s})|}{|\det(\mathbf{G}_{\rm c})|}$$

Definition 1.1. Let Λ_c and Λ_s be two lattices with $\Lambda_s \subseteq \Lambda_c$. Let \mathcal{F} be a

 $\mathcal{C} = \Lambda_c \cap \mathcal{F}$

 $\mathbf{G}_{\mathrm{c}} = \begin{bmatrix} \frac{4}{3} & \frac{2}{9} \\ \frac{4}{3} & \frac{8}{9} \end{bmatrix}$

Classification of Lattice Codes

Self-Similar & Cubic Lattice Codes

Self-Similar Lattice Code

Shaping lattice is scaled version of coding lattice

- Good shaping gain
- Group isomorphism
- High encoding complexity

Shaping lattice is a cube

- Group isomorphism
- Low encoding complexity

General Nested Lattice Code

- Shaping lattice is sub lattice of coding lattice
- Good shaping gain $\mathbf{\nabla}$
- No gr. isomorphism (in general) X
- Low encoding complexity

Encoding and Indexing

words $\mathbf{x} \in \mathcal{C}$ to information (indices) **b**.

B. M. Kurkoski, "Encoding and indexing of lattice codes," IEEE Transactions on Information Theory, vol. 64, pp. 6320-6332, September 2018.

Main result encoding and indexing is possible if generator matrices are both in triangular form.

A Nested Lattice Code is a Group

- Lattice Λ is a group: $\mathbf{a}, \mathbf{b} \in \Lambda \Rightarrow \mathbf{a} + \mathbf{b} \in \Lambda$
- $\Lambda_{s} \subseteq \Lambda_{c}$. Thus Λ_{s} is a subgroup of Λ_{c} .
- The quotient group is Λ_c/Λ_s , and is the set of all cosets of Λ_s in Λ_c .
- Group operation. Let $\mathbf{c}_1, \mathbf{c}_2 \in \Lambda_c / \Lambda_s$, then:

 $\mathbf{c}_1 \oplus \mathbf{c}_2 = (\mathbf{c}_1 + \mathbf{c}_2) \bmod \Lambda_s$

AWGN Channel Capacity

Encoder $\mathbf{x} \in \mathcal{C}$

Input power constraint P: $\frac{1}{n} ||\mathbf{x}||^2 \le P$

Capacity is:

 $R < C = \frac{1}{2}\log(1 + \frac{P}{\sigma^2})$

Gaussian Codebook vs QAM (Uniform)

https://commons.wikimedia.org/wiki/File:QAM_Mutual_Information_in_AWGN.svg

At high SNR, high rates, using a Gaussian codebook (sphere-like) gain 1.53 dB

No special benefit to using Gaussian codebook at low rates/low SNR

Shaping Gain is Reduction of Transmit Power

[ZK17] F. Zhou and B. M. Kurkoski, "Shaping LDLC lattices using convolutional code lattices," IEEE Communications Letters, pp. 730-733, April 2017.

Lattice Code ML Decoding Achieves Capacity

Lattice decoding approaches:

• Maximum likelihood decoding achieves capacity $C = \frac{1}{2} \log(1 + P/\sigma^2)$ [de Buda. Urbanke and Rimoldi]. But this is not practical.

Lattice Codes with Lattice Decoding

Lattice decoding approaches:

- Buda. Urbanke and Rimoldi. But this is not practical.
- "lattice decoding" ignores the codebook boundaries.

• Maximum likelihood decoding achieves capacity $C = \frac{1}{2} \log(1 + P/\sigma^2)$ [de

• Lattice decoding only achieves $R < \frac{1}{2} \log(P/\sigma^2)$ [Loeliger]. Practical, but

Lattice Codes with Inflated Lattice Decoding

Lattice decoding approaches:

- Buda. Urbanke and Rimoldi. But this is not practical.
- "lattice decoding" ignores the codebook boundaries.
- and Zamir | Amazing!

• Maximum likelihood decoding achieves capacity $C = \frac{1}{2} \log(1 + P/\sigma^2)$ [de

• Lattice decoding only achieves $R < \frac{1}{2} \log(P/\sigma^2)$ [Loeliger]. Practical, but

• Lattice decoding with lattice inflation achieves $C = \frac{1}{2} \log(1 + P/\sigma^2)$ [Erez

Decoding Nested Lattice Codes

$\alpha = \frac{P}{P + \sigma^2}$ MMSE coefficient

"inflates" lattice by α^{-1}

Intuition for Lattice Inflation

Assume codeword \mathbf{c} is on the surface of *n*-ball. Noise is added to get \mathbf{y} What is the probability p_n that \mathbf{y} is outside of the ball?

As $n \to \infty$ the noise tends to be outside of the ball

Shaping LDLC using E8 Lattice

Routing vs. **Network Coding**

- Capacity: max rate from source to destination

 - Internal nodes only forward one incoming packet lacksquare
 - Capacity = 3/2
- Network Coding
 - Internal nodes perform linear operations lacksquare
 - Capacity = 2 \bullet

Forwarding combinations of messages can increase capacity

Matrix Form Recovery of Messages

w, u, q in a field. Allow relay to multiply by q

PLNC = Physical Layer Network Coding

Addition occurs over the air

Bidirectional Relay Channel

- Orthogonal: uses 4 time slots
- Network coding: uses 3 time slots
- Physical layer network coding (PLNC): 2 time slots

User 1 has \mathbf{x}_1 wants \mathbf{x}_2

User 2 has \mathbf{x}_2 wants \mathbf{x}_1

Bidirectional Relay Channel

- Orthogonal: uses 4 time slots
- Network coding: uses 3 time slots
- Physical layer network coding (PLNC): 2 time slots

 \mathbf{X}_1

User 1 has \mathbf{x}_1 wants \mathbf{x}_2

User 2 has \mathbf{x}_2 wants \mathbf{x}_1

 \mathbf{X}_2

Relay Using PLNC

Bidirectional Relay Channel

- Orthogonal: uses 4 time slots
- Network coding: uses 3 time slots
- Physical layer network coding (PLNC): 2 time slots

 \mathbf{X}_1

Relay Using PLNC

Relay Using PLNC

What if channel coefficients are not integers? **Compute-and-Forward**

 $\mathbf{y}' = \alpha h_1 \mathbf{x}_1 + \alpha h_2 \mathbf{x}_2 + \alpha \mathbf{z}$ $\mathbf{y}' = a_1 \mathbf{x}_1 + a_2 \mathbf{x}_2 + \mathbf{z}_{\text{eff}}$ $Q(\mathbf{y}') = q_1 \mathbf{w}_1 \oplus q_2 \mathbf{w}_2$

In practice, fading coefficients h are arbitrary values, not integers.

 $q_1\mathbf{w}_1\oplus q_2\mathbf{w}_2$

PLNC can still work. This is "compute and forward"

fading coefficients $h \in \mathbb{R}$ integer approximation $a \in \mathbb{Z}$ conversion to finite field $q, \mathbf{w} \in \mathbb{F}^n$ Finding a_1, a_2 is an optimization problem

Compute-Forward for Multiple Access Relay Channel

Naive application of CF to MARC

Relay and Destination independently choose coefficient vectors destination gets two independent vectors

$$\begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix}^{-1} \cdot \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

But ${\bf Q}$ may not be invertible, with significant probability.

Full cooperation protocol

Destination sends ${\bf q}$ vector to relay

Relay selects linearly independent q, to guarantee \mathbf{Q} is full rank

Compute-Forward for Multiple Access Relay Channel

Proposal: Form Multiple Linear Combinations at Destination

- is transmitted from relay to destination.

A list Ficke-Pohst algorithm finds L best rates:

 $R(\mathbf{a}^*) \ge R(\mathbf{a}_2) \ge \cdots \ge R(\mathbf{a}_L)$

and the corresponding coefficient vectors:

 $\mathbf{a}^*, \mathbf{a}_2, \ldots, \mathbf{a}_L$

The destination attempts to decode using the two best **a**'s

1. Destination attempts to decode both u and u by forming linearly independent combinations. Relay does nothing. 2. If this fails, destination sends a^* to relay. Relay chooses its best linearly independent combination. Using this, data

62

Proposed Method has Lower Outage Probability

Maximum diversity order of 2

 (competing systems have diversity
 order less than 2)

[HK17] M. N. Hasan and B. M. Kurkoski, "Practical Compute-and-Forward approaches for the multiple access relay channel," IEEE ICC, (Paris, France), May 2017

100% increase in throughput

Network throughput increases 100% [HK18]

[HK18] M. N. Hasan and B. M. Kurkoski, "Cooperation protocols for multiple access relay channel with compute-and-forward," Submitted to IEEE Trans. Comm.

100% improvement network throughput

Conclusion

- Lattices with practical encoding and decoding are needed Construction D'using QC-LDPC codes is a strong candidate
- Lattices can provide shaping gain which is difficult otherwise -Convolutional code lattices provide > 1.0 dB of shaping gain
- Physical layer network coding provides significant throughput benefit lattices enable PLNC

Central question: How might lattices effectively be used in wireless communication systems?

