マルチユーザ情報理論における様々な情報量のスペクトル

電子情報通信学会総合大会 2018年3月

渡辺 峻
（東京農工大）

私にとっての情報スペクトル

私にとっての情報スペクトル

1993年：Han－Verdúの論文

＂Approximation Theory of Output Statistics＂が論文誌に掲載

1998年：「情報理論における情報スペクトル的方法」が培風館から出版

2003年：＂Information－Spectrum Methods in Information Theory＂がSpringerから出版

私にとっての情報スペクトル

1993年：Han－Verdúの論文
＂Approximation Theory of Output Statistics＂が論文誌に掲載

1998年：「情報理論における情報スペクトル的方法」が培風館から出版

2003年：＂Information－Spectrum Methods in Information Theory＂がSpringerから出版
2004年：大学4年生，研究開始．．．

私にとっての情報スペクトル

1993年：Han－Verdúの論文
＂Approximation Theory of Output Statistics＂が論文誌に掲載

1998年：「情報理論における情報スペクトル的方法」が培風館から出版

2003年：＂Information－Spectrum Methods in Information Theory＂がSpringerから出版

2004年：大学4年生，研究開始．．．

スマホネイティブ：スマホが普及した環境で育った．．．

私にとっての情報スペクトル

1993年：Han－Verdúの論文
＂Approximation Theory of Output Statistics＂が論文誌に掲載
1998年：「情報理論における情報スペクトル的方法」が培風館から出版

2003年：＂Information－Spectrum Methods in Information Theory＂がSpringerから出版

2004年：大学4年生，研究開始．．．

スマホネイティブ：スマホが普及した環境で育った．．．
情報スペクトルネイティブ：スペクトルが普及した環境で研究活動をスタートした．．．

私にとっての情報スペクトル

1993年：Han－Verdúの論文

＂Approximation Theory of Output Statistics＂が論文誌に掲載

1998年：「情報理論における情報スペクトル的方法」が培風館から出版

2003年：＂Information－Spectrum Methods in Information Theory＂がSpringerから出版

2004年：大学4年生，研究開始．．．

スマホネイティブ：スマホが普及した環境で育った．．．
情報スペクトルネイティブ：スペクトルが普及した環境で研究活動をスタートした．．．
－初めて情報理論を理解したのは情報スペクトルをとおして，

私にとっての情報スペクトル

1993年：Han－Verdúの論文

＂Approximation Theory of Output Statistics＂が論文誌に掲載

1998年：「情報理論における情報スペクトル的方法」が培風館から出版

2003年：＂Information－Spectrum Methods in Information Theory＂がSpringerから出版 2004年：大学4年生，研究開始．．．

スマホネイティブ：スマホが普及した環境で育った．．．
情報スペクトルネイティブ：スペクトルが普及した環境で研究活動をスタートした．．．

- 初めて情報理論を理解したのは情報スペクトルをとおして，
- それ以外の証明を知らない定理がある（あった）．．．

私にとっての情報スペクトル

1993年：Han－Verdúの論文
＂Approximation Theory of Output Statistics＂が論文誌に掲載
1998年：「情報理論における情報スペクトル的方法」が培風館から出版

2003年：＂Information－Spectrum Methods in Information Theory＂がSpringerから出版

2004年：大学4年生，研究開始．．．

スマホネイティブ：スマホが普及した環境で育った．．．
情報スペクトルネイティブ：スペクトルが普及した環境で研究活動をスタートした．．．

- 初めて情報理論を理解したのは情報スペクトルをとおして，
- それ以外の証明を知らない定理がある（あった）．．．

Eg）盗聴通信路のchannel resolvabilityによる証明

私にとっての情報スペクトル

1993年：Han－Verdúの論文
＂Approximation Theory of Output Statistics＂が論文誌に掲載
1998年：「情報理論における情報スペクトル的方法」が培風館から出版

2003年：＂Information－Spectrum Methods in Information Theory＂がSpringerから出版

2004年：大学4年生，研究開始．．．

スマホネイティブ：スマホが普及した環境で育った．．．
情報スペクトルネイティブ：スペクトルが普及した環境で研究活動をスタートした．．．

- 初めて情報理論を理解したのは情報スペクトルをとおして，
- それ以外の証明を知らない定理がある（あった）．．．

Eg）盗聴通信路のchannel resolvabilityによる証明

情報スペクトル理論がない情報理論は想像し難い

情報源符号化

情報源符号化

$$
M^{*}(n, \varepsilon):=\inf \left\{M_{n}: \exists \text { code s.t. } \operatorname{Pr}\left(X^{n} \neq \hat{X}^{n}\right) \leq \varepsilon\right\}
$$

情報源符号化

$$
M^{*}(n, \varepsilon):=\inf \left\{M_{n}: \exists \text { code s.t. } \operatorname{Pr}\left(X^{n} \neq \hat{X}^{n}\right) \leq \varepsilon\right\}
$$

Shannon＇s source coding theorem（for discrete memoryless source）：

$$
\lim _{\varepsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log M^{*}(n, \varepsilon)=H(X)
$$

情報源符号化：情報スペクトル的証明

補題（順定理）

\exists a code s．t．

$$
\operatorname{Pr}\left(X^{n} \neq \hat{X}^{n}\right) \leq \operatorname{Pr}\left(\frac{1}{n} \log \frac{1}{P_{X^{n}}\left(X^{n}\right)}>\frac{1}{n} \log M_{n}\right)
$$

補題（逆定理）
\forall code $\quad \forall \gamma>0$
$\operatorname{Pr}\left(X^{n} \neq \hat{X}^{n}\right) \geq \operatorname{Pr}\left(\frac{1}{n} \log \frac{1}{P_{X^{n}}\left(X^{n}\right)}>\frac{1}{n} \log M_{n}+\gamma\right)-e^{-\gamma n}$

情報源符号化：情報スペクトル的証明

大雑把にいうと，最適な符号の誤り率は情報量密度（エントロピー密度） のスペクトルで特徴付けされる：

$$
\begin{aligned}
\operatorname{Pr}\left(X^{n} \neq \hat{X}^{n}\right) & \simeq \operatorname{Pr}\left(\frac{1}{n} \log \frac{1}{P_{X^{n}}\left(X^{n}\right)}>\frac{1}{n} \log M_{n}\right) \\
& =\operatorname{Pr}\left(\frac{1}{n} \sum_{i=1}^{n} \log \frac{1}{P_{X}\left(X_{i}\right)}>\frac{1}{n} \log M_{n}\right)
\end{aligned}
$$

大数の法則より

$$
\begin{aligned}
& \frac{1}{n} \log M_{n}=H(X)+\delta \Longrightarrow \operatorname{Pr}\left(X^{n} \neq \hat{X}^{n}\right) \rightarrow 0 \\
& \frac{1}{n} \log M_{n}=H(X)-\delta \Longrightarrow \operatorname{Pr}\left(X^{n} \neq \hat{X}^{n}\right) \rightarrow 1
\end{aligned}
$$

－点スペクトル

定常無記憶情報源の場合

スペクトルが広がっていないため，漸近的な性能は ε に依存しない：

$$
\log M^{*}(n, \varepsilon)=n H(X)+o(n)
$$

二次オーダーレート

［Strassen 62，Hayashi 08，09，Polyanskiy－Poor－Verdú 10］

$$
\log M^{*}(n, \varepsilon)=n H(X)+\sqrt{n} L+o(\sqrt{n})
$$

二次オーダーレート

［Strassen 62，Hayashi 08，09，Polyanskiy－Poor－Verdú 10］

$$
\log M^{*}(n, \varepsilon)=n H(X)+\sqrt{n} L+o(\sqrt{n})
$$

$$
\operatorname{Pr}\left(X^{n} \neq \hat{X}^{n}\right) \simeq \operatorname{Pr}\left(\frac{\sum_{i=1}^{n} \log \frac{1}{P_{X}\left(X_{i}\right)}-n H(X)}{\sqrt{n}}>\frac{1}{\sqrt{n}}\left(\log M_{n}-n H(X)\right)\right)
$$

二次オーダーレート

［Strassen 62，Hayashi 08，09，Polyanskiy－Poor－Verdú 10］

$$
\log M^{*}(n, \varepsilon)=n H(X)+\sqrt{n} L+o(\sqrt{n})
$$

$$
\operatorname{Pr}\left(X^{n} \neq \hat{X}^{n}\right) \simeq \operatorname{Pr}\left(\frac{\sum_{i=1}^{n} \log \frac{1}{P_{X}\left(X_{i}\right)}-n H(X)}{\sqrt{n}}>\frac{1}{\sqrt{n}}\left(\log M_{n}-n H(X)\right)\right)
$$

$\log M_{n}=n H(X)+\sqrt{n} L \Longrightarrow$
中心極限定理より

$$
\begin{gathered}
\operatorname{Pr}\left(X^{n} \neq \hat{X}^{n}\right) \simeq \operatorname{Pr}(Z>L) \\
Z \sim \mathcal{N}(0, V), \quad V=\operatorname{Var}\left[\log \frac{1}{P_{X}(X)}\right]
\end{gathered}
$$

二次オーダーレート

$$
\log M^{*}(n, \varepsilon)=n H(X)+\sqrt{n V} \mathrm{Q}^{-1}(\varepsilon)+o(\sqrt{n})
$$

$$
\mathrm{Q}(a)=\int_{a}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2}}{2}} d t
$$

情報スペクトルと二次オーダー解析

－情報スペクトル
符号化問題の限界を情報量密度のスペクトルで表現

$$
\operatorname{Pr}\left(X^{n} \neq \hat{X}^{n}\right) \simeq \operatorname{Pr}\left(\frac{1}{n} \sum_{i=1}^{n} \log \frac{1}{P_{X}\left(X_{i}\right)}>\frac{1}{n} \log M_{n}\right)
$$

－一次オーダーレート
情報量密度の期待値により特徴付される

$$
H(X)=\mathrm{E}\left[\log \frac{1}{P_{X}(X)}\right]
$$

－二次オーダーレート
情報量密度の分散により特徴付される

$$
V=\operatorname{Var}\left[\log \frac{1}{P_{X}(X)}\right]
$$

情報スペクトルと二次オーダー解析

－情報スペクトル
符号化問題の限界を情報量密度のスペクトルで表現
－一次オーダーレート

情報量密度の期待値により特徴付される
－二次オーダーレート

情報量密度の分散により特徴付される

二次オーダ一解析は定常無記憶のような具体的な情報源でスペクトルの広がりを体感できる点が非常に面白い！

情報理論の他の問題，特にマルチユーザの問題でもこのような対応関係が成り立 つのだろうか？

有歪情報源符号化

有歪情報源符号化

$$
M^{*}(n, \varepsilon):=\inf \left\{M_{n}: \exists \text { code s.t. } \operatorname{Pr}\left(d_{n}\left(X^{n}, \hat{X}^{n}\right)>D\right) \leq \varepsilon\right\}
$$

有歪情報源符号化

$$
\begin{aligned}
& \xrightarrow[\text { Encoder }]{X^{n}} S_{n} \in\left\{1, \ldots, M_{n}\right\} \text { Decoder } \hat{X}^{n} \\
& \operatorname{Pr}\left\{d_{n}\left(X^{n}, \hat{X}^{n}\right)>D\right\} \leq \varepsilon \\
& M^{*}(n, \varepsilon):=\inf \left\{M_{n}: \exists \text { code s.t. } \operatorname{Pr}\left(d_{n}\left(X^{n}, \hat{X}^{n}\right)>D\right) \leq \varepsilon\right\}
\end{aligned}
$$

Shannon＇s lossy source coding theorem（for discrete memoryless source）：

$$
\begin{gathered}
\lim _{\varepsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log M^{*}(n, \varepsilon)=R(D) \\
R(D)=\min _{P_{Y \mid X}: E[d(X, Y)] \leq D} I(X \wedge Y)
\end{gathered}
$$

レート歪関数

有歪情報源符号化の二次オーダー

［Kostina－Verdú 12］

$$
\log M^{*}(n, \varepsilon)=n R(D)+\sqrt{n V} \mathrm{Q}^{-1}(\varepsilon)+o(\sqrt{n})
$$

有歪情報源符号化の二次オーダー

［Kostina－Verdú 12］

$$
\log M^{*}(n, \varepsilon)=n R(D)+\sqrt{n V} \mathrm{Q}^{-1}(\varepsilon)+o(\sqrt{n})
$$

最適なテスト通信路 $P_{Y \mid X}^{*}$ とその出力分布 P_{Y}^{*}

$$
\begin{gathered}
\text { 相互情報量密度 } \log \frac{P_{Y \mid X}^{*}(y \mid x)}{P_{Y}^{*}(y)} \quad R(D)=\mathrm{E}\left[\log \frac{P_{Y \mid X}^{*}(Y \mid X)}{P_{Y}^{*}(Y)}\right] \\
V=\operatorname{Var}\left[\log \frac{P_{Y \mid X}^{*}(Y \mid X)}{P_{Y}^{*}(Y)}\right] \\
(X, Y) \sim P_{X} \circ P_{Y \mid X}^{*}
\end{gathered}
$$

が答えではない．．．

有歪情報源符号化の二次オーダー

［Kostina－Verdú 12］

$$
\quad \log M^{*}(n, \varepsilon)=n R(D)+\sqrt{n V} \mathrm{Q}^{-1}(\varepsilon)+o(\sqrt{n})
$$

有歪情報源符号化の二次オーダー

［Kostina－Verdú 12］

$$
\quad \log M^{*}(n, \varepsilon)=n R(D)+\sqrt{n V} \mathrm{Q}^{-1}(\varepsilon)+o(\sqrt{n})
$$

D－tilted情報量密度

$$
\jmath_{X}(x):=\log \frac{1}{\mathrm{E}\left[\exp \left\{\lambda^{*} D-\lambda^{*} d(x, Y)\right\}\right]}, \quad Y \sim P_{Y}^{*}
$$

有歪情報源符号化の二次オーダー

［Kostina－Verdú 12］

$$
\quad \log M^{*}(n, \varepsilon)=n R(D)+\sqrt{n V} \mathrm{Q}^{-1}(\varepsilon)+o(\sqrt{n})
$$

D－tilted情報量密度

$$
\begin{aligned}
\jmath_{X}(x) & :=\log \frac{1}{\mathrm{E}\left[\exp \left\{\lambda^{*} D-\lambda^{*} d(x, Y)\right\}\right]}, \quad Y \sim P_{Y}^{*} \\
& =\log \frac{P_{Y \mid X}^{*}(y \mid x)}{P_{Y}^{*}(y)}+\lambda^{*} d(x, y)-\lambda^{*} D, \quad \forall y \in \operatorname{supp}\left(P_{Y}^{*}\right)
\end{aligned}
$$

有歪情報源符号化の二次オーダー

［Kostina－Verdú 12］

$$
\quad \log M^{*}(n, \varepsilon)=n R(D)+\sqrt{n V} \mathrm{Q}^{-1}(\varepsilon)+o(\sqrt{n})
$$

D－tilted情報量密度

$$
\begin{aligned}
\jmath_{X}(x) & :=\log \frac{1}{\mathrm{E}\left[\exp \left\{\lambda^{*} D-\lambda^{*} d(x, Y)\right\}\right]}, \quad Y \sim P_{Y}^{*} \\
& =\log \frac{P_{Y \mid X}^{*}(y \mid x)}{P_{Y}^{*}(y)}+\lambda^{*} d(x, y)-\lambda^{*} D, \quad \forall y \in \operatorname{supp}\left(P_{Y}^{*}\right) \\
R(D) & =\mathrm{E}\left[\jmath_{X}(X)\right] \quad V=\operatorname{Var}\left[\jmath_{X}(X)\right]
\end{aligned}
$$

例

例）2元八ミング

$$
\begin{aligned}
& \mathcal{X}=\hat{\mathcal{X}}=\{0,1\}, d(x, y)=\mathbf{1}[x \neq y], P_{X}(0)=p, P_{X}(1)=1-p \\
& R(D)=h(p)-h(D), \quad 0 \leq D \leq p \\
& J_{X}(x)=\log \frac{1}{P_{X}(x)}-h(D) \\
& p=\frac{1}{2} \Longrightarrow \operatorname{Var}[\jmath X(X)]=0 \\
& \\
& \operatorname{Var}\left[\log \frac{P_{Y \mid X}^{*}(Y \mid X)}{P_{Y}^{*}(Y)}\right]>0
\end{aligned}
$$

D－tilted情報量密度の解釈

ランダム符号化 $\left\{Y_{1}^{n}, \ldots, Y_{M_{n}}^{n}\right\} \sim P_{Y}^{* n}$
D－ball $\mathcal{B}_{D}\left(x^{n}\right)=\left\{y^{n}: d_{n}\left(x^{n}, y^{n}\right) \leq D\right\}$
$X^{n}=x^{n}$ に対して各回当たりを引く確率 $P_{Y}^{* n}\left(\mathcal{B}_{D}\left(x^{n}\right)\right)$

D－tilted情報量密度の解釈

ランダム符号化 $\left\{Y_{1}^{n}, \ldots, Y_{M_{n}}^{n}\right\} \sim P_{Y}^{* n}$
D－ball $\mathcal{B}_{D}\left(x^{n}\right)=\left\{y^{n}: d_{n}\left(x^{n}, y^{n}\right) \leq D\right\}$

$$
X^{n}=x^{n} \text { に対して各回当たりを引く確率 } P_{Y}^{* n}\left(\mathcal{B}_{D}\left(x^{n}\right)\right)
$$

補題［Kostina－Verdú 12］

$$
\operatorname{Pr}\left(\log \frac{1}{P_{Y}^{* n}\left(\mathcal{B}_{D}\left(X^{n}\right)\right)} \leq \sum_{i=1}^{n} J_{X}\left(X_{i}\right)+C \log n+c\right) \geq 1-\frac{K}{\sqrt{n}}
$$

$\log \frac{1}{P_{Y}^{* n}\left(\mathcal{B}_{D}\left(x^{n}\right)\right)} \geq \sum_{i=1}^{n} J_{X}\left(x_{i}\right), \quad \forall x^{n} \in \mathcal{X}^{n}$ はマルコフの不等式より得られる

Slepian－Wolf符号化

$\mathcal{R}(n, \varepsilon):=\left\{\left(\frac{1}{n} \log \left\|M_{n}\right\|, \frac{1}{n} \log \left\|L_{n}\right\|\right): \exists\right.$ code s．t． $\left.\operatorname{Pr}\left(\left(X^{n}, Y^{n}\right) \neq\left(\hat{X}^{n}, \hat{Y}^{n}\right)\right) \leq \varepsilon\right\}$

Slepian－Wolf符号化の一次レート領域

$$
\bigcap_{0<\varepsilon<1} \mathrm{cl}\left[\bigcup_{n \geq 1} \mathcal{R}(n, \varepsilon)\right]=\left\{\left(R_{1}, R_{2}\right): R_{1} \geq H(X \mid Y), R_{2} \geq H(Y \mid X), R_{1}+R_{2} \geq H(X, Y)\right\}
$$

多次元ガウスの裾

［Tan－Kosut 12，Nomura－Han 13］

$$
\begin{aligned}
& \mathbf{V} \in \mathbb{R}^{k \times k} \quad: \text { 半正定値行列 } \\
& \mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathbf{V}): \text { ガウスベクトル }
\end{aligned}
$$

$$
\mathscr{S}(\mathbf{V}, \varepsilon):=\left\{\mathbf{z} \in \mathbb{R}^{k}: \operatorname{Pr}(\mathbf{Z} \leq \mathbf{z}) \geq 1-\varepsilon\right\}
$$

多次元ガウスの裾

［Tan－Kosut 12，Nomura－Han 13］
$\mathbf{V} \in \mathbb{R}^{k \times k} \quad:$ 半正定値行列
$\mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathrm{V}):$ ガウスベクトル

$$
\mathscr{S}(\mathbf{V}, \varepsilon):=\left\{\mathbf{z} \in \mathbb{R}^{k}: \operatorname{Pr}(\mathbf{Z} \leq \mathbf{z}) \geq 1-\varepsilon\right\}
$$

$k=1$ の場合

$$
\mathscr{S}\left(\sigma^{2}, \varepsilon\right)=\left[\sigma Q^{-1}(\varepsilon), \infty\right)
$$

多次元ガウスの裾

［Tan－Kosut 12，Nomura－Han 13］

$$
\begin{aligned}
& \mathbf{V} \in \mathbb{R}^{k \times k}: \text { 半正定値行列 } \\
& \mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathbf{V}) \quad: \text { ガウスベクトル } \\
& \qquad=2 \text { の場合 } \\
& \qquad
\end{aligned}
$$

Slepian－Wolf符号化の二次レート領域

［Tan－Kosut 12，Nomura－Han 13］
$\mathbf{V} \in \mathbb{R}^{k \times k} \quad:$ 半正定値行列
$\mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathrm{V}):$ ガウスベクトル

$$
\mathscr{S}(\mathbf{V}, \varepsilon):=\left\{\mathbf{z} \in \mathbb{R}^{k}: \operatorname{Pr}(\mathbf{Z} \leq \mathbf{z}) \geq 1-\varepsilon\right\}
$$

$k=1$ の場合

$$
\mathscr{S}\left(\sigma^{2}, \varepsilon\right)=\left[\sigma Q^{-1}(\varepsilon), \infty\right)
$$

$\left[R_{1}, R_{2}\right]^{T} \in \mathcal{R}(n, \varepsilon)$ となる必要十分条件は

$$
\begin{aligned}
{\left[\begin{array}{c}
R_{1} \\
R_{2} \\
R_{1}+R_{2}
\end{array}\right] } & \in\left[\begin{array}{c}
H(X \mid Y) \\
H(Y \mid X) \\
H(X, Y)
\end{array}\right]+\frac{1}{\sqrt{n}} \mathscr{S}(\mathbf{V}, \epsilon)+O\left(\frac{\log n}{n}\right) \mathbf{1} \\
\mathbf{V} & =\operatorname{Cov}\left(\begin{array}{l}
-\log P_{X \mid Y}(X \mid Y) \\
-\log P_{Y \mid X}(Y \mid X) \\
-\log P_{X Y}(X, Y)
\end{array}\right)
\end{aligned}
$$

Slepian－Wolf符号化の二次レート領域

［Tan－Kosut 12，Nomura－Han 13］

この調子でより複雑なマルチユーザの問題に進んで行きたいが，色々困難な点がある．．．

- 補助確率変数
- マルコフ連鎖

Gray－Wynerネットワーク

［Gray－Wyner 74］

問題設定

Encoders：

$$
\begin{aligned}
& \varphi_{0}^{(n)}: \mathcal{X}^{n} \times \mathcal{Y}^{n} \rightarrow \mathcal{M}_{0}^{(n)} \\
& \varphi_{1}^{(n)}: \mathcal{X}^{n} \times \mathcal{Y}^{n} \rightarrow \mathcal{M}_{1}^{(n)} \\
& \varphi_{2}^{(n)}: \mathcal{X}^{n} \times \mathcal{Y}^{n} \rightarrow \mathcal{M}_{2}^{(n)}
\end{aligned}
$$

Decoders：

$$
\begin{aligned}
& \psi_{1}^{(n)}: \mathcal{M}_{0}^{(n)} \times \mathcal{M}_{1}^{(n)} \rightarrow \mathcal{X}^{n} \\
& \psi_{2}^{(n)}: \mathcal{M}_{0}^{(n)} \times \mathcal{M}_{2}^{(n)} \rightarrow \mathcal{Y}^{n}
\end{aligned}
$$

For a code $\Phi_{n}=\left(\varphi_{0}, \varphi_{1}, \varphi_{2}, \psi_{1}, \psi_{2}\right), \quad\left(X^{n}, Y^{n}\right) \sim P$
$\mathrm{P}_{\mathrm{e}}\left(\Phi_{n} \mid P\right):=\operatorname{Pr}\left(\left(\psi_{1}\left(\varphi_{0}\left(X^{n}, Y^{n}\right), \varphi_{1}\left(X^{n}, Y^{n}\right)\right), \psi_{2}\left(\varphi_{0}\left(X^{n}, Y^{n}\right), \varphi_{2}\left(X^{n}, Y^{n}\right)\right)\right) \neq\left(X^{n}, Y^{n}\right)\right)$

問趩設定

Definition（1st－order region）

$$
\begin{aligned}
\left(r_{0}, r_{1}, r_{2}\right) \in \mathbb{R}_{+}^{3} & \text { is achievable } \stackrel{\text { def }}{\Longleftrightarrow} \exists\{\Phi\}_{n=1}^{\infty} \text { s.t. } \\
& \limsup _{n \rightarrow \infty} \frac{1}{n} \log \left|\mathcal{M}_{0}^{(n)}\right| \leq r_{0} \\
& \limsup _{n \rightarrow \infty} \frac{1}{n} \log \left|\mathcal{M}_{1}^{(n)}\right| \leq r_{1} \\
& \limsup _{n \rightarrow \infty} \frac{1}{n} \log \left|\mathcal{M}_{2}^{(n)}\right| \leq r_{2}
\end{aligned}
$$

and

$$
\lim _{n \rightarrow \infty} \mathrm{P}_{\mathrm{e}}\left(\Phi_{n} \mid P_{X Y}^{n}\right)=0
$$

$\mathcal{R}_{\mathrm{GW}}\left(P_{X Y}\right)$ ：the set of all achievable rates

一次のレート領域の特徴付

outer region of $\mathcal{R}_{\mathrm{GW}}\left(P_{X Y}\right)$ ：

$$
\begin{aligned}
r_{0}+r_{1}+r_{2} & \geq H(X, Y), \\
r_{0}+r_{1} & \geq H(X), \\
r_{0}+r_{2} & \geq H(Y) .
\end{aligned}
$$

一次のレート領域の特徵付

$\mathcal{R}_{\mathrm{GW}}^{*}\left(P_{X Y}\right)$ ：the set of all rate triplets s．t．

$$
\begin{aligned}
\exists P_{W \mid X Y}, \quad|\mathcal{W}| \leq|\mathcal{X} \| \mathcal{Y}| & +2 \\
r_{0} & \geq I(W \wedge X, Y), \\
r_{1} & \geq H(X \mid W), \\
r_{2} & \geq H(Y \mid W) .
\end{aligned}
$$

Proposition（1st－order region）［Gray－Wyner 74］

$$
\mathcal{R}_{\mathrm{GW}}\left(P_{X Y}\right)=\mathcal{R}_{\mathrm{GW}}^{*}\left(P_{X Y}\right) .
$$

一次のレート領域の特徵付

$\mathcal{R}_{\mathrm{GW}}^{*}\left(P_{X Y}\right)$ ：the set of all rate triplets s．t．

$$
\begin{aligned}
\exists P_{W \mid X Y}, \quad|\mathcal{W}| \leq|\mathcal{X}||\mathcal{Y}| & +2 \\
r_{0} & \geq I(W \wedge X, Y), \\
r_{1} & \geq H(X \mid W), \\
r_{2} & \geq H(Y \mid W) .
\end{aligned}
$$

Proposition（1st－order region）［Gray－Wyner 74］

$$
\mathcal{R}_{\mathrm{GW}}\left(P_{X Y}\right)=\mathcal{R}_{\mathrm{GW}}^{*}\left(P_{X Y}\right) .
$$

補助確率変数を含んでいるため，二次オーダー解析は容易ではない．．．

二次オーダーの問題設定

Definition（2nd－order region）
For a boundary point $\left(r_{0}^{*}, r_{1}^{*}, r_{2}^{*}\right) \in \mathcal{R}_{\mathrm{GW}}\left(P_{X Y}\right)$ and $0<\varepsilon<1$ ， $\left(L_{0}, L_{1}, L_{2}\right) \in \mathbb{R}^{3}$ is $\left(\varepsilon, r_{0}^{*}, r_{1}^{*}, r_{2}^{*}\right)$－achievable $\stackrel{\text { def }}{\Longleftrightarrow} \exists\{\Phi\}_{n=1}^{\infty}$ s．t．

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \frac{\log \left|\mathcal{M}_{0}^{(n)}\right|-n r_{0}^{*}}{\sqrt{n}} \leq L_{0} \\
& \limsup _{n \rightarrow \infty} \frac{\log \left|\mathcal{M}_{1}^{(n)}\right|-n r_{1}^{*}}{\sqrt{n}} \leq L_{1} \\
& \limsup _{n \rightarrow \infty} \frac{\log \left|\mathcal{M}_{2}^{(n)}\right|-n r_{2}^{*}}{\sqrt{n}} \leq L_{2}
\end{aligned}
$$

and

$$
\limsup _{n \rightarrow \infty} \mathrm{P}_{\mathrm{e}}\left(\Phi_{n} \mid P_{X Y}^{n}\right) \leq \varepsilon
$$

$\mathcal{L}_{\mathrm{GW}}\left(\varepsilon ; r_{0}^{*}, r_{1}^{*}, r_{2}^{*}\right)$ ：the set of all $\left(\varepsilon, r_{0}^{*}, r_{1}^{*}, r_{2}^{*}\right)$－achievable rates

GWネットワークのtilted情報量密度

$$
R\left(r_{1}, r_{2} \mid P_{X Y}\right):=\min \left\{r_{0}:\left(r_{0}, r_{1}, r_{2}\right) \in \mathcal{R}_{\mathrm{GW}}^{*}\left(P_{X Y}\right)\right\}
$$

GWネットワークのtilted情報量密度

$$
\begin{aligned}
& R\left(r_{1}, r_{2} \mid P_{X Y}\right):=\min \left\{r_{0}:\left(r_{0}, r_{1}, r_{2}\right) \in \mathcal{R}_{\mathrm{GW}}^{*}\left(P_{X Y}\right)\right\} \\
& \lambda_{i}^{\star}=-\left.\frac{\partial}{\partial r_{i}} R\left(r_{1}, r_{2} \mid P_{X Y}\right)\right|_{r=r^{*}} \quad r^{*}=\left(r_{1}^{*}, r_{2}^{*}\right)
\end{aligned}
$$

GWネットワークのtilted情報量密度

$$
\begin{aligned}
& R\left(r_{1}, r_{2} \mid P_{X Y}\right):=\min \left\{r_{0}:\left(r_{0}, r_{1}, r_{2}\right) \in \mathcal{R}_{\mathrm{GW}}^{*}\left(P_{X Y}\right)\right\} \\
& \lambda_{i}^{\star}=-\left.\frac{\partial}{\partial r_{i}} R\left(r_{1}, r_{2} \mid P_{X Y}\right)\right|_{r=r^{*}} \quad r^{*}=\left(r_{1}^{*}, r_{2}^{*}\right)
\end{aligned}
$$

$P_{W^{\star}}$ ：output distribution of an optimal test channel $P_{W \mid X Y}^{\star}$

GWネットワークのtilted情報量密度

$$
\begin{aligned}
& R\left(r_{1}, r_{2} \mid P_{X Y}\right):=\min \left\{r_{0}:\left(r_{0}, r_{1}, r_{2}\right) \in \mathcal{R}_{\mathrm{GW}}^{*}\left(P_{X Y}\right)\right\} \\
& \lambda_{i}^{\star}=-\left.\frac{\partial}{\partial r_{i}} R\left(r_{1}, r_{2} \mid P_{X Y}\right)\right|_{r=r^{*}} \quad r^{*}=\left(r_{1}^{*}, r_{2}^{*}\right)
\end{aligned}
$$

$P_{W^{\star}}$ ：output distribution of an optimal test channel $P_{W \mid X Y}^{\star}$

Definition

$$
\jmath_{X Y}(x, y)=-\log \mathrm{E}\left[\exp \left\{\lambda_{1}^{\star}\left(r_{1}^{*}-\log \frac{1}{P_{X \mid W^{\star}}\left(x \mid W^{\star}\right)}\right)+\lambda_{2}^{\star}\left(r_{2}^{\star}-\log \frac{1}{P_{Y \mid W^{\star}}\left(y \mid W^{\star}\right)}\right)\right\}\right]
$$

GWネットワークのtilted情報量密度

$$
\begin{aligned}
& R\left(r_{1}, r_{2} \mid P_{X Y}\right):=\min \left\{r_{0}:\left(r_{0}, r_{1}, r_{2}\right) \in \mathcal{R}_{\mathrm{GW}}^{*}\left(P_{X Y}\right)\right\} \\
& \lambda_{i}^{\star}=-\left.\frac{\partial}{\partial r_{i}} R\left(r_{1}, r_{2} \mid P_{X Y}\right)\right|_{r=r^{*}} \quad r^{*}=\left(r_{1}^{*}, r_{2}^{*}\right)
\end{aligned}
$$

$P_{W^{\star}}$ ：output distribution of an optimal test channel $P_{W \mid X Y}^{\star}$

Definition

$$
\begin{array}{r}
\jmath_{X Y}(x, y)=-\log \mathrm{E}\left[\exp \left\{\lambda_{1}^{\star}\left(r_{1}^{*}-\log \frac{1}{P_{X \mid W^{\star}}\left(x \mid W^{\star}\right)}\right)+\lambda_{2}^{\star}\left(r_{2}^{\star}-\log \frac{1}{P_{Y \mid W^{\star}}\left(y \mid W^{\star}\right)}\right)\right\}\right] \\
=\log \frac{P_{W \mid X Y}^{\star}(w \mid x, y)}{P_{W^{\star}}(w)}+\lambda_{1}^{\star}\left(\log \frac{1}{P_{X \mid W^{\star}}(x \mid w)}-r_{1}^{*}\right)+\lambda_{2}^{\star}\left(\log \frac{1}{P_{Y \mid W^{\star}}(y \mid w)}-r_{2}^{*}\right) \\
w \in \operatorname{supp}\left(P_{W \mid X Y}^{\star}(\cdot \mid x, y)\right)
\end{array}
$$

GWネットワークの二次レート領域

Theorem［SW15］

$$
\mathcal{L}_{\mathrm{GW}}\left(\varepsilon ; r_{0}^{*}, r_{1}^{*}, r_{2}^{*}\right)=\left\{\left(L_{0}, L_{1}, L_{2}\right): L_{0}+\lambda_{1}^{\star} L_{1}+\lambda_{2}^{\star} L_{2} \geq \sqrt{V_{X Y}} Q^{-1}(\varepsilon)\right\}
$$

for $0<\varepsilon<1$ ，where

$$
V_{X Y}:=\mathrm{V}\left[J_{X Y}(X, Y)\right] .
$$

GWネットワークの二次レート䫀域

証明はタイプに基づく手法（［Ingber－Kochman 11］）
テイラー展開を経由してスペクトルの振舞に帰着
$\mathrm{t}_{X^{n}} Y^{n}$ ：joint type of $\left(X^{n}, Y^{n}\right)$

$$
P_{\mathrm{e}}\left(\Phi_{n} \mid P_{X Y}^{n}\right) \simeq \operatorname{Pr}\left(r_{0, n}<R\left(r_{1, n}, r_{2, n} \mid \mathrm{t}_{X^{n} Y^{n}}\right)\right)
$$

For $\left(r_{0, n}, r_{1, n}, r_{2, n}\right)=\left(r_{o}^{*}+\frac{L_{0}}{\sqrt{n}}, r_{1}^{*}+\frac{L_{1}}{\sqrt{n}}, r_{2}^{*}+\frac{L_{2}}{\sqrt{n}}\right)$ and $\left\|\mathrm{t}_{X^{n} Y^{n}}-P_{X Y}\right\|_{1} \leq O\left(\sqrt{\frac{\log n}{n}}\right)$
$r_{0, n}<R\left(r_{1, n}, r_{2, n} \mid \mathrm{t}_{X^{n} Y^{n}}\right)$

$$
\Longleftrightarrow L_{0}+\lambda_{1}^{\star} L_{1}+\lambda_{2}^{\star} L_{2}<\frac{1}{\sqrt{n}}\left(\sum_{i=1}^{n} \jmath_{X Y}\left(X_{i}, Y_{i}\right)-n R\left(r_{1}^{*}, r_{2}^{*} \mid P_{X Y}\right)\right)
$$

$$
P_{\mathrm{e}}\left(\Phi_{n} \mid P_{X Y}^{n}\right) \simeq \operatorname{Pr}\left(L_{0}+\lambda_{1}^{\star} L_{1}+\lambda_{2}^{\star} L_{2}<\frac{1}{\sqrt{n}}\left(\sum_{i=1}^{n} \jmath_{X Y}\left(X_{i}, Y_{i}\right)-n R\left(r_{1}^{*}, r_{2}^{*} \mid P_{X Y}\right)\right)\right)
$$

Wyner－Ahlswede－Körnerネットワーク

Gray－Wynerネットワークの次のステップ．．．

Wyner－Ahlswede－Körnerネットワーク

Wyner－Ahlswede－Körnerネットワーク

二次オーダ一領域の內界

［SW－Kuzuoka－Tan 13］
$\left[R_{1}, R_{2}\right]^{T} \in \mathcal{R}(n, \varepsilon) \quad$ and

$$
\left[\begin{array}{l}
R_{1} \\
R_{2}
\end{array}\right] \in\left[\begin{array}{c}
H(X \mid U) \\
I(U ; Y)
\end{array}\right]+\frac{\mathscr{S}(\mathbf{V}, \varepsilon)}{\sqrt{n}}+O\left(\frac{\log n}{n}\right) \mathbf{1}_{2}
$$

for some $U-0-Y-0-X$

$$
\mathbf{V}=\operatorname{Cov}\binom{\log \frac{1}{P_{X \mid U}(X \mid U)}}{\log \frac{P_{Y \mid U}(Y \mid U)}{P_{Y}(Y)}}
$$

順定理，タイトかは不明…

逆定理が難しい
強逆定理を示す様々なテクニックが開発されている：

- Ahlswede－Gács－Körner 76 ：Blowing－up補題
- Oohama 15 ：情報スペクトル＋大偏差
－Liu－Handel－Verdú 17 ：reverse hypercontractivity
－Watanabe 17 ：Gray－Wynerへの帰着＋［Gu－Effross 09］

どの方法も二次オーダー解決には不十分のようである．．．

二次オーダー解析は情報スペクトル理論の面白い適応対象である； マルチユーザの場合は未解決な問題も多い；

何のスペクトルに着目すればよいか自明でない．．．

まとめ

二次オーダー解析は情報スペクトル理論の面白い適応対象である；
マルチユーザの場合は未解決な問題も多い；
何のスペクトルに着目すればよいか自明でない．．．

情報スペクトル理論は大偏差的解析にも有効；
二次オーダーとは異なるスペクトルの挙動が見られる！

二次オーダ一解析は情報スペクトル理論の面白い適応対象である；
マルチユーザの場合は未解決な問題も多い；
何のスペクトルに着目すればよいか自明でない．．．

情報スペクトル理論は大偏差的解析にも有効；
二次オーダーとは異なるスペクトルの挙動が見られる！

情報スペクトル理論の適用範囲は年々広がっている

二次オーダ一解析は情報スペクトル理論の面白い適応対象である；
マルチユーザの場合は未解決な問題も多い；
何のスペクトルに着目すればよいか自明でない．．．

情報スペクトル理論は大偏差的解析にも有効；
二次オーダーとは異なるスペクトルの挙動が見られる！

情報スペクトル理論の適用範囲は年々広がっている

研究開始当初から情報スペクトル理論が存在したことは非常に恵まれていたと思う；韓先生ならびに創始に携わった方々に感謝

