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情報源符号化

Shannon’s source coding theorem (for discrete memoryless source):
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情報源符号化：情報スペクトル的証明
補題（順定理）
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情報源符号化：情報スペクトル的証明
大雑把にいうと，最適な符号の誤り率は情報量密度（エントロピー密度）

のスペクトルで特徴付けされる：
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一点スペクトル
定常無記憶情報源の場合

1

n
log

1

PXn(Xn)
H(X)

logM⇤(n, ") = nH(X) + o(n)

スペクトルが広がっていないため，漸近的な性能は　に依存しない："



二次オーダーレート
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二次オーダーレート
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二次オーダーレートは情報量密度の二次のスペクトルの広がり度合で特徴付される
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情報スペクトルと二次オーダー解析
• 情報スペクトル
符号化問題の限界を情報量密度のスペクトルで表現

• 一次オーダーレート
情報量密度の期待値により特徴付される

H(X) = E
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• 二次オーダーレート
情報量密度の分散により特徴付される

V = Var
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情報スペクトルと二次オーダー解析
• 情報スペクトル
符号化問題の限界を情報量密度のスペクトルで表現

• 一次オーダーレート
情報量密度の期待値により特徴付される

• 二次オーダーレート
情報量密度の分散により特徴付される

情報理論の他の問題，特にマルチユーザの問題でもこのような対応関係が成り立

つのだろうか？

二次オーダー解析は定常無記憶のような具体的な情報源でスペクトルの広がりを

体感できる点が非常に面白い！
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有歪情報源符号化
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Shannon’s lossy source coding theorem (for discrete memoryless source):
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有歪情報源符号化の二次オーダー
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有歪情報源符号化の二次オーダー
[Kostina-Verdú 12]
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例
例) 2元ハミング
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D-tilted情報量密度の解釈
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Slepian-Wolf符号化
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Slepian-Wolf符号化の一次レート領域
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The following important definition will be used throughout this section.

Definition 9. Let k be a positive integer. Let V ∈ Rk×k be a positive-semidefinite matrix that is not the all-zeros
matrix but is allowed to be rank-deficient. Let the Gaussian random vector Z ∼ N (0,V). Define the set

S (V, ε) := {z ∈ Rk : Pr(Z ≤ z) ≥ 1− ε}. (122)

This set was introduced in [25] and is, roughly speaking, the multidimensional analogue of the Q−1 function.
Indeed, for k = 1 and any standard deviation σ > 0,

S (σ2, ε) = [σQ−1(ε),∞). (123)

Also, 1k and 0k×k denote the length-k all-ones column vector and the k × k all-zeros matrix respectively.

A. Achievable Second-Order Coding Rates for the WAK problem

In this section, we derive an inner bound to RWAK(n, ε) in (11) by the use of Gaussian approximations. Instead
of simply applying the Berry-Esséen theorem to the information spectrum term within the simplified CS-type bound
in (81), we enlarge our inner bound by using a “time-sharing” variable T , which is independent of (X,Y ). This
technique was also used for the multiple access channel (MAC) by Huang and Moulin [49]. Note that in the finite
blocklength setting, the region RWAK(n, ε) does not have to be convex unlike in the asymptotic case; cf. (37). For
fixed finite sets U and T , let P̃(PXY ) be the set of all PUTXY ∈ P(U×T ×X ×Y) such that the X ×Y-marginal
of PUTXY is PXY , U − (Y, T )−X forms a Markov chain and T is independent of (X,Y ).

Definition 10. The entropy-information density vector for the WAK problem for PUTXY ∈ P̃(PXY ) is defined as

j(U,X, Y |T ) :=
[
log 1

PX|UT (X|U,T )

log PY |UT (Y |U,T )
PY (Y )

]
. (124)

Note that the mean of the entropy-information density vector in (124) is the vector of the entropy and mutual
information, i.e.,

J(PUTXY ) := E[j(U,X, Y |T )] =
[
H(X|U, T )
I(U ;Y |T )

]
. (125)

The mutual information I(U ;Y |T ) = I(U, T ;Y ) because T and Y are independent.

Definition 11. The entropy-information dispersion matrix for the WAK problem for a fixed PUTXY ∈ P̃(PXY ) is
defined as

V(PUTXY ) := ET [Cov(j(U,X, Y |T ))] (126)

=
∑

t∈T
PT (t)Cov(j(U,X, Y |t)). (127)

We abbreviate the deterministic quantities J(PUTXY ) ∈ R2
+ and V(PUTXY ) ≽ 0 as J and V respectively when

the distribution PUTXY ∈ P̃(PXY ) is obvious from the context.

Definition 12. If V(PUTXY ) ̸= 02×2, define Rin(n, ε;PUTXY ) to be the set of rate pairs (R1, R2) such that
R := [R1, R2]T satisfies

R ∈ J+
S (V, ε)√

n
+

2 log n

n
12. (128)

If V(PUTXY ) = 02×2, define Rin(n, ε;PUTXY ) to be the set of rate pairs (R1, R2) such that

R ∈ J+
2 log n

n
12. (129)

From the simplified CS-type bound for the WAK problem in Corollary 15, we can derive the following:

[Tan-Kosut 12, Nomura-Han 13]
：半正定値行列
：ガウスベクトル
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From the simplified CS-type bound for the WAK problem in Corollary 15, we can derive the following:
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Fig. 1. The boundaries of the region 1√
n
S (V, ϵ) for different values n, ϵ and V. On the left plot, V = [1 0.01; 0.01 1] (small condition

number) and on the right, V = [1 0.96; 0.96 1] (large condition number). The regions 1√
n
S (V, ϵ) lie to the top right corner of the

boundaries. S (V, ϵ) defined in (6) is a subset of R3 but in the figures, we only illustrate the projection of the set in two dimensions.

note that the boundaries are indeed curved due to the fact that V ≻ 0. Note that as n increases to infinity or ϵ
increases towards 1/2, the boundaries are translated closer to the horizontal and vertical axes. Also observe that as
the condition number1 V increases, i.e., V tends towards being singular, the corners of the curves become “sharper”
(or “less rounded”). Indeed, in the limiting case when V has rank one, the support of p(u) = N (u;0,V) belongs
to a subspace of dimension one. In this case, the set S (V, ϵ) is an axis-aligned, unbounded rectangle (a cuboid in
higher dimensions). See further discussions in Section II-B2.

Definition 3. The entropy density vector is defined as

h(X1,X2) :=

⎡

⎣

− log pX1|X2
(X1|X2)

− log pX2|X1
(X2|X1)

− log pX1,X2
(X1,X2)

⎤

⎦ . (7)

The mean of the entropy density vector is the vector of entropies, i.e.,

E[h(X1,X2)] = H(pX1,X2
) :=

⎡

⎣

H(X1|X2)
H(X2|X1)
H(X1,X2)

⎤

⎦ . (8)

Definition 4. The entropy dispersion matrix V(pX1,X2
) is the covariance matrix of the random vector h(X1,X2)

i.e.,
V(pX1,X2

) = Cov(h(X1,X2)). (9)

We abbreviate the deterministic quantitiesH(pX1,X2
) ∈ R3 andV(pX1,X2

) ≽ 0 asH andV respectively. Observe
that V is an analogue of the scalar dispersion quantities that have gained attention in recent years [9], [21]–[23].
We will find it convenient, in this and following sections, to define the non-negative rate vector R ∈ R3 as

R :=

⎡

⎣

R1

R2

R1 +R2

⎤

⎦ . (10)

Definition 5. Define the region Rin(n, ϵ) ⊂ R2 to be the set of rate pairs (R1, R2) that satisfy

R ∈ H+
1√
n

S (V, ϵ) +
ν log n

n
1, (11)

1Recall that the condition number of V is the ratio of its maximum to minimum eigenvalues, i.e., cond(V) = λmax(V)/λmin(V).
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次のステップ

この調子でより複雑なマルチユーザの問題に進んで行きたいが，

色々困難な点がある…

• 補助確率変数
• マルコフ連鎖



Gray-Wynerネットワーク
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Fig. 1. A description of the Gray-Wyner network.

Wyner network, and investigate its properties. Then, in Section IV, we show our second-order coding theorem and

its proof. In Section V, we further investigate the Pangloss plane. We conclude the paper with some discussions in

Section VI.

II. PROBLEM FORMULATION

In this section, we introduce our notations and recall the Gray-Wyner network [6].

A. Notations

Random variables (e.g. X) and their realizations (e.g. x) are in capital and lower case, respectively. All random

variables take values in some finite alphabets which are denoted in calligraphic font (e.g. X ). The cardinality of X

is denoted as |X |. Let the random vector Xn = (X1, . . . , Xn) and similarly for a realization x = (x1, . . . , xn). For

information theoretic quantities, we follows the same notations as [4]; e.g. the entropy and the mutual information

are denoted by H(X) and I(X ^ Y ), respectively. Also, the expectation and the variance are denoted by E[·] and

V[·] respectively. Q(t) =
R1
t

1p
2⇡

e�
u2

2 du is the upper tail probability of the standard normal distribution; its inverse

is denoted by Q�1(") for 0 < " < 1.

The set of all distribution on X is denoted by P(X ). The set of all channels from X to Y is denoted by P(Y|X ).

We will also use the method of types [4]. For a given sequence x, its type is denoted by tx. The set of all types on

X is denoted by Pn(X ), and the set of all conditional types is denoted by Pn(Y|X ). For a given type PX̄ 2 Pn(X ),

the set of all sequences with type PX̄ is denoted by T
n
X̄

. For a given joint type PX̄Ȳ and a sequence x 2 T
n
X̄

, the

set of all sequences whose joint type with x is PX̄Ȳ is denoted by T
n
Ȳ |X̄(x). For type PX̄ and joint type PX̄Ȳ , we

use notations H(X̄) and I(X̄ ^ Ȳ ), where the random variables are distributed according to those type and joint

type.

For a given distribution PX , its support is denoted by supp(PX). In latter sections, we will differentiate a

certain function of distributions around a given joint distribution PXY , which may not have full support. For that
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purpose, it is convenient to introduce a parametrization for distribution P that has the same support as PXY .2 Let

m = supp(PXY ); without loss of generality, we assign 1 through m to elements in supp(PXY ). Then, parameter

✓(P ) 2 Rm�1 is defined as ✓i = P (i) for i = 1, . . . ,m � 1; apparently it holds P (m) = 1 �
Pm�1

i=1 ✓i. The

distribution corresponding to parameter ✓ is denoted by P✓.

B. Gray-Wyner Network

In this section, we recall the lossless source coding problem over the Gray-Wyner network (see Fig. 1). Let us

consider a correlated source (X,Y ) taking values in X ⇥Y and having joint distribution PXY . We consider a block

coding of length n. A coding system consists of three encoders

'(n)
0 : Xn

⇥ Y
n
! M

(n)
0 , (1)

'(n)
1 : Xn

⇥ Y
n
! M

(n)
1 , (2)

'(n)
2 : Xn

⇥ Y
n
! M

(n)
2 , (3)

and two decoders

 (n)
1 : M(n)

0 ⇥M
(n)
1 ! X

n, (4)

 (n)
2 : M(n)

0 ⇥M
(n)
2 ! Y

n. (5)

The message encoded by '(n)
0 is sent over the common channel, and received by both the decoders; the message

encoded by '(n)
i is sent over the private channel to ith decoder, where i = 1, 2. The first decoder is required to

reproduce Xn almost losslessly, while the second decoder is required to reproduce Y n almost losslessly. In the

following, we omit the blocklength n when it is obvious from the context. For (Xn, Y n) ⇠ P , the error probability

of code �n = ('0,'1,'2, 1, 2) is defined as

Pe(�n|P ) := Pr

✓
( 1('0(X

n, Y n),'1(X
n, Y n)), 2('0(X

n, Y n),'2(X
n, Y n))) 6= (Xn, Y n)

◆
. (6)

Then, the correct probability of the code is defined as

Pc(�n|P ) := 1� Pe(�n|P ). (7)

In the following, we are particularly interested in the case where P is a product distribution Pn
XY , i.e., (Xn, Y n)

is an i.i.d. sequence.

Definition 1 (First-Order Region) The rate triplet (r0, r1, r2) 2 R3
+ is defined to be achievable if there exists a

2In the literature [13] (see also [22]), the probability simplex is embedded into the Euclidian space, and the parameterization on that Euclidian

space is used. However in this paper, we regard the probability simplex as a manifold (cf. [1]), and we consider a parameterization that is

different from the literature so that we do not have to extend the domain of a certain function to outside the probability simplex.
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✓(P ) 2 Rm�1 is defined as ✓i = P (i) for i = 1, . . . ,m � 1; apparently it holds P (m) = 1 �
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i=1 ✓i. The

distribution corresponding to parameter ✓ is denoted by P✓.
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0 ⇥M
(n)
1 ! X

n, (4)

 (n)
2 : M(n)

0 ⇥M
(n)
2 ! Y

n. (5)

The message encoded by '(n)
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In the following, we are particularly interested in the case where P is a product distribution Pn
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is achievable                                s.t.9{�}1n=1
def()
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sequence of code {�n}
1
n=1 such that

lim sup
n!1

1

n
log |M(n)

0 |  r0, (8)

lim sup
n!1

1

n
log |M(n)

1 |  r1, (9)

lim sup
n!1

1

n
log |M(n)

2 |  r2, (10)

and

lim
n!1

Pe(�n|P
n
XY ) = 0. (11)

Then, the achievable region RGW(PXY ) is defined as the set of all achievable rate triplets.

The first-order region RGW(PXY ) is characterized in [6]. Let R⇤
GW(PXY ) be the set of all rate triplets (r0, r1, r2)

such that there exists a test channel PW |XY with |W|  |X ||Y|+ 2 such that

r0 � I(W ^X,Y ), (12)

r1 � H(X|W ), (13)

r2 � H(Y |W ). (14)

Proposition 1 ([6]) It holds that3

RGW(PXY ) = R
⇤
GW(PXY ). (15)

In this paper, we are interested in the second-order region. We follow the second-order formulation in [24].

Definition 2 (Second-Order Region) For a boundary point (r⇤0 , r
⇤
1 , r

⇤
2) of RGW(PXY ) and 0 < " < 1, the rate

triplet (L0, L1, L2) 2 R3 is defined to be (", r⇤0 , r
⇤
1 , r

⇤
2)-achievable if there exists a sequence of code {�n}

1
n=1 such

that

lim sup
n!1

log |M(n)
0 |� nr⇤0
p
n

 L0, (16)

lim sup
n!1

log |M(n)
1 |� nr⇤1
p
n

 L1, (17)

lim sup
n!1

log |M(n)
2 |� nr⇤2
p
n

 L2, (18)

and

lim sup
n!1

Pe(�n|P
n
XY )  ". (19)

Then, the (", r⇤0 , r
⇤
1 , r

⇤
2)-achievable region LGW("; r⇤0 , r

⇤
1 , r

⇤
2) is defined as the set of all (", r⇤0 , r⇤1 , r⇤2)-achievable rate

triplets.

3In fact, the cardinality bound was not shown in [6], but it can be proved by the support lemma [4] (see also [14]).
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20

for some �i,n = o(1/
p
n). Thus, in the same manner as the achievability part, we have15

Pr

✓
r0,n < R(r1,n, r2,n|tXnY n)

◆
(182)

� Pr

✓
tXnY n 2 Kn, r0,n < R(r1,n, r2,n|tXnY n)

◆
(183)

� Pr

✓
tXnY n 2 Kn, R(r⇤1 , r

⇤
2 |PXY ) + �?

1
L1
p
n
+ �?

2
L2
p
n
<

1

n

nX

i=1

|XY (Xi, Yi)� �n

◆
(184)

� Pr

✓
R(r⇤1 , r

⇤
2 |PXY ) + �?

1
L1
p
n
+ �?

2
L2
p
n
<

1

n

nX

i=1

|XY (Xi, Yi)� �n

◆
� Pr

✓
tXnY n /2 Kn

◆
(185)

� Pr

✓
R(r⇤1 , r

⇤
2 |PXY ) + �?

1
L1
p
n
+ �?

2
L2
p
n
<

1

n

nX

i=1

|XY (Xi, Yi)� �n

◆
�

2(m� 1)

n2
(186)

for some �n = o(1/
p
n). Thus, by the central limit theorem, we have

lim inf
n!1

Pe(�n|P
n
XY ) > ", (187)

which implies that any (L0, L1, L2) satisfying (180) is not (", r⇤0 , r⇤1 , r⇤2)-achievable.

V. ON THE PANGLOSS PLANE

In general, it is extremely difficult to compute the first-order region R
⇤
GW(PXY ), and so do the second-order

region LGW("; r⇤0 , r
⇤
1 , r

⇤
2). Nevertheless, to get some insight, let us consider the following tractable case.

The region R
⇤
GW(PXY ) is contained in the outer region characterized by three planes (cf. Fig. 2):

r0 + r1 + r2 � H(X,Y ), (188)

r0 + r1 � H(X), (189)

r0 + r2 � H(Y ). (190)

The first plane is called the Pangloss plane in [6]. Let

H(PXY ) :=
�
(r0, r1, r2) 2 RGW(PXY ) : r0 + r1 + r2 = H(X,Y )

 
(191)

=
�
(I(W ^X,Y ), H(X|W ), H(Y |W )) : |W|  |X ||Y|+ 2, X ���W ��� Y

 
(192)

be the set of all achievable rate triplets on the Pangloss plane, where X ��� W ��� Y means (X,W, Y ) form

Markov chain. Although explicit characterization of H(PXY ) is not clear in general, it is broader than the following

triangular region

conv
�
(H(X,Y ), 0, 0), (H(Y ), H(X|Y ), 0), (H(X), 0, H(Y |X))

 
, (193)

and the altitude of the lowermost points is r0 = CW(PXY ), where

CW(PXY ) := min
�
r0 : 9r1, r2 s.t. (r0, r1, r2) 2 H(PXY )

 
(194)

= min
�
I(W ^X,Y ) : |W|  |X ||Y|, X ���W ��� Y

 
(195)

15Note also that r⇤0 = R(r⇤1 , r
⇤
2 |PXY ).
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5

sequence of code {�n}
1
n=1 such that

lim sup
n!1

1

n
log |M(n)

0 |  r0, (8)

lim sup
n!1

1

n
log |M(n)

1 |  r1, (9)

lim sup
n!1

1

n
log |M(n)

2 |  r2, (10)

and

lim
n!1

Pe(�n|P
n
XY ) = 0. (11)

Then, the achievable region RGW(PXY ) is defined as the set of all achievable rate triplets.

The first-order region RGW(PXY ) is characterized in [6]. Let R⇤
GW(PXY ) be the set of all rate triplets (r0, r1, r2)

such that there exists a test channel PW |XY with |W|  |X ||Y|+ 2 such that

r0 � I(W ^X,Y ), (12)

r1 � H(X|W ), (13)

r2 � H(Y |W ). (14)

Proposition 1 ([6]) It holds that3

RGW(PXY ) = R
⇤
GW(PXY ). (15)

In this paper, we are interested in the second-order region. We follow the second-order formulation in [24].

Definition 2 (Second-Order Region) For a boundary point (r⇤0 , r
⇤
1 , r

⇤
2) of RGW(PXY ) and 0 < " < 1, the rate

triplet (L0, L1, L2) 2 R3 is defined to be (", r⇤0 , r
⇤
1 , r

⇤
2)-achievable if there exists a sequence of code {�n}

1
n=1 such

that

lim sup
n!1

log |M(n)
0 |� nr⇤0
p
n

 L0, (16)

lim sup
n!1

log |M(n)
1 |� nr⇤1
p
n

 L1, (17)

lim sup
n!1

log |M(n)
2 |� nr⇤2
p
n

 L2, (18)

and

lim sup
n!1

Pe(�n|P
n
XY )  ". (19)

Then, the (", r⇤0 , r
⇤
1 , r

⇤
2)-achievable region LGW("; r⇤0 , r

⇤
1 , r

⇤
2) is defined as the set of all (", r⇤0 , r⇤1 , r⇤2)-achievable rate

triplets.

3In fact, the cardinality bound was not shown in [6], but it can be proved by the support lemma [4] (see also [14]).
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September 29, 2015 DRAFT

is                           -achievable                                s.t.9{�}1n=1
def()

5

sequence of code {�n}
1
n=1 such that

lim sup
n!1

1

n
log |M(n)

0 |  r0, (8)

lim sup
n!1

1

n
log |M(n)

1 |  r1, (9)

lim sup
n!1

1

n
log |M(n)

2 |  r2, (10)

and

lim
n!1

Pe(�n|P
n
XY ) = 0. (11)

Then, the achievable region RGW(PXY ) is defined as the set of all achievable rate triplets.

The first-order region RGW(PXY ) is characterized in [6]. Let R⇤
GW(PXY ) be the set of all rate triplets (r0, r1, r2)

such that there exists a test channel PW |XY with |W|  |X ||Y|+ 2 such that

r0 � I(W ^X,Y ), (12)

r1 � H(X|W ), (13)

r2 � H(Y |W ). (14)

Proposition 1 ([6]) It holds that3

RGW(PXY ) = R
⇤
GW(PXY ). (15)

In this paper, we are interested in the second-order region. We follow the second-order formulation in [24].

Definition 2 (Second-Order Region) For a boundary point (r⇤0 , r
⇤
1 , r

⇤
2) of RGW(PXY ) and 0 < " < 1, the rate

triplet (L0, L1, L2) 2 R3 is defined to be (", r⇤0 , r
⇤
1 , r

⇤
2)-achievable if there exists a sequence of code {�n}

1
n=1 such

that

lim sup
n!1

log |M(n)
0 |� nr⇤0
p
n

 L0, (16)

lim sup
n!1

log |M(n)
1 |� nr⇤1
p
n

 L1, (17)

lim sup
n!1

log |M(n)
2 |� nr⇤2
p
n

 L2, (18)

and

lim sup
n!1

Pe(�n|P
n
XY )  ". (19)

Then, the (", r⇤0 , r
⇤
1 , r

⇤
2)-achievable region LGW("; r⇤0 , r

⇤
1 , r

⇤
2) is defined as the set of all (", r⇤0 , r⇤1 , r⇤2)-achievable rate

triplets.

3In fact, the cardinality bound was not shown in [6], but it can be proved by the support lemma [4] (see also [14]).

September 29, 2015 DRAFT

5

sequence of code {�n}
1
n=1 such that

lim sup
n!1

1

n
log |M(n)

0 |  r0, (8)

lim sup
n!1

1

n
log |M(n)

1 |  r1, (9)

lim sup
n!1

1

n
log |M(n)

2 |  r2, (10)

and

lim
n!1

Pe(�n|P
n
XY ) = 0. (11)

Then, the achievable region RGW(PXY ) is defined as the set of all achievable rate triplets.

The first-order region RGW(PXY ) is characterized in [6]. Let R⇤
GW(PXY ) be the set of all rate triplets (r0, r1, r2)

such that there exists a test channel PW |XY with |W|  |X ||Y|+ 2 such that

r0 � I(W ^X,Y ), (12)

r1 � H(X|W ), (13)

r2 � H(Y |W ). (14)

Proposition 1 ([6]) It holds that3

RGW(PXY ) = R
⇤
GW(PXY ). (15)

In this paper, we are interested in the second-order region. We follow the second-order formulation in [24].

Definition 2 (Second-Order Region) For a boundary point (r⇤0 , r
⇤
1 , r

⇤
2) of RGW(PXY ) and 0 < " < 1, the rate

triplet (L0, L1, L2) 2 R3 is defined to be (", r⇤0 , r
⇤
1 , r

⇤
2)-achievable if there exists a sequence of code {�n}

1
n=1 such

that

lim sup
n!1

log |M(n)
0 |� nr⇤0
p
n

 L0, (16)

lim sup
n!1

log |M(n)
1 |� nr⇤1
p
n

 L1, (17)

lim sup
n!1

log |M(n)
2 |� nr⇤2
p
n

 L2, (18)

and

lim sup
n!1

Pe(�n|P
n
XY )  ". (19)

Then, the (", r⇤0 , r
⇤
1 , r

⇤
2)-achievable region LGW("; r⇤0 , r

⇤
1 , r

⇤
2) is defined as the set of all (", r⇤0 , r⇤1 , r⇤2)-achievable rate

triplets.

3In fact, the cardinality bound was not shown in [6], but it can be proved by the support lemma [4] (see also [14]).

September 29, 2015 DRAFT

5

sequence of code {�n}
1
n=1 such that

lim sup
n!1

1

n
log |M(n)

0 |  r0, (8)

lim sup
n!1

1

n
log |M(n)

1 |  r1, (9)

lim sup
n!1

1

n
log |M(n)

2 |  r2, (10)

and

lim
n!1

Pe(�n|P
n
XY ) = 0. (11)

Then, the achievable region RGW(PXY ) is defined as the set of all achievable rate triplets.

The first-order region RGW(PXY ) is characterized in [6]. Let R⇤
GW(PXY ) be the set of all rate triplets (r0, r1, r2)

such that there exists a test channel PW |XY with |W|  |X ||Y|+ 2 such that

r0 � I(W ^X,Y ), (12)

r1 � H(X|W ), (13)

r2 � H(Y |W ). (14)

Proposition 1 ([6]) It holds that3

RGW(PXY ) = R
⇤
GW(PXY ). (15)

In this paper, we are interested in the second-order region. We follow the second-order formulation in [24].

Definition 2 (Second-Order Region) For a boundary point (r⇤0 , r
⇤
1 , r

⇤
2) of RGW(PXY ) and 0 < " < 1, the rate

triplet (L0, L1, L2) 2 R3 is defined to be (", r⇤0 , r
⇤
1 , r

⇤
2)-achievable if there exists a sequence of code {�n}

1
n=1 such

that

lim sup
n!1

log |M(n)
0 |� nr⇤0
p
n

 L0, (16)

lim sup
n!1

log |M(n)
1 |� nr⇤1
p
n

 L1, (17)

lim sup
n!1

log |M(n)
2 |� nr⇤2
p
n

 L2, (18)

and

lim sup
n!1

Pe(�n|P
n
XY )  ". (19)

Then, the (", r⇤0 , r
⇤
1 , r

⇤
2)-achievable region LGW("; r⇤0 , r

⇤
1 , r

⇤
2) is defined as the set of all (", r⇤0 , r⇤1 , r⇤2)-achievable rate

triplets.

3In fact, the cardinality bound was not shown in [6], but it can be proved by the support lemma [4] (see also [14]).

September 29, 2015 DRAFT

and

5

sequence of code {�n}
1
n=1 such that

lim sup
n!1

1

n
log |M(n)

0 |  r0, (8)

lim sup
n!1

1

n
log |M(n)

1 |  r1, (9)

lim sup
n!1

1

n
log |M(n)

2 |  r2, (10)

and

lim
n!1

Pe(�n|P
n
XY ) = 0. (11)

Then, the achievable region RGW(PXY ) is defined as the set of all achievable rate triplets.

The first-order region RGW(PXY ) is characterized in [6]. Let R⇤
GW(PXY ) be the set of all rate triplets (r0, r1, r2)

such that there exists a test channel PW |XY with |W|  |X ||Y|+ 2 such that

r0 � I(W ^X,Y ), (12)

r1 � H(X|W ), (13)

r2 � H(Y |W ). (14)

Proposition 1 ([6]) It holds that3

RGW(PXY ) = R
⇤
GW(PXY ). (15)

In this paper, we are interested in the second-order region. We follow the second-order formulation in [24].

Definition 2 (Second-Order Region) For a boundary point (r⇤0 , r
⇤
1 , r

⇤
2) of RGW(PXY ) and 0 < " < 1, the rate

triplet (L0, L1, L2) 2 R3 is defined to be (", r⇤0 , r
⇤
1 , r

⇤
2)-achievable if there exists a sequence of code {�n}

1
n=1 such

that

lim sup
n!1

log |M(n)
0 |� nr⇤0
p
n

 L0, (16)

lim sup
n!1

log |M(n)
1 |� nr⇤1
p
n

 L1, (17)

lim sup
n!1

log |M(n)
2 |� nr⇤2
p
n

 L2, (18)

and

lim sup
n!1

Pe(�n|P
n
XY )  ". (19)

Then, the (", r⇤0 , r
⇤
1 , r

⇤
2)-achievable region LGW("; r⇤0 , r

⇤
1 , r

⇤
2) is defined as the set of all (", r⇤0 , r⇤1 , r⇤2)-achievable rate

triplets.

3In fact, the cardinality bound was not shown in [6], but it can be proved by the support lemma [4] (see also [14]).

September 29, 2015 DRAFT

5

sequence of code {�n}
1
n=1 such that

lim sup
n!1

1

n
log |M(n)

0 |  r0, (8)

lim sup
n!1

1

n
log |M(n)

1 |  r1, (9)

lim sup
n!1

1

n
log |M(n)

2 |  r2, (10)

and

lim
n!1

Pe(�n|P
n
XY ) = 0. (11)

Then, the achievable region RGW(PXY ) is defined as the set of all achievable rate triplets.

The first-order region RGW(PXY ) is characterized in [6]. Let R⇤
GW(PXY ) be the set of all rate triplets (r0, r1, r2)

such that there exists a test channel PW |XY with |W|  |X ||Y|+ 2 such that

r0 � I(W ^X,Y ), (12)

r1 � H(X|W ), (13)

r2 � H(Y |W ). (14)

Proposition 1 ([6]) It holds that3

RGW(PXY ) = R
⇤
GW(PXY ). (15)

In this paper, we are interested in the second-order region. We follow the second-order formulation in [24].

Definition 2 (Second-Order Region) For a boundary point (r⇤0 , r
⇤
1 , r

⇤
2) of RGW(PXY ) and 0 < " < 1, the rate

triplet (L0, L1, L2) 2 R3 is defined to be (", r⇤0 , r
⇤
1 , r

⇤
2)-achievable if there exists a sequence of code {�n}

1
n=1 such

that

lim sup
n!1

log |M(n)
0 |� nr⇤0
p
n

 L0, (16)

lim sup
n!1

log |M(n)
1 |� nr⇤1
p
n

 L1, (17)

lim sup
n!1

log |M(n)
2 |� nr⇤2
p
n

 L2, (18)

and

lim sup
n!1

Pe(�n|P
n
XY )  ". (19)

Then, the (", r⇤0 , r
⇤
1 , r

⇤
2)-achievable region LGW("; r⇤0 , r

⇤
1 , r

⇤
2) is defined as the set of all (", r⇤0 , r⇤1 , r⇤2)-achievable rate

triplets.

3In fact, the cardinality bound was not shown in [6], but it can be proved by the support lemma [4] (see also [14]).

September 29, 2015 DRAFT

: the set of all                           -achievable rates

5

sequence of code {�n}
1
n=1 such that

lim sup
n!1

1

n
log |M(n)

0 |  r0, (8)

lim sup
n!1

1

n
log |M(n)

1 |  r1, (9)

lim sup
n!1

1

n
log |M(n)

2 |  r2, (10)

and

lim
n!1

Pe(�n|P
n
XY ) = 0. (11)

Then, the achievable region RGW(PXY ) is defined as the set of all achievable rate triplets.

The first-order region RGW(PXY ) is characterized in [6]. Let R⇤
GW(PXY ) be the set of all rate triplets (r0, r1, r2)

such that there exists a test channel PW |XY with |W|  |X ||Y|+ 2 such that

r0 � I(W ^X,Y ), (12)

r1 � H(X|W ), (13)

r2 � H(Y |W ). (14)

Proposition 1 ([6]) It holds that3

RGW(PXY ) = R
⇤
GW(PXY ). (15)

In this paper, we are interested in the second-order region. We follow the second-order formulation in [24].

Definition 2 (Second-Order Region) For a boundary point (r⇤0 , r
⇤
1 , r

⇤
2) of RGW(PXY ) and 0 < " < 1, the rate

triplet (L0, L1, L2) 2 R3 is defined to be (", r⇤0 , r
⇤
1 , r

⇤
2)-achievable if there exists a sequence of code {�n}

1
n=1 such

that

lim sup
n!1

log |M(n)
0 |� nr⇤0
p
n

 L0, (16)

lim sup
n!1

log |M(n)
1 |� nr⇤1
p
n

 L1, (17)

lim sup
n!1

log |M(n)
2 |� nr⇤2
p
n

 L2, (18)

and

lim sup
n!1

Pe(�n|P
n
XY )  ". (19)

Then, the (", r⇤0 , r
⇤
1 , r

⇤
2)-achievable region LGW("; r⇤0 , r

⇤
1 , r

⇤
2) is defined as the set of all (", r⇤0 , r⇤1 , r⇤2)-achievable rate

triplets.

3In fact, the cardinality bound was not shown in [6], but it can be proved by the support lemma [4] (see also [14]).

September 29, 2015 DRAFT

(r⇤0 , r
⇤
1 , r

⇤
2) 2 RGW(PXY )



GWネットワークのtilted情報量密度

6

In contrast to first-order rates, second-order rates may be negative even though they are conventionally called

“rates”.

III. TILTED INFORMATION DENSITY

In this section, we introduce the tilted information density for the Gray-Wyner network in the spirit of [16]. The

tilted information density plays an important role to characterize the second-order region LGW("; r⇤0 , r
⇤
1 , r

⇤
2) in the

next section.

Given r1, r2 > 0, let

R(r1, r2|PXY ) := min
�
r0 : (r0, r1, r2) 2 R

⇤
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= min
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. (21)

Since R
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GW(PXY ) is a convex region, an optimal test channel satisfies the conditions r1 � H(X|W ) and r2 �

H(Y |W ) with equality unless R(r1, r2|PXY ) = 0.

Throughout the paper, we assume that R⇤
GW(PXY ) is smooth at a boundary point (r⇤0 , r⇤1 , r⇤2) of our interest,4 i.e.,
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i (PXY ) := �
@

@ri
R(r1, r2|PXY )

����
r=r⇤

(22)

is well defined for i = 1, 2, where r⇤ = (r⇤1 , r
⇤
2). Note that �?

i � 0. In the following, we assume that they are

strictly positive.
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following function:
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From the second expression, we can find that the following holds:
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⇤
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min
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◆
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PŶ |Ŵ (y|W̄ )

◆��
, (29)

where each term exp{· · · } in the expectation is understood as 0 if either PX̂|Ŵ (x|w) = 0 or PŶ |Ŵ (y|w) = 0, and

the expectation is taken with respect to W̄ ⇠ PW̄ .

4The region R
⇤
GW(PXY ) has some singular points in general, and the following analysis does not apply for those singular points.
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PŶ |Ŵ
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where each term exp{· · · } in the expectation is understood as 0 if either PX̂|Ŵ (x|w) = 0 or PŶ |Ŵ (y|w) = 0, and
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4The region R
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min
PW |XY

F (PW |XY , PW̄ , PX̂|Ŵ , PŶ |Ŵ ). (27)
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PX̂|Ŵ (x|W̄ )

◆
+ �2

✓
r⇤2 � log

1
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we have

@R(r⇤1 , r
⇤
2 |P✓)

@✓i

����
✓=⇠

=
X

x,y

@P✓(x, y)

@✓i

����
✓=⇠

|X⇠Y⇠(x, y) +
X

x,y

P⇠(x, y)
@|X✓Y✓ (x, y)

@✓i

����
✓=⇠

(59)

= |X⇠Y⇠(i)� |X⇠Y⇠(m) +
X

x,y

P⇠(x, y)
@|X✓Y✓ (x, y)

@✓i

����
✓=⇠

. (60)

We now evaluate the second term as follows. By (54) and the assumption (56), we have

E[|X✓Y✓ (X⇠, Y⇠)] =
X

w,x,y

P⇠(x, y)P
?
W |X⇠Y⇠

(w|x, y)|X✓Y✓ (x, y) (61)

=
X

w,x,y

P⇠(x, y)P
?
W |X⇠Y⇠

(w|x, y)


log

P ?
W |X✓Y✓

(w|x, y)

PW?
✓
(w)

(62)

+ �?
1,✓

✓
log

1

PX✓|W?
✓
(x|w)

� r⇤1

◆
+ �?

2,✓

✓
log

1

PY✓|W?
✓
(y|w)

� r⇤2

◆�
, (63)

where �i,✓ is defined by (22) for P✓. Thus, we have11

X

x,y

P⇠(x, y)
@|X✓Y✓ (x, y)

@✓i

����
✓=⇠

=
@E[|X✓Y✓ (X⇠, Y⇠)]

@✓i

����
✓=⇠

(64)

=
@E[logP ?

W |X✓Y✓
(W ?

⇠ |X⇠, Y⇠)]

@✓i

����
✓=⇠

�
@E[logPW?

✓
(W ?

⇠ )]

@✓i

����
✓=⇠

(65)

+
@�?

1,✓

@✓i

����
✓=⇠

✓
H(X⇠|W

?
⇠ )� r⇤1

◆
� �?

1,⇠

@E[logPX✓|W?
✓
(X⇠|W ?

⇠ )]

@✓i

����
✓=⇠

(66)

+
@�?

2,✓

@✓i

����
✓=⇠

✓
H(Y⇠|W

?
⇠ )� r⇤2

◆
� �?

2,⇠

@E[logPY✓|W?
✓
(Y⇠|W ?

⇠ )]

@✓i

����
✓=⇠

(67)

=
@

@✓i
E

P ?
W |X✓Y✓

(W ?
⇠ |X⇠, Y⇠)

P ?
W |X⇠Y⇠

(W ?
⇠ |X⇠, Y⇠)

�����
✓=⇠

�
@

@✓i
E


PW?

✓
(W ?

⇠ )

PW?
⇠
(W ?

⇠ )

�����
✓=⇠

(68)

� �?
1,⇠

@

@✓i
E


PX✓|W?

✓
(X⇠|W ?

⇠ )

PX⇠|W?
⇠
(X⇠|W ?

⇠ )

�����
✓=⇠

� �?
2,⇠

@

@✓i
E


PY✓|W?

✓
(Y⇠|W ?

⇠ )

PY⇠|W?
⇠
(Y⇠|W ?

⇠ )

�����
✓=⇠

(69)

= 0, (70)

where the third equality follows from H(X⇠|W ?
⇠ ) = r⇤1 and H(Y⇠|W ?

⇠ ) = r⇤2 .

IV. CODING THEOREM

In this section, we characterize the second-order region of the Gray-Wyner network. We first describe the

statement, and then it will be proved in Sections IV-A and IV-B.

Theorem 1 For a given boundary point (r⇤0 , r⇤1 , r⇤2) 2 RGW(PXY ), suppose that the function R(r1, r2|P✓) defined

by (20) is twice differentiable with respect to (r1, r2, ✓) around (r⇤1 , r
⇤
2 , ✓(PXY )) and those second derivatives are

bounded. Also, a regularity condition for Lemma 3 is satisfied. Then, we have

LGW("; r
⇤
0 , r

⇤
1 , r

⇤
2) =

�
(L0, L1, L2) : L0 + �?

1L1 + �?
2L2 �

p
VXY Q

�1(")
 

(71)

11In the following calculation, the base of logarithm is e instead of 2, which is irrelevant to the final answer.
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for 0 < " < 1, where �?
i is given by (22) and

VXY := V
⇥
|XY (X,Y )

⇤
. (72)

A. Proof of Achievability

In this section, we prove the achievability part of Theorem 1. For each type PX̄Ȳ 2 Pn(X ⇥ Y), we pick a

conditional type PW̄ |X̄Ȳ 2 Pn(W|X ⇥Y), and then construct a code Cn ⇢ T
n
W̄

such that, for every (x,y) 2 T
n
X̄Ȳ

,

there exists w 2 Cn satisfying (w,x,y) 2 T
n
W̄X̄Ȳ

. Basic strategy is the same as the covering lemma in the rate

distortion (cf. [40] and [4, Chapter 9]).

Lemma 4 Suppose that n � n0(|X |, |Y|, |W|). Given type PX̄Ȳ 2 Pn(X ⇥ Y) and any test channel PW |X̄Ȳ (not

necessarily conditional type), there exists a conditional type PW̄ |X̄Ȳ satisfying

��PW̄ |X̄Ȳ (w|x, y)� PW |X̄Ȳ (w|x, y)
��  1

nPX̄Ȳ (x, y)
(73)

for every (x, y) 2 supp(PX̄Ȳ ) and w 2 supp(PW |X̄Ȳ (·|x, y)), and a subset Cn ⇢ T
n
W̄

such that

|Cn|  exp
�
nI(W̄ ^ X̄, Ȳ ) + (|X ||Y||W|+ 4) log(n+ 1)

 
(74)

and such that, for any (x,y) 2 T
n
X̄Ȳ

, there exists w 2 Cn satisfying (w,x,y) 2 T
n
W̄X̄Ȳ

.

Proof: By truncating the given test channel PW |X̄Ȳ into conditional type, we can obtain conditional type

PW̄ |X̄Ȳ satisfying (73). Let Zmn = {Z1, . . . , Zmn} be i.i.d. and uniform over T n
W̄

. We will show

E

 X

(x,y)2T n
X̄Ȳ

1[(Zi,x,y) /2 T
n
W̄X̄Ȳ 81  i  mn]

�
< 1, (75)

which implies that there exists Cn with |Cn|  mn satisfying the desired property. The lefthand side can be

manipulated as
X

(x,y)2T n
X̄Ȳ

E


1[(Zi,x,y) /2 T

n
W̄X̄Ȳ 81  i  mn]

�
(76)

=
X

(x,y)2T n
X̄Ȳ

✓
1�

|T
n
W̄ |X̄Ȳ

(x,y)|

|T
n
W̄
|

◆mn

(77)



X

(x,y)2T n
X̄Ȳ

exp

⇢
�

|T
n
W̄ |X̄Ȳ

(x,y)|

|T
n
W̄
|

mn

�
, (78)

where the last inequality follows from (1� t)m  exp{�tm} for 0 < t < 1. Furthermore, it can be upper bounded
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証明はタイプに基づく手法（[Ingber-Kochman 11]）

テイラー展開を経由してスペクトルの振舞に帰着

tXnY n

直接このようなバウンドが出せればよいのだが…

(Xn, Y n)

(r0,n, r1,n, r2,n) =

✓
r⇤o +

L0p
n
, r⇤1 +

L1p
n
, r⇤2 +

L2p
n

◆
For                                                                                and

r0,n < R(r1,n, r2,n|tXnY n)

()

15

Thus, if we set

1

n
log |M(n)

0 | = R(r⇤1 , r
⇤
2 |PXY ) +

L0
p
n
+

(4|X ||Y||W|+ 4 + c) log(n+ 1)

n
, (117)

there exists a code �n such that

Pe(�n|P
n
XY )  Pr

✓
R(r⇤1 , r

⇤
2 |PXY ) +

L0
p
n
+ �?1

L1
p
n
+ �?2

L2
p
n
<

1

n

nX

i=1

|XY (Xi, Yi)

◆
+

2(m� 1)

n2
(118)

= Pr

✓
L0 + �?1L1 + �?2L2 <

1
p
n

✓ nX

i=1

|XY (Xi, Yi)� nR(r⇤1 , r
⇤
2 |PXY )

◆◆
+

2(m� 1)

n2
. (119)

Thus, if we set L0, L1, L2 so that

L0 + �?1L1 + �?2L2 �

p
VXY Q

�1("), (120)

by applying the central limit theorem, we have

lim sup
n!1

Pe(�n|P
n
XY )  ". (121)

Since this code also satisfies (16)-(18), we have shown (", r⇤0 , r
⇤
1 , r

⇤
2)-achievability of (L0, L1, L2).

B. Proof of Converse

In this section, we prove the converse part of Theorem 1. We first derive a kind of strong converse bound when

a code �n is applied to source (Xn, Y n) ⇠ PT n
X̄Ȳ

for the uniform distribution PT n
X̄Ȳ

on the type class for a fixed

type PX̄Ȳ .

Lemma 6 Suppose that the correct probability satisfies

Pc(�n|PT n
X̄Ȳ

) � 2�n↵n (122)

for some positive number ↵n. Let �n be another positive number. Then there exists PW̄ |X̄Ȳ with |W|  |X ||Y|+2

such that

1

n
log |M(n)

0 | � I(W̄ ^ X̄, Ȳ )�
|X ||Y| log(n+ 1)

n
� (↵n + �n), (123)

1

n
log |M(n)

1 | � H(X̄|W̄ )�
1

n
� 2�n�n log |X |, (124)

1

n
log |M(n)

2 | � H(Ȳ |W̄ )�
1

n
� 2�n�n log |Y|, (125)

where (X̄, Ȳ ) ⇠ PX̄Ȳ .

Proof: We prove this lemma by using the perturbation approach used in [7], [8]. Let

DX̄Ȳ :=

⇢
(x,y) 2 T

n
X̄Ȳ :  1('0(x,y),'1(x,y)) = x, 2('0(x,y),'2(x,y)) = y

�
. (126)

be the set of correctly decodable sequences on T
n
X̄Ȳ

. Let QT n
X̄Ȳ

be a distribution on T
n
X̄Ȳ

defined by

QT n
X̄Ȳ

(x,y) =
2n(↵n+�n)PT n

X̄Ȳ
(x,y)

2n(↵n+�n)PT n
X̄Ȳ

(DX̄Ȳ ) + (1� PT n
X̄Ȳ

(DX̄Ȳ ))
(127)
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ktXnY n � PXY k1  O

 r
log n

n

!

Pe(�n|Pn
XY ) ' Pr

✓
r0,n < R(r1,n, r2,n|tXnY n)

◆

Pe(�n|Pn
XY ) ' Pr

✓
L0 + �?

1L1 + �?
2L2 <

1p
n

✓ nX

i=1

|XY (Xi, Yi)� nR(r⇤1 , r
⇤
2 |PXY )

◆◆

: joint type of



Wyner-Ahlswede-Körnerネットワーク

Xn

Y n

Mn

Ln

'(1)
n

'(2)
n

 n
X̂n

Gray-Wynerネットワークの次のステップ…
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Wyner-Ahlswede-Körnerネットワーク

Xn

Y n

Mn

Ln

'(1)
n

'(2)
n

 n
X̂n

R1 � H(X|U)

R2 � I(U ^ Y )

U ��� Y ���X



二次オーダー領域の内界

and

3

is based on a different non-asymptotic formula more akin to Wyner’s PBL. Also, since we have the freedom to
design γc and γb as sequences instead of fixed positive numbers, if we let them be O( 1√

n
)-larger than I(U ;Y ) and

H(X|U), then the error probability is smaller than a prescribed constant depending on the implied constants in the
O( · )-notations. This follows from the multivariate Berry-Esséen theorem [23]. This bound is useful because it is
a union of two events and Ec and Eb are both information spectrum [7] events which are easy to analyze.

Secondly, the preceding discussion shows that the bound in (2) also yields an achievable second-order coding
rate [11], [12]. However, unlike in the point-to-point setting [11], [12], [24], the achievable second-order coding
rate is expressed in terms of a so-called dispersion matrix [25]. We can easily show that if RWAK(n, ε) is the set
of all rate pairs (R1, R2) for which there exists a length-n WAK code with error probability not exceeding ε > 0
(i.e., the (n, ε)-optimal rate region), then for any PU |Y and all n sufficiently large, the set

[
I(U ;Y )
H(X|U)

]
+

S (V, ε)√
n

+O

(
log n

n

)
12 (5)

is an inner bound to RWAK(n, ε). In (5), S (V, ε) ⊂ R2 denotes the analogue of the Q−1 function [25] and it
depends on the covariance matrix of the so-called information-entropy density vector

[
log PY |U (U |Y )

PY (Y ) log 1
PX|U (X|U)

]T
. (6)

The precise statement for the second-order coding rate for the WAK problem is given in Theorem 24. We see
from (5) that for a fixed test channel PU |Y , the redundancy at blocklength n in order to achieve an error probability
ε > 0 is governed by the term S (V,ε)√

n
. The pre-factor of this term S (V, ε), is likened to the dispersion [24],

[26]–[28], and depends not only the variances of the information and entropy densities but also their correlations.
Thirdly, we note that the same flavour of non-asymptotic bounds and second-order coding rates hold verbatim

for the WZ and GP problems. In addition, since the canonical rate-distortion problem [29] is a special case of the
WZ problem, we show that our non-asymptotic achievability bound for the WZ problem, when suitably specialized,
yields the correct dispersion for lossy source coding [27], [28]. We do so using two methods: (i) the method of
types [30] and (ii) results involving the D-tilted information [28]. Finally, we not only improve on the existing
bounds for the GP problem [6], [10], but we also consider an almost sure cost constraint on the channel input.

B. Related Work

Wyner [2] and Ahlswede-Körner [3] were the first to consider and solve the problem of almost-lossless source
coding with coded side information. Weak converses were proved in [2], [3] and a strong converse was proved
in [31] using the “blowing-up lemma”. An information spectrum characterization was provided by Miyake and
Kanaya [8] and Kuzuoka [32] leveraged on the non-asymptotic bound which can be extracted from [8] to derive
the redundancy for the WAK problem. Verdú [6] strengthened the non-asymptotic bound and showed that the error
probability for the WAK problem is essentially bounded as

Pe(Φ) ! Pr(Ec) + Pr(Eb), (7)

which is the result upon using the union bound on our bound in (2). Again, we used the notation ! to mean
that the residual terms do not affect the second-order coding rates. Bounds on the error exponent were derived by
Kelly-Wagner [33].

Wyner and Ziv [4] derived the rate-distortion function for lossy source coding with decoder side-information.
However, they do not consider the probability of excess distortion. Rather, the quantity of interest is the expected
distortion and, more precisely, they considered the constraint that the asymptotic expected distortion is below a
distortion threshold D > 0. The generalization of the WZ problem for general correlated sources was considered
by Iwata and Muramatsu [9] who showed that the general WZ function can be written as a difference of a limit
superior in probability and a limit inferior in probability, reflecting the covering and packing components in the
classical achievability proof. Bounds on the error exponent were provided by Kelly-Wagner [33].

The problem of channel coding with noncausal random state information was solved by Gel’fand and Pinsker [5].
Subsequent work by Costa showed that, remarkably, there is no rate loss in the Gaussian case [34]. This is done
by choosing the auxiliary random variable to be a linear combination of the channel input and the state. A general

for some U ��� Y ���X

V = Cov

 
log 1

PX|U (X|U)

log
PY |U (Y |U)

PY (Y )

!

順定理，タイトかは不明 …

[SW-Kuzuoka-Tan 13]



二次オーダー領域の解決に向けて！
逆定理が難しい

強逆定理を示す様々なテクニックが開発されている：

• Ahlswede-Gács-Körner 76：Blowing-up補題

• Oohama 15：情報スペクトル＋大偏差

• Liu-Handel-Verdú 17：reverse hypercontractivity

• Watanabe 17：Gray-Wynerへの帰着＋[Gu-Effross 09]

どの方法も二次オーダー解決には不十分のようである…
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研究開始当初から情報スペクトル理論が存在したことは非常に恵まれていたと思う；

韓先生ならびに創始に携わった方々に感謝


