情報理論的暗号の最近の発展と未解決問題

IT研究会＠泉慶
November， 2017
渡辺 峻（東京農工大）
joint work with Himanshu Tyagi（IISc Bangalore）

Secret Key Cryptography

Eve

Alice
Bob

Shannon's Pessimistic Result

A secret key crypto system is secure only if

$$
H(K) \geq H(M)
$$

Key length must be as large as message length...

Wyner's Wiretap Channel

$W(y, z \mid x)=W_{1}(y \mid x) W_{2}(z \mid y):$ Degraded Wiretap Channel [Wyner 75]
General wiretap channel [Csiszár-Körner]

Secret Key Agreement: Model

[Maurer 93, Ahlswede-Csiszár 93]

Eve
 Z

Alice	Bob
X	Y

Secret Key Agreement: Protocol

[Maurer 93, Ahlswede-Csiszár 93]

Eve
 $Z \Pi$

$$
\begin{aligned}
\Pi_{1}= & \Pi_{1}(X) \\
\Pi_{2}= & \Pi_{2}\left(Y, \Pi_{1}\right) \\
& \vdots \\
\Pi_{r}= & \Pi_{r}\left(Y, \Pi_{1}, \ldots, \Pi_{r-1}\right)
\end{aligned}
$$

Secret Key Agreement: Protocol

[Maurer 93, Ahlswede-Csiszár 93]

Eve
 Z П

Example 1: Maurer's Satellite Model

Example 2: Fading of Wireless Communication

Eve
[Hassan et. al. '96]

Example 3: Fuzzy Extractor (Biometric Security)

Alice
Bob

[Dodis et. al. 04]

Problem Formulation of SK

The generate key is (ε, δ) - SK $\quad(0 \leq \varepsilon, \delta<1)$ if there exists K such that

Reliability $\quad \operatorname{Pr}\left\{K_{1}=K_{2}=K\right\} \geq 1-\varepsilon$

Security $\quad d\left(P_{K \Pi Z}, P_{\text {unif }} \times P_{\Pi Z}\right) \leq \delta$

$$
\begin{aligned}
& d(P, Q):=\frac{1}{2} \sum_{a}|P(a)-Q(a)| \quad P_{\Pi Z}: \text { marginal of } P_{K \Pi Z} \\
& P_{\text {unif }}(k)=\frac{1}{|\mathcal{K}|}
\end{aligned}
$$

Problem Formulation of SK

The generate key is (ε, δ)-SK $\quad(0 \leq \varepsilon, \delta<1) \quad$ if there exists K such that

Reliability

$$
\operatorname{Pr}\left\{K_{1}=K_{2}=K\right\} \geq 1-\varepsilon
$$

Security

$$
d\left(P_{K \Pi Z}, P_{\text {unif }} \times P_{\Pi Z}\right) \leq \delta
$$

$$
\begin{aligned}
& d(P, Q):=\frac{1}{2} \sum_{a}|P(a)-Q(a)| \quad P_{\Pi Z}: \text { marginal of } P_{K \Pi Z} \\
& P_{\text {unif }}(k)=\frac{1}{|\mathcal{K}|}
\end{aligned}
$$

$S_{\varepsilon, \delta}(X, Y \mid Z)$:maximum $\log |\mathcal{K}|$ such that a protocol generating (ε, δ)-SK exists

Secret Key Capacity

For i.i.d. observations $\left\{\left(X^{n}, Y^{n}, Z^{n}\right)\right\}_{n=1}^{\infty}$,

$$
C(X, Y \mid Z):=\lim _{\varepsilon, \delta \rightarrow 0} \liminf _{n \rightarrow \infty} \frac{1}{n} S_{\varepsilon, \delta}\left(X^{n}, Y^{n} \mid Z^{n}\right)
$$

Secret Key Capacity

For i.i.d. observations $\left\{\left(X^{n}, Y^{n}, Z^{n}\right)\right\}_{n=1}^{\infty}$,

$$
C(X, Y \mid Z):=\lim _{\varepsilon, \delta \rightarrow 0} \liminf _{n \rightarrow \infty} \frac{1}{n} S_{\varepsilon, \delta}\left(X^{n}, Y^{n} \mid Z^{n}\right)
$$

Basic lower (achievability) bound:

$$
C(X, Y \mid Z) \geq H(X \mid Z)-H(X \mid Y)
$$

Basic upper (converse) bound:

$$
C(X, Y \mid Z) \leq I(X \wedge Y \mid Z)
$$

Secret Key Capacity

For i.i.d. observations $\left\{\left(X^{n}, Y^{n}, Z^{n}\right)\right\}_{n=1}^{\infty}$,

$$
C(X, Y \mid Z):=\lim _{\varepsilon, \delta \rightarrow 0} \liminf _{n \rightarrow \infty} \frac{1}{n} S_{\varepsilon, \delta}\left(X^{n}, Y^{n} \mid Z^{n}\right)
$$

Basic lower (achievability) bound:

$$
C(X, Y \mid Z) \geq H(X \mid Z)-H(X \mid Y)
$$

Basic upper (converse) bound:

$$
C(X, Y \mid Z) \leq I(X \wedge Y \mid Z)
$$

Theorem [Maurer 93, Ahlswede-Csiszár 93]
When $X-\mathrm{o}-Y-\mathrm{o}-Z$ holds,

$$
C(X, Y \mid Z)=I(X \wedge Y \mid Z)
$$

In particular,

$$
C(X, Y)=I(X \wedge Y)
$$

Idea of achievability

- Information reconciliation
share a common random variable
- Privacy amplification
extract a secret key

Information Reconciliation

Use Slepian-Wolf coding:

If $R>H(X \mid Y)$, there exists a code such that $\operatorname{Pr}\left\{X^{n} \neq \hat{X}^{n}\right\} \rightarrow 0$

Privacy Amplification

Alice and Bob shall generate secret key from X when Z is known to Eve.

Definition (2-Universal hash family)
A random function $F: \mathcal{X} \rightarrow\{0,1\}^{l}$ is called 2 -UHF if

$$
\mathrm{P}\left(F(x)=F\left(x^{\prime}\right)\right) \leq \frac{1}{2^{l}}, \quad \forall x \neq x^{\prime} \in \mathcal{X}
$$

eg)

- the set of all functions from \mathcal{X} to $\{0,1\}^{l}$
- the set of all linear functions from \mathcal{X} to $\{0,1\}^{l}$

Privacy Amplification

Definition (Conditional min-entropy)
For $P_{X Z}$ and Q_{Z}, the conditional min-entropy of $P_{X Z}$ given Q_{Z} is

$$
H_{\min }\left(P_{X Z} \mid Q_{Z}\right):=\min _{x \in \mathcal{X}, z \in \operatorname{supp}\left(Q_{Z}\right)} \log \frac{Q_{Z}(z)}{P_{X Z}(x, z)}
$$

Then, the conditional min-entropy of $P_{X Z}$ given Z is

$$
H_{\min }\left(P_{X Z} \mid Z\right):=\max _{Q_{Z}} H_{\min }\left(P_{X Z} \mid Q_{Z}\right)
$$

Privacy Amplification

Definition (Conditional min-entropy)
For $P_{X Z}$ and Q_{Z}, the conditional min-entropy of $P_{X Z}$ given Q_{Z} is

$$
H_{\min }\left(P_{X Z} \mid Q_{Z}\right):=\min _{x \in \mathcal{X}, z \in \operatorname{supp}\left(Q_{Z}\right)} \log \frac{Q_{Z}(z)}{P_{X Z}(x, z)}
$$

Then, the conditional min-entropy of $P_{X Z}$ given Z is

$$
H_{\min }\left(P_{X Z} \mid Z\right):=\max _{Q_{Z}} H_{\min }\left(P_{X Z} \mid Q_{Z}\right)
$$

The closed form (-log of success guessing probability):

$$
\begin{gathered}
H_{\min }\left(P_{X Z} \mid Z\right)=-\log \sum_{z} P_{Z}(z) \max _{x} P_{X \mid Z}(x \mid z) \\
Q_{Z}^{*}(z) \propto P_{Z}(z) \max _{x} P_{X \mid Z}(x \mid z)
\end{gathered}
$$

Leftover Hash Lemma

The following bound is useful (cf. [lmpagliazzo-Levin-Luby 89, Renner 05]).

Theorem (Leftover Hash Lemma)
For 2-UHF $F, K=F(X)$ satisfies

$$
d\left(P_{K Z F}, P_{\text {unif }} \times P_{Z} \times P_{F}\right) \leq \frac{1}{2} \sqrt{2^{l-H_{\min }\left(P_{X Z} \mid Z\right)}}
$$

Leftover Hash Lemma

The following bound is useful (cf. [Impagliazzo-Levin-Luby 89, Renner 05]).

Theorem (Leftover Hash Lemma)
For 2-UHF $F, K=F(X)$ satisfies

$$
d\left(P_{K Z F}, P_{\text {unif }} \times P_{Z} \times P_{F}\right) \leq \frac{1}{2} \sqrt{2^{l-H_{\min }\left(P_{X Z} \mid Z\right)}}
$$

δ-secure secret key of length

$$
H_{\min }\left(P_{X Z} \mid Z\right)-2 \log (1 / 2 \delta)
$$

can be generated.

Leftover Hash Lemma

The following bound is useful (cf. [Impagliazzo-Levin-Luby 89, Renner 05]).

Theorem (Leftover Hash Lemma)
For 2-UHF $F, K=F(X)$ satisfies

$$
d\left(P_{K Z F}, P_{\text {unif }} \times P_{Z} \times P_{F}\right) \leq \frac{1}{2} \sqrt{2^{l-H_{\min }\left(P_{X Z} \mid Z\right)}}
$$

δ-secure secret key of length

$$
H_{\min }\left(P_{X Z} \mid Z\right)-2 \log (1 / 2 \delta)
$$

can be generated.

Typically, this bound is loose...; for i.i.d.,

$$
\frac{1}{n} H_{\min }\left(P_{X Z}^{n} \mid Z^{n}\right)=H_{\min }\left(P_{X Z} \mid Z\right)<H(X \mid Z)
$$

Smoothing

Smoothing: $\quad P_{X Z} \rightarrow \tilde{P}_{X Z} \quad$ under the condition $\quad d\left(\tilde{P}_{X Z}, P_{X Z}\right) \leq \delta$
We allow sub-normalized distribution since we typically choose truncated distribution

$$
\tilde{P}_{X Z}(x, z)=P_{X Z}(x, z) \mathbf{1}[(x, z) \in \mathcal{T}]
$$

for some \mathcal{T} with

$$
P_{X Z}(\mathcal{T}) \geq 1-2 \delta
$$

Smooth Conditional Min-Entropy

Definition (Smooth conditional min-entropy)

For $P_{X Z}$ and Q_{Z}, the smooth conditional min-entropy of $P_{X Z}$ given Q_{Z} is

$$
\begin{gathered}
H_{\min }^{\delta}\left(P_{X Z} \mid Q_{Z}\right):=\max _{\tilde{P}_{X Z} \in \mathcal{B}_{\delta}\left(P_{X Z}\right)} H_{\min }\left(\tilde{P}_{X Z} \mid Q_{Z}\right) \\
\mathcal{B}_{\delta}\left(P_{X Z}\right):=\left\{\tilde{P}_{X Z} \in \mathcal{P}_{\mathrm{sub}}(\mathcal{X} \times \mathcal{Z}): d\left(\tilde{P}_{X Z}, P_{X Z}\right) \leq \delta\right\}
\end{gathered}
$$

Then, the smooth conditional min-entropy of $P_{X Z}$ given Z is

$$
H_{\min }^{\delta}\left(P_{X Z} \mid Z\right):=\max _{Q_{Z}} H_{\min }^{\delta}\left(P_{X Z} \mid Q_{Z}\right)
$$

Leftover Hash Lemma with Smoothing

Apply triangular inequality for smoothed distribution...
Theorem (Leftover Hash Lemma with smoothing)
For 2-UHF $F, K=F(X)$ satisfies

$$
d\left(P_{K Z F}, P_{\mathrm{unif}} \times P_{Z} \times P_{F}\right) \leq 2 \delta+\frac{1}{2} \sqrt{2^{l-H_{\mathrm{min}}^{\delta}\left(P_{X Z} \mid Z\right)}}
$$

Leftover Hash Lemma with Smoothing

Apply triangular inequality for smoothed distribution...
Theorem (Leftover Hash Lemma with smoothing)
For 2-UHF $F, K=F(X)$ satisfies

$$
d\left(P_{K Z F}, P_{\text {unif }} \times P_{Z} \times P_{F}\right) \leq 2 \delta+\frac{1}{2} \sqrt{2^{l-H_{\min }^{\delta}\left(P_{X Z} \mid Z\right)}}
$$

δ-secure secret key of length

$$
H_{\min }^{(\delta-\eta) / 2}\left(P_{X Z} \mid Z\right)-2 \log (1 / 2 \eta)-1
$$

can be generated for $0<\eta \leq \delta$.

Leftover Hash Lemma with Smoothing

Apply triangular inequality for smoothed distribution...
Theorem (Leftover Hash Lemma with smoothing)
For 2-UHF $F, K=F(X)$ satisfies

$$
d\left(P_{K Z F}, P_{\text {unif }} \times P_{Z} \times P_{F}\right) \leq 2 \delta+\frac{1}{2} \sqrt{2^{l-H_{\min }^{\delta}\left(P_{X Z} \mid Z\right)}}
$$

δ-secure secret key of length

$$
H_{\min }^{(\delta-\eta) / 2}\left(P_{X Z} \mid Z\right)-2 \log (1 / 2 \eta)-1
$$

can be generated for $0<\eta \leq \delta$.
For i.i.d. observation,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} H_{\min }^{(\delta-\eta) / 2}\left(P_{X Z}^{n} \mid Z^{n}\right)=H(X \mid Z)
$$

for $0<\eta<\delta$.

Leftover Hash Lemma with Extra Message

The following variant of LHL for $\mathrm{P}_{X Z V}$ is useful for later application:

Theorem (Leftover Hash Lemma with extra message)
For 2-UHF $F, K=F(X)$ satisfies

$$
d\left(P_{K V Z F}, P_{\text {unif }} \times P_{V Z} \times P_{F}\right) \leq 2 \delta+\frac{1}{2} \sqrt{|\mathcal{V}| 2^{l-H_{\min }^{\delta}\left(P_{X Z} \mid Z\right)}}
$$

Leftover Hash Lemma with Extra Message

The following variant of LHL for $\mathrm{P}_{X Z V}$ is useful for later application:

Theorem (Leftover Hash Lemma with extra message)
For 2-UHF $F, K=F(X)$ satisfies

$$
d\left(P_{K V Z F}, P_{\mathrm{unif}} \times P_{V Z} \times P_{F}\right) \leq 2 \delta+\frac{1}{2} \sqrt{|\mathcal{V}| 2^{l-H_{\min }^{\delta}\left(P_{X Z} \mid Z\right)}}
$$

δ-secure secret key of length

$$
H_{\min }^{(\delta-\eta) / 2}\left(P_{X Z} \mid Z\right)-2 \log (1 / 2 \delta)-1-\log |\mathcal{V}|
$$

for $0<\eta \leq \varepsilon$; extra message reduces key length at most $\log |\mathcal{V}|$.

Composition of IR and PA

When message of rate R is revealed to Eve in IR
Alice and Bob can generate SK at rate

$$
H(X \mid Z)-R
$$

$\Longrightarrow H(X \mid Z)-H(X \mid Y)$ is attainable

Composition of IR and PA

When message of rate R is revealed to Eve in IR
Alice and Bob can generate SK at rate

$$
H(X \mid Z)-R
$$

$\Longrightarrow H(X \mid Z)-H(X \mid Y)$ is attainable

More generally,

Idea of Converse: a property of interactive communication

Interactive communication

$$
\begin{gathered}
\text { Alice } \\
\Pi_{1}=\Pi_{1}(X) \xrightarrow{\longleftrightarrow} \Pi_{2}=\Pi_{2}\left(Y, \Pi_{1}\right)
\end{gathered}
$$

$$
\Pi_{3}=\Pi_{3}\left(X, \Pi_{1}, \Pi_{2}\right)
$$

Idea of Converse: a property of interactive communication

Interactive communication

$$
\begin{gathered}
\text { Alice } \\
\Pi_{1}=\Pi_{1}(X) \\
\Pi_{3}=\Pi_{3}\left(X, \Pi_{1}, \Pi_{2}\right) \longrightarrow \\
\Pi_{2}=\Pi_{2}\left(Y, \Pi_{1}\right)
\end{gathered}
$$

Lemma [Maurer 93, Ahlswede-Csiszár 93]
For any protocol $\Pi=\left(\Pi_{1}, \ldots, \Pi_{r}\right)$,

$$
I(X \wedge Y \mid Z, \Pi) \leq I(X \wedge Y \mid Z)
$$

In particular,

$$
P_{X Y Z}=P_{X \mid Z} P_{Y \mid Z} P_{Z} \Longrightarrow P_{X Y Z \Pi}=P_{X \mid Z \Pi} P_{Y \mid Z \Pi} P_{Z \Pi}
$$

A Basic Converese Bound

By the Fano inequality argument,...

Theorem [Maurer 93, Ahlswede-Csiszár 93]
For every $0 \leq \varepsilon, \delta<1$ with $\varepsilon+\delta<1$,

$$
S_{\varepsilon, \delta}(X, Y \mid Z) \leq \frac{I(X \wedge Y \mid Z)+h(\varepsilon)+h(\delta)}{1-\varepsilon-\delta}
$$

A Basic Converese Bound

By the Fano inequality argument,...

Theorem [Maurer 93, Ahlswede-Csiszár 93]
For every $0 \leq \varepsilon, \delta<1$ with $\varepsilon+\delta<1$,

$$
S_{\varepsilon, \delta}(X, Y \mid Z) \leq \frac{I(X \wedge Y \mid Z)+h(\varepsilon)+h(\delta)}{1-\varepsilon-\delta}
$$

For i.i.d. observations,

$$
C(X, Y \mid Z)=\lim _{\varepsilon, \delta \rightarrow 0} \liminf _{n \rightarrow \infty} \frac{1}{n} S_{\varepsilon, \delta}\left(X^{n}, Y^{n} \mid Z^{n}\right) \leq I(X \wedge Y \mid Z)
$$

It is tight when (X, Y, Z) form Markov chain (degraded):

$$
I(X \wedge Y \mid Z)=H(X \mid Z)-H(X \mid Y)
$$

Conditional Independence Testing Bound

By relating SK and hypothesis testing,...

Theorem [Tyagi-W. 14]
For every $0 \leq \varepsilon, \delta<1$ and $0<\eta<1-\varepsilon-\delta$, we have

$$
S_{\varepsilon, \delta}(X, Y \mid Z) \leq-\log \beta_{\varepsilon+\delta+\eta}\left(P_{X Y Z}, Q_{X Y Z}\right)+2 \log (1 / \eta)
$$

for any $Q_{X Y Z}=Q_{X \mid Z} Q_{Y \mid Z} Q_{Z}$.

Conditional Independence Testing Bound

By relating SK and hypothesis testing,...

Theorem [Tyagi-W. 14]
For every $0 \leq \varepsilon, \delta<1$ and $0<\eta<1-\varepsilon-\delta$, we have

$$
S_{\varepsilon, \delta}(X, Y \mid Z) \leq-\log \beta_{\varepsilon+\delta+\eta}\left(P_{X Y Z}, Q_{X Y Z}\right)+2 \log (1 / \eta)
$$

for any $Q_{X Y Z}=Q_{X \mid Z} Q_{Y \mid Z} Q_{Z}$.

For i.i.d. observations,

$$
C_{\varepsilon, \delta}(X, Y \mid Z)=\liminf _{n \rightarrow \infty} \frac{1}{n} S_{\varepsilon, \delta}\left(X^{n}, Y^{n} \mid Z^{n}\right) \leq I(X \wedge Y \mid Z)
$$

strong converse can be proved.

It is also tight up to the second-order term for degraded case.

Second-Order Rate of Secret Key Agreement

Second-Order Rate of Secret Key Agreement

The standard protocol with

- information reconciliation
- privacy amplification no interaction
achieves the secrecy capacity: $H(X \mid Z)-H(X \mid Y)=I(X \wedge Y \mid Z)$
The standard protocol is always optimal? Does interaction help in some case?

Second-Order Rate of Secret Key Agreement

The standard protocol with

- information reconciliation
- privacy amplification no interaction
achieves the secrecy capacity: $H(X \mid Z)-H(X \mid Y)=I(X \wedge Y \mid Z)$
The standard protocol is always optimal? Does interaction help in some case?

Theorem [Hayashi-Tyagi-W. 14]
For $0<\varepsilon, \delta<1$ with $\varepsilon+\delta<1$,

$$
S_{\varepsilon, \delta}\left(X^{n}, Y^{n} \mid Z^{n}\right)=n I(X \wedge Y \mid Z)-\sqrt{n V} Q^{-1}(\varepsilon+\delta)+\mathcal{O}(\log n)
$$

where

$$
\begin{aligned}
V & :=\operatorname{Var}\left[\log \frac{P_{X Y \mid Z}(X, Y \mid Z)}{P_{X \mid Z}(X \mid Z) P_{Y \mid Z}(Y \mid Z)}\right] \\
Q(a) & :=\int_{a}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{t^{2}}{2}\right) d t
\end{aligned}
$$

Does Standard Protocol Work?

- information reconciliation
- privacy amplification

Does Standard Protocol Work?

- information reconciliation

$$
\begin{gathered}
n H(X \mid Y)+\sqrt{n V_{X \mid Y}} Q^{-1}(\varepsilon)+\mathcal{O}(\log n) \\
V_{X \mid Y}=\operatorname{Var}\left[\log \frac{1}{P_{X \mid Y}(X \mid Y)}\right]
\end{gathered}
$$

- privacy amplification

Does Standard Protocol Work?

- information reconciliation

$$
\begin{gathered}
n H(X \mid Y)+\sqrt{n V_{X \mid Y}} Q^{-1}(\varepsilon)+\mathcal{O}(\log n) \\
V_{X \mid Y}=\operatorname{Var}\left[\log \frac{1}{P_{X \mid Y}(X \mid Y)}\right]
\end{gathered}
$$

- privacy amplification

$$
\begin{gathered}
n H(X \mid Z)-\sqrt{n V_{X \mid Z}} Q^{-1}(\delta)+\mathcal{O}(\log n) \\
V_{X \mid Z}=\operatorname{Var}\left[\log \frac{1}{P_{X \mid Z}(X \mid Z)}\right]
\end{gathered}
$$

Does Standard Protocol Work?

- information reconciliation

$$
\begin{gathered}
n H(X \mid Y)+\sqrt{n V_{X \mid Y}} Q^{-1}(\varepsilon)+\mathcal{O}(\log n) \\
V_{X \mid Y}=\operatorname{Var}\left[\log \frac{1}{P_{X \mid Y}(X \mid Y)}\right]
\end{gathered}
$$

- privacy amplification

$$
\begin{aligned}
& n H(X \mid Z)-\sqrt{n V_{X \mid Z}} Q^{-1}(\delta)+\mathcal{O}(\log n) \\
& V_{X \mid Z}=\operatorname{Var}\left[\log \frac{1}{P_{X \mid Z}(X \mid Z)}\right] \\
& n I(X \wedge Y \mid Z)-\sqrt{n V_{X \mid Y}} Q^{-1}(\varepsilon)-\sqrt{n V_{X \mid Z}} Q^{-1}(\delta)+\mathcal{O}(\log n)
\end{aligned}
$$

The standard protocol does not achieve the optimal second-order rate.

Does Standard Protocol Work?

- information reconciliation

$$
\begin{gathered}
n H(X \mid Y)+\sqrt{n V_{X \mid Y}} Q^{-1}(\varepsilon)+\mathcal{O}(\log n) \\
V_{X \mid Y}=\operatorname{Var}\left[\log \frac{1}{P_{X \mid Y}(X \mid Y)}\right]
\end{gathered}
$$

- privacy amplification

$$
\begin{aligned}
& n H(X \mid Z)-\sqrt{n V_{X \mid Z}} Q^{-1}(\delta)+\mathcal{O}(\log n) \\
& V_{X \mid Z}=\operatorname{Var}\left[\log \frac{1}{P_{X \mid Z}(X \mid Z)}\right] \\
& n I(X \wedge Y \mid Z)-\sqrt{n V_{X \mid Y}} Q^{-1}(\varepsilon)-\sqrt{n V_{X \mid Z}} Q^{-1}(\delta)+\mathcal{O}(\log n)
\end{aligned}
$$

The standard protocol does not achieve the optimal second-order rate.
The optimal second-order rate is achieved by an interactive protocol.

Achievability Idea

Use interactive Slepian-Wolf coding (cf. [Draper 04, Feder-Schulman 02, Yang-He 10])

Achievability Idea

Use interactive Slepian-Wolf coding (cf. [Draper 04, Feder-Schulman 02, Yang-He 10])

Basic ideas are...

- Alice should communicate at small rate if $h_{P_{X \mid Y}}(X \mid Y)=\log \frac{1}{P_{X \mid Y}(X \mid Y)}$ is small;

Achievability Idea

Use interactive Slepian-Wolf coding (cf. [Draper 04, Feder-Schulman 02, Yang-He 10])

Basic ideas are...

- Alice should communicate at small rate if $h_{P_{X \mid Y}}(X \mid Y)=\log \frac{1}{P_{X \mid Y}(X \mid Y)}$ is small;
- But neither party know the realization of $h_{P_{X \mid Y}}(X \mid Y)$;

Achievability Idea

Use interactive Slepian-Wolf coding (cf. [Draper 04, Feder-Schulman 02, Yang-He 10])

Basic ideas are...

- Alice should communicate at small rate if $h_{P_{X \mid Y}}(X \mid Y)=\log \frac{1}{P_{X \mid Y}(X \mid Y)}$ is small;
- But neither party know the realization of $h_{P_{X \mid Y}}(X \mid Y)$;
- Alice gradually increase rate until Bob is able to decode X;

Achievability Idea

Use interactive Slepian-Wolf coding (cf. [Draper 04, Feder-Schulman 02, Yang-He 10])

Basic ideas are...

- Alice should communicate at small rate if $h_{P_{X \mid Y}}(X \mid Y)=\log \frac{1}{P_{X \mid Y}(X \mid Y)}$ is small;
- But neither party know the realization of $h_{P_{X \mid Y}}(X \mid Y)$;
- Alice gradually increase rate until Bob is able to decode X;
- Bob return Ack/Nack until it decode X.

Achievability Idea

Use interactive Slepian-Wolf coding (cf. [Draper 04, Feder-Schulman 02, Yang-He 10])

Basic ideas are...

- Alice should communicate at small rate if $h_{P_{X \mid Y}}(X \mid Y)=\log \frac{1}{P_{X \mid Y}(X \mid Y)}$ is small;
- But neither party know the realization of $h_{P_{X \mid Y}}(X \mid Y)$;
- Alice gradually increase rate until Bob is able to decode X;
- Bob return Ack/Nack until it decode X.

The usage of interaction decreases information revealed to Eve...

Multi-Party Secret Key Agreement

Multi-Party Setting

[Csiszár-Narayan 04]
Eve
П

$$
\begin{array}{ll}
A \subset \mathcal{M}:=\{1, \ldots, M\} & X_{\mathcal{M}}:=\left(X_{1}, \ldots, X_{m}\right) \\
X_{A}:=\left(X_{i}: i \in A\right) & K_{\mathcal{M}}:=\left(K_{1}, \ldots, K_{m}\right)
\end{array}
$$

Problem Formulation of Multi-Party SK

The generate key is (ε, δ)-SK $\quad(0 \leq \varepsilon, \delta<1)$ if there exists K such that

Reliability

$$
\operatorname{Pr}\left\{K_{1}=\cdots=K_{m}=K\right\} \geq 1-\varepsilon
$$

Security

$$
d\left(P_{K \Pi Z}, P_{\text {unif }} \times P_{\Pi Z}\right) \leq \delta
$$

$S_{\varepsilon, \delta}\left(X_{\mathcal{M}}\right)$:maximum $\log |\mathcal{K}|$ such that a protocol generating (ε, δ)-SK exists

$$
C\left(X_{\mathcal{M}}\right):=\lim _{\varepsilon, \delta \rightarrow 0} \liminf _{n \rightarrow \infty} \frac{1}{n} S_{\varepsilon, \delta}\left(X_{\mathcal{M}}^{n}\right)
$$

2 Party Revisited

(Randomness unknown to Eve initially) - (Rate revealed in IR)

2 Party Revisited

(Randomness unknown to Eve initially) - (Rate revealed in IR)

$$
\begin{aligned}
C\left(X_{1}, X_{2}\right) & =I\left(X_{1} \wedge X_{2}\right) \\
& =H\left(X_{1}\right)-H\left(X_{1} \mid X_{2}\right)
\end{aligned}
$$

it is asymmetric...

2 Party Revisited

(Randomness unknown to Eve initially) - (Rate revealed in IR)

$$
\begin{aligned}
C\left(X_{1}, X_{2}\right) & =I\left(X_{1} \wedge X_{2}\right) \\
& =H\left(X_{1}\right)-H\left(X_{1} \mid X_{2}\right)
\end{aligned}
$$

it is asymmetric...

$$
=H\left(X_{1}, X_{2}\right)-H\left(X_{1} \mid X_{2}\right)-H\left(X_{2} \mid X_{1}\right)
$$

2 Party Revisited

(Randomness unknown to Eve initially) - (Rate revealed in IR)

$$
\begin{aligned}
C\left(X_{1}, X_{2}\right) & =I\left(X_{1} \wedge X_{2}\right) \\
& =H\left(X_{1}\right)-H\left(X_{1} \mid X_{2}\right) \\
& =H\left(X_{1}, X_{2}\right)-H\left(X_{1} \mid X_{2}\right)-H\left(X_{2} \mid X_{1}\right)
\end{aligned}
$$

$H\left(X_{\mathcal{M}}\right)$ - communication rate needed to agree on $X_{\mathcal{M}}$

Omniscience (Data Exchange) Problem

[Csiszár-Narayan 04]

$L_{\epsilon}\left(X_{\mathcal{M}}\right)$: minimum sum-rate for omniscience with

$$
\mathrm{P}\left(X_{\mathcal{M}}^{(i)}=X_{\mathcal{M}}, \forall 1 \leq i \leq m\right) \geq 1-\epsilon
$$

Asymptotic Omniscience Rate

$$
R\left(\mathrm{P}_{X_{\mathcal{M}}}\right)=\lim _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} L_{\epsilon}\left(X_{\mathcal{M}}^{n}\right)
$$

Asymptotic Omniscience Rate

$$
\begin{gathered}
R\left(\mathrm{P}_{X_{\mathcal{M}}}\right)=\lim _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} L_{\epsilon}\left(X_{\mathcal{M}}^{n}\right) \\
R\left(\mathrm{P}_{X_{\mathcal{M}}}\right)=\min \left\{\sum_{i=1}^{m} R_{i}: \sum_{i \in B} R_{i} \geq H\left(X_{B} \mid X_{B^{c}}\right), \quad \forall B \subsetneq \mathcal{M}\right\}
\end{gathered}
$$

[Csiszár-Narayan 04]

Achieved by Slepian-Wolf coding; interaction not needed.

Asymptotic Omniscience Rate

$$
\begin{gathered}
R\left(\mathrm{P}_{X_{\mathcal{M}}}\right)=\lim _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} L_{\epsilon}\left(X_{\mathcal{M}}^{n}\right) \\
R\left(\mathrm{P}_{X_{\mathcal{M}}}\right)=\min \left\{\sum_{i=1}^{m} R_{i}: \sum_{i \in B} R_{i} \geq H\left(X_{B} \mid X_{B^{c}}\right), \quad \forall B \subsetneq \mathcal{M}\right\}
\end{gathered}
$$

$$
\geqq \max _{\sigma \in \Sigma(\mathcal{M})} \mathbb{H}_{\sigma}\left(\mathcal{M} \mid \mathrm{P}_{X_{\mathcal{M}}}\right)
$$

[Csiszár-Narayan 04]

Achieved by Slepian-Wolf coding; interaction not needed.
[Chan 08]

$$
\mathbb{H}_{\sigma}\left(\mathcal{M} \mid \mathrm{P}_{X_{\mathcal{M}}}\right):=\frac{1}{|\sigma|-1} \sum_{i=1}^{|\sigma|} H\left(X_{\mathcal{M}} \mid X_{\sigma_{i}}\right) \quad \sigma \text { :partition of } \mathcal{M}
$$

Asymptotic Omniscience Rate

$$
\begin{gathered}
R\left(\mathrm{P}_{X_{\mathcal{M}}}\right)=\lim _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} L_{\epsilon}\left(X_{\mathcal{M}}^{n}\right) \\
R\left(\mathrm{P}_{X_{\mathcal{M}}}\right)=\min \left\{\sum_{i=1}^{m} R_{i}: \sum_{i \in B} R_{i} \geq H\left(X_{B} \mid X_{B^{c}}\right), \quad \forall B \subsetneq \mathcal{M}\right\} \\
\geqq \max _{\sigma \in \Sigma(\mathcal{M})} \mathbb{H}_{\sigma}\left(\mathcal{M} \mid \mathrm{P}_{X_{\mathcal{M}}}\right)
\end{gathered}
$$

Achieved by Slepian-Wolf coding; interaction not needed.

$$
\begin{gathered}
\mathbb{H}_{\sigma}\left(\mathcal{M} \mid \mathrm{P}_{X_{\mathcal{M}}}\right):=\frac{1}{|\sigma|-1} \sum_{i=1}^{|\sigma|} H\left(X_{\mathcal{M}} \mid X_{\sigma_{i}}\right) \quad \sigma: \text { partition of } \mathcal{M} \\
m=2 \quad \Sigma(\mathcal{M})=\{\{1 \mid 2\}\} \\
\quad R\left(\mathrm{P}_{X_{\mathcal{M}}}\right)=H\left(X_{1} \mid X_{2}\right)+H\left(X_{2} \mid X_{1}\right)
\end{gathered}
$$

Asymptotic Omniscience Rate

$$
\begin{gathered}
R\left(\mathrm{P}_{X_{\mathcal{M}}}\right)=\lim _{\epsilon \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} L_{\epsilon}\left(X_{\mathcal{M}}^{n}\right) \\
R\left(\mathrm{P}_{X_{\mathcal{M}}}\right)=\min \left\{\sum_{i=1}^{m} R_{i}: \sum_{i \in B} R_{i} \geq H\left(X_{B} \mid X_{B^{c}}\right), \quad \forall B \subsetneq \mathcal{M}\right\}
\end{gathered}
$$

$$
\geqq \max _{\sigma \in \Sigma(\mathcal{M})} \mathbb{H}_{\sigma}\left(\mathcal{M} \mid \mathrm{P}_{X_{\mathcal{M}}}\right)
$$

[Csiszár-Narayan 04]

Achieved by Slepian-Wolf coding; interaction not needed.
[Chan 08]

$$
\begin{aligned}
& \mathbb{H}_{\sigma}\left(\mathcal{M} \mid \mathrm{P}_{X_{\mathcal{M}}}\right):=\frac{1}{|\sigma|-1} \sum_{i=1}^{|\sigma|} H\left(X_{\mathcal{M}} \mid X_{\sigma_{i}}\right) \quad \sigma \text { :partition of } \mathcal{M} \\
& m=3 \quad \Sigma(\mathcal{M})=\{\{1 \mid 23\},\{12 \mid 3\},\{23 \mid 1\},\{1|2| 3\}\} \\
& R\left(\mathrm{P}_{X_{\mathcal{M}}}\right)=\max \left\{H\left(X_{1} \mid X_{2}, X_{3}\right)+H\left(X_{2}, X_{3} \mid X_{1}\right), H\left(X_{3} \mid X_{1}, X_{2}\right)+H\left(X_{1}, X_{2} \mid X_{3}\right)\right. \\
& \left.\quad H\left(X_{2} \mid X_{1}, X_{3}\right)+H\left(X_{1}, X_{3} \mid X_{2}\right), \frac{H\left(X_{2}, X_{3} \mid X_{1}\right)+H\left(X_{1}, X_{3} \mid X_{2}\right)+H\left(X_{1}, X_{2} \mid X_{3}\right)}{2}\right\}
\end{aligned}
$$

Multi-Party Secrecy Capacity

Theorem [Csiszár-Narayan 04]

$$
C\left(X_{\mathcal{M}}\right)=H\left(X_{\mathcal{M}}\right)-R\left(\mathrm{P}_{X_{\mathcal{M}}}\right)
$$

Multi-Party Secrecy Capacity

Theorem [Csiszár-Narayan 04, Chan 08]

$$
\begin{aligned}
C\left(X_{\mathcal{M}}\right) & =H\left(X_{\mathcal{M}}\right)-R\left(\mathrm{P}_{X_{\mathcal{M}}}\right) \\
& =\min _{\sigma \in \Sigma(\mathcal{M})} \frac{1}{|\sigma|-1} D\left(\mathrm{P}_{X_{\mathcal{M}}} \| \prod_{i=1}^{|\sigma|} \mathrm{P}_{X_{\sigma_{i}}}\right)
\end{aligned}
$$

Multi-Party Secrecy Capacity

Theorem [Csiszár-Narayan 04, Chan 08]

$$
\begin{aligned}
C\left(X_{\mathcal{M}}\right) & =H\left(X_{\mathcal{M}}\right)-R\left(\mathrm{P}_{X_{\mathcal{M}}}\right) \\
& =\min _{\sigma \in \Sigma(\mathcal{M})} \frac{1}{|\sigma|-1} D\left(\mathrm{P}_{X_{\mathcal{M}}} \| \prod_{i=1}^{|\sigma|} \mathrm{P}_{X_{\sigma_{i}}}\right)
\end{aligned}
$$

A single-shot converse can be proved via hypothesis testing [Tyagi-W. 14]

Universal Protocol

Universal Protocol

We shall construct a SK/Data exchange protocol that does not rely on knowledge of $\mathrm{P}_{X_{\mathcal{M}}}$.

It suffices to construct a universal data exchange protocol.

Universal Protocol

We shall construct a SK/Data exchange protocol that does not rely on knowledge of $\mathrm{P}_{X_{\mathcal{M}}}$.

It suffices to construct a universal data exchange protocol.

In fact, it works for a given individual sequence...

Theorem [Tyagi-W. 16]
There exists a universal data exchange protocol such that, for a given $\mathbf{x}_{\mathcal{M}}$, it communicates

$$
n R^{*}\left(\mathrm{P}_{\mathbf{x}_{\mathcal{M}}}\right)+\mathcal{O}(\sqrt{n})
$$

where $\mathrm{P}_{\mathbf{x}_{\mathcal{M}}}$ is the joint type.

The universal protocol is called recursive data exchange (RDE) protocol.

Universal RDE Protocol

Two-step coding for single-terminal source coding:
(1) Send the type $\mathcal{O}(\log n)$
(2) Send the index among the type class $n H\left(\mathrm{P}_{\mathbf{x}}\right)+\mathcal{O}(\log n)$

Universal RDE Protocol

Two-step coding for single-terminal source coding:
(1) Send the type $\mathcal{O}(\log n)$
(2) Send the index among the type class $n H\left(\mathrm{P}_{\mathbf{x}}\right)+\mathcal{O}(\log n)$

In the data exchange problem, observations are distributed over the parties...

Universal RDE Protocol

Two-step coding for single-terminal source coding:
(1) Send the type $\mathcal{O}(\log n)$
(2) Send the index among the type class $n H\left(\mathrm{P}_{\mathbf{x}}\right)+\mathcal{O}(\log n)$

In the data exchange problem, observations are distributed over the parties...
Use interactive Slepian-Wolf coding [Draper 04, Yang-He 10]

- The encoder gradually increment rate until the decoder recovers \mathbf{X}
- The decoder return Ack/Nack until it recovers \mathbf{X}

Universal RDE Protocol

Two-step coding for single-terminal source coding:
(1) Send the type $\mathcal{O}(\log n)$
(2) Send the index among the type class $n H\left(\mathrm{P}_{\mathbf{x}}\right)+\mathcal{O}(\log n)$

In the data exchange problem, observations are distributed over the parties...
Use interactive Slepian-Wolf coding [Draper 04, Yang-He 10]

- The encoder gradually increment rate until the decoder recovers \mathbf{X}
- The decoder return Ack/Nack until it recovers \mathbf{X}

The decoder looks for joint type $\mathrm{P}_{\overline{X Y}}$ s.t. there exists a unique $\hat{\mathbf{X}}$ satisfying

1) $\mathrm{P}_{\hat{\mathbf{x}} \mathbf{y}}=\mathrm{P}_{\overline{X Y}}$
2) $R_{t} \geq H(\bar{X} \mid \bar{Y})+\Delta$
3) Hash values (bin indices) of $\hat{\mathbf{X}}$ up to round t are compatible.

Decoding Rule for Local Omniscience

Local omniscience region for $A \subseteq \mathcal{M}$:

$$
\mathcal{R}_{\mathrm{C} 0}^{\Delta}\left(A \mid \mathrm{P}_{\bar{X}_{A}}\right)=\left\{\left(R_{i}: i \in A\right): \sum_{i \in B} R_{i} \geq H\left(\bar{X}_{B} \mid \bar{X}_{A \backslash B}\right)+|B| \Delta, \forall B \subseteq A\right\}
$$

Decoding Rule for Local Omniscience

Local omniscience region for $A \subseteq \mathcal{M}$:

$$
\mathcal{R}_{\mathrm{c} 0}^{\Delta}\left(A \mid \mathrm{P}_{\bar{X}_{A}}\right)=\left\{\left(R_{i}: i \in A\right): \sum_{i \in B} R_{i} \geq H\left(\bar{X}_{B} \mid \bar{X}_{A \backslash B}\right)+|B| \Delta, \quad \forall B \subseteq A\right\}
$$

i th party looks for maximal $i \in A \subseteq \mathcal{M}$ and $\mathrm{P}_{\bar{X}_{A}}$ s.t. there exists a unique $\hat{\mathbf{X}}_{A}$ satisfying

1) $\hat{\mathbf{x}}_{i}=\mathrm{x}_{i}, \mathrm{P}_{\hat{\mathbf{x}}_{A}}=\mathrm{P}_{\bar{X}_{A}}$
2) $\left(R_{i}^{(t)}: i \in A\right) \in \mathcal{R}_{\mathrm{C0}}^{\Delta}\left(A \mid \mathrm{P}_{\bar{X}_{A}}\right)$
3) Hash values (bin indices) of $\hat{\mathbf{X}}_{A}$ up to round t are compatible.

Decoding Rule for Local Omniscience

Local omniscience region for $A \subseteq \mathcal{M}$:

$$
\mathcal{R}_{\mathrm{c} 0}^{\Delta}\left(A \mid \mathrm{P}_{\bar{X}_{A}}\right)=\left\{\left(R_{i}: i \in A\right): \sum_{i \in B} R_{i} \geq H\left(\bar{X}_{B} \mid \bar{X}_{A \backslash B}\right)+|B| \Delta, \quad \forall B \subseteq A\right\}
$$

i th party looks for maximal $i \in A \subseteq \mathcal{M}$ and $\mathrm{P}_{\bar{X}_{A}}$ s.t. there exists a unique $\hat{\mathbf{x}}_{A}$ satisfying

1) $\hat{\mathbf{x}}_{i}=\mathbf{x}_{i}, \mathrm{P}_{\hat{\mathbf{x}}_{A}}=\mathrm{P}_{\bar{X}_{A}}$
2) $\left(R_{i}^{(t)}: i \in A\right) \in \mathcal{R}_{\mathrm{C0}}^{\Delta}\left(A \mid \mathrm{P}_{\bar{X}_{A}}\right)$
3) Hash values (bin indices) of $\hat{\mathbf{X}}_{A}$ up to round t are compatible.

Once accumulated rate vector enters a local omniscience region, local omniscience occur automatically. Difficulty is how to increment rates...

Rate Increment Rule

Two-party case:

It is asymmetric...

Rate Increment Rule

Two-party case:

Rate Increment Rule

Two-party case:

Rate Increment Rule

Two-party case:

W.L.G., assume $H\left(\bar{X}_{1}\right) \geq H\left(\bar{X}_{2}\right)$

Rate Increment Rule

Two-party case:

W.L.G., assume $H\left(\bar{X}_{1}\right) \geq H\left(\bar{X}_{2}\right)$

Party 1: $R_{1}^{(0)}=0 ; R_{1}^{(t+1)}:=R_{1}^{(t)}+\Delta$

Rate Increment Rule

Two-party case:

W.L.G., assume $H\left(\bar{X}_{1}\right) \geq H\left(\bar{X}_{2}\right)$

Party 1: $R_{1}^{(0)}=0 ; R_{1}^{(t+1)}:=R_{1}^{(t)}+\Delta$
Party 2: start communication if $R_{1}^{(t)} \geq H\left(\bar{X}_{1}\right)-H\left(\bar{X}_{2}\right)$;

Rate Increment Rule

Two-party case:

W.L.G., assume $H\left(\bar{X}_{1}\right) \geq H\left(\bar{X}_{2}\right)$

Party 1: $R_{1}^{(0)}=0 ; R_{1}^{(t+1)}:=R_{1}^{(t)}+\Delta$
Party 2: start communication if $R_{1}^{(t)} \geq H\left(\bar{X}_{1}\right)-H\left(\bar{X}_{2}\right) ; R_{2}^{(0)}=0 ; R_{2}^{(t+1)}=R_{2}^{(t)}+\Delta$

Rate Increment Rule

Multi-party case:
W.L.G., assume $H\left(\bar{X}_{1}\right) \geq H\left(\bar{X}_{2}\right) \geq \cdots \geq H\left(\bar{X}_{m}\right)$

Rate Increment Rule

Multi-party case:
W.L.G., assume $H\left(\bar{X}_{1}\right) \geq H\left(\bar{X}_{2}\right) \geq \cdots \geq H\left(\bar{X}_{m}\right)$

Party 1: $R_{1}^{(0)}=0 ; R_{1}^{(t+1)}:=R_{1}^{(t)}+\Delta$

Rate Increment Rule

Multi-party case:
W.L.G., assume $H\left(\bar{X}_{1}\right) \geq H\left(\bar{X}_{2}\right) \geq \cdots \geq H\left(\bar{X}_{m}\right)$

Party 1: $R_{1}^{(0)}=0 ; R_{1}^{(t+1)}:=R_{1}^{(t)}+\Delta$
Party 2: start communication if $R_{1}^{(t)} \geq H\left(\bar{X}_{1}\right)-H\left(\bar{X}_{2}\right) ; R_{2}^{(0)}=0 ; R_{2}^{(t+1)}=R_{2}^{(t)}+\Delta$

Rate Increment Rule

Multi-party case:
W.L.G., assume $H\left(\bar{X}_{1}\right) \geq H\left(\bar{X}_{2}\right) \geq \cdots \geq H\left(\bar{X}_{m}\right)$

Party 1: $R_{1}^{(0)}=0 ; R_{1}^{(t+1)}:=R_{1}^{(t)}+\Delta$
Party 2: start communication if $R_{1}^{(t)} \geq H\left(\bar{X}_{1}\right)-H\left(\bar{X}_{2}\right) ; R_{2}^{(0)}=0 ; R_{2}^{(t+1)}=R_{2}^{(t)}+\Delta$
Party 3: start communication if $R_{1}^{(t)} \geq H\left(\bar{X}_{1}\right)-H\left(\bar{X}_{3}\right) ; R_{3}^{(0)}=0 ; R_{3}^{(t+1)}=R_{3}^{(t)}+\Delta$

Rate Increment Rule

Multi-party case:
W.L.G., assume $H\left(\bar{X}_{1}\right) \geq H\left(\bar{X}_{2}\right) \geq \cdots \geq H\left(\bar{X}_{m}\right)$

Party 1: $R_{1}^{(0)}=0 ; R_{1}^{(t+1)}:=R_{1}^{(t)}+\Delta$
Party 2: start communication if $R_{1}^{(t)} \geq H\left(\bar{X}_{1}\right)-H\left(\bar{X}_{2}\right) ; R_{2}^{(0)}=0 ; R_{2}^{(t+1)}=R_{2}^{(t)}+\Delta$
Party 3: start communication if $R_{1}^{(t)} \geq H\left(\bar{X}_{1}\right)-H\left(\bar{X}_{3}\right) ; R_{3}^{(0)}=0 ; R_{3}^{(t+1)}=R_{3}^{(t)}+\Delta$

Rate assignment for the tipping

$$
\sum_{i \in A \backslash\{j\}} R_{i}^{*}(A)=H\left(\bar{X}_{A} \mid \bar{X}_{j}\right), j \in A
$$

Property:

$$
R_{i}^{*}(A)-R_{j}^{*}(A)=H\left(\bar{X}_{i}\right)-H\left(\bar{X}_{j}\right)
$$

Recursive Structure

Theorem (rough statement)

At some point, $\left(R_{i}^{(t)}: i \in A\right)$ for some $A \subseteq \mathcal{M}$ reaches $\mathcal{R}_{\mathrm{C0}}^{\Delta}\left(A \mid \mathrm{P}_{\bar{X}_{A}}\right)$ at

$$
\left(R_{i}^{*}(A): i \in A\right) \quad \text { modulo } \mathcal{O}(\Delta)
$$

Recursive Structure

Theorem (rough statement)
At some point, $\left(R_{i}^{(t)}: i \in A\right)$ for some $A \subseteq \mathcal{M}$ reaches $\mathcal{R}_{\mathrm{c} 0}^{\Delta}\left(A \mid \mathrm{P}_{\bar{X}_{A}}\right)$ at

$$
\left(R_{i}^{*}(A): i \in A\right) \quad \text { modulo } \mathcal{O}(\Delta)
$$

Parties in A attain local omniscience.

From that point, the parties in A behaves as if one large party: increment rule is

$$
R_{i}^{(t+1)}=R_{i}^{(t)}+\frac{\Delta}{|A|}, i \in A \quad\left(R_{A}^{(t+1)}=R_{A}^{(t)}+\Delta\right)
$$

Recursive Structure

Theorem (rough statement)

At some point, $\left(R_{i}^{(t)}: i \in A\right)$ for some $A \subseteq \mathcal{M}$ reaches $\mathcal{R}_{\mathrm{C0}}^{\Delta}\left(A \mid \mathrm{P}_{\bar{X}_{A}}\right)$ at

$$
\left(R_{i}^{*}(A): i \in A\right) \quad \text { modulo } \mathcal{O}(\Delta)
$$

Parties in A attain local omniscience.

From that point, the parties in A behaves as if one large party: increment rule is

$$
R_{i}^{(t+1)}=R_{i}^{(t)}+\frac{\Delta}{|A|}, i \in A \quad\left(R_{A}^{(t+1)}=R_{A}^{(t)}+\Delta\right)
$$

Theorem (rough statement)
The protocol proceed as if A were one party from the begin with...

Recursive Structure

P2
 P1
 X_{2}

P4
X_{4}

Recursive Structure

Recursive Structure

Recursive Structure

Performance of Universal RDE

Corollary (rough statement)
The protocol recursively attain omniscience with rate

slack of rate increment
rate for Ack/Nack proportional to \#rounds $\mathcal{O}(1 / \Delta)$

Some Open Problems

Some Open Problems

(1) Non-degraded case:

- Even the first-order capacity is not known in general.
- When interaction is not allowed, capacity is known but involves auxiliary RVs.
- What is the second-order rate when the capacity is known?

Some Open Problems

(1) Non-degraded case:

- Even the first-order capacity is not known in general.
- When interaction is not allowed, capacity is known but involves auxiliary RVs.
- What is the second-order rate when the capacity is known?
(2) Necessity of interaction to attain the optimal second-order rate
- Even for the degraded case, the standard protocol does not attain the optimal second-order rate.
- How about other non-interactive protocols? Interaction is necessary?

Some Open Problems

(1) Non-degraded case:

- Even the first-order capacity is not known in general.
- When interaction is not allowed, capacity is known but involves auxiliary RVs.
- What is the second-order rate when the capacity is known?
(2) Necessity of interaction to attain the optimal second-order rate
- Even for the degraded case, the standard protocol does not attain the optimal second-order rate.
- How about other non-interactive protocols? Interaction is necessary?
(3) Universal protocol for the case with helpers
- When only subset $\mathcal{A} \subset \mathcal{M}$ try to attain omniscience, is there universal protocol?
- Slepian-Wolf coding is known to be optimal, but the rate formula is more involved.

Thank you for listening.

