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Secret Key Cryptography

Enc. » Dec. N




Shannon’s Pessimistic Result

4 )

A secret key crypto system is secure only if
H(K)> H(M)
- /

Key length must be as large as message length...



Wyner’s Wiretap Channel
. b

Alice Bob

A

M —>| Enc. Dec. > M

Wy, zlx) = Wi(y|z)Ws(z|y) : Degraded Wiretap Channel [Wyner 75]

General wiretap channel [Csiszar-Korner]



Secret Key Agreement: Model

[Maurer 93, Ahlswede-Csiszar 93]
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Secret Key Agreement: Protocol

[Maurer 93, Ahlswede-Csiszar 93]
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Secret Key Agreement: Protocol

[Maurer 93, Ahlswede-Csiszar 93]
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Example 1: Maurer’s Satellite Model

Alice Eve Bob



Example 2: Fading of Wireless Communication

Alice o Bob
>
<
T Fading H & T
X =aH + Ny Y =aH + Ns
Hl H//

7' = aH' + Ns
7" = aH" + N,

Eve

[Hassan et. al. '96]



Example 3: Fuzzy Extractor (Biometric Security)

Alice Bob
Xf Eve Yf

) I1 D

Kl KQ

[Dodis et. al. 04]



Problem Formulation of SK

4 )
The generate key is (¢,0)-SK (0 < ¢e,0 < 1) ifthere exists K such that

Reliability Pr{Ki =Ko=K} >1—¢

Security d(Pan, Pois X PHZ) <9

. J

A(P,Q) = 5 3 IP(@) - Q)| Puz :marginal of Prriz
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Punif(k) — m



Problem Formulation of SK

4 )
The generate key is (¢,0)-SK (0 < ¢e,0 < 1) ifthere exists K such that

Reliability Pr{Ki =Ko=K} >1—¢

Security d(Pan, Pois X PHZ) <9

. J

d(P,Q) = %Z P(a) — Q(a)| Priz : marginal of Pr11z
1
Punif(k) — m
4 N

Se 5(X,Y|Z) :maximum log || such that a protocol generating (e, §)-SK exists




Secret Key Capacity

(

For i.i.d. observations {(X™, Y™, Z™)}>21,

1
C(X,Y|Z):= lim liminf —S, s(X™,Y"|Z")

£,0-0 n—oo M
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For i.i.d. observations {(X™, Y™, Z™)}>21,
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Secret Key Capacity

(

\_

For i.i.d. observations {(X™, Y™, Z™)}>21,

1
C(X,Y|Z):= lim liminf —S, s(X™,Y"|Z")

£,0—-0 n—oo0 N

Basic lower (achievability) bound:

C(X,Y|Z) > H(X|Z) — H(X|Y)

Basic upper (converse) bound:

C(X,Y|Z) < (X AY|Z)

(

\_

Theorem [Maurer 93, Ahlswede-Csiszar 93]
When X —o— Y —o— Z holds,
C(X,Y|Z)=I(X NY|Z)

In particular,

C(X,Y)=I(X AY)




ldea of achievability

e |nformation reconciliation

share a common random variable

e Privacy amplification

extract a secret key



Information Reconciliation

Use Slepian-Wolf coding:

X" h %
—>| Enc. 7 » Dec.—>
Y’n

If B> H(X|Y), there exists a code such that Pr{X" £ X”} — 0



Privacy Amplification

Alice and Bob shall generate secret key from X when 7 is known to Eve.

/Definition (2-Universal hash family) \

A random function F' : X — {0,1}" is called 2-UHF if

Vo #2' € X

1
o

eg)

e the set of all functions from X" to {0, 1}’

e the set of all linear functions from X' to {0, 1}



Privacy Amplification

/Definition (Conditional min-entropy) A

For Px» and () z, the conditional min-entropy of Px » given () is
. Qz(2)
Hmin(PXZ|QZ) = 11111 lOg
reX,zEswpp(Qz)  Pxz(x,2)

Then, the conditional min-entropy of Py » given 7 is

Hmin P /) = mamein P
S (Pxz|Z) na. (Pxz|Qz) )




Privacy Amplification

/Definition (Conditional min-entropy) A

For Px» and () z, the conditional min-entropy of Px » given () is
. Qz(2)
Hmin(PXZ|QZ) = 11111 lOg
reX,zEswpp(Qz)  Pxz(x,2)

Then, the conditional min-entropy of Py » given 7 is

H_ i (P /) ;= max Hin (P
S (Pxz|Z) = na. (Pxz|Qz) )

The closed form (-log of success guessing probability):

Hmm(PXZ‘Z logZPZ mxa’XPX|Z('CE‘Z)

7 (%) o< Pz(z) max Px|z(x|z)



Leftover Hash Lemma

The following bound is useful (cf. [Impagliazzo-Levin-Luby 89, Renner 05]).

-

For 2-UHF F' | K = F'(X) satisfies

heorem (Leftover Hash Lemma)

d(Px zr, Pumis X Pz X Pr)

o

<1 \/2l Hmin(Px 2| 2)




Leftover Hash Lemma

The following bound is useful (cf. [Impagliazzo-Levin-Luby 89, Renner 05]).

/Theorem (Leftover Hash Lemma) \
For 2-UHF F' | K = F'(X) satisfies
1 |—Humin(Pxz|Z
A(Pczr, Panss X Pz % Pp) < o/ 2!~ Huin(Pxz|2)
N Y

J -secure secret key of length
Hmin(PXZ‘Z) — 2 10g(1/25)

can be generated.



Leftover Hash Lemma

The following bound is useful (cf. [Impagliazzo-Levin-Luby 89, Renner 05]).

/Theorem (Leftover Hash Lemma) \
For 2-UHF F' | K = F'(X) satisfies
1 |—Hpin(Px 2| Z
A(Pczr, Panss X Pz % Pp) < o/ 2!~ Huin(Pxz|2)
\_ y

J -secure secret key of length
Hmin(PXZ‘Z) — 2 10g(1/25)

can be generated.

Typically, this bound is loose...; for i.i.d.,

1
ﬁHmin(P)rn(JZ’Zn) — Hmin(PXZ‘Z) < H(X|Z)



Smoothing

Smoothing: Px 7 — PXZ under the condition d(PXZ,PXz) <9

(allow sub-normalized distribution)

We allow sub-normalized distribution since we typically choose truncated distribution

Pxz(x,2) = Pxz(x, 2)1[(z,2) € T

for some 7 with

Pxz(T)>1-20



Smooth Conditional Min-Entropy

/Definition (Smooth conditional min-entropy)

For Pxz and @)z the smooth conditional min-entropy of Px 7 given (07 is

H°. (Pxz|Qz):=  max Hoin(Px2|Q2)
Pxz€Bs(Pxz)

Bg(sz) i= {PXZ - Psub(X X Z) : d(pxz,sz) < 5}
Then, the smooth conditional min-entropy of Px 7z given Z is

Hr(iun(PXZ‘Z) = %aXHglin(PXZ‘QZ)
Z

.




Leftover Hash Lemma with Smoothing

Apply triangular inequality for smoothed distribution...
/7

For 2-UHF F' | K = F'(X) satisfies

heorem (Leftover Hash Lemma with smoothing)

1
d(PKZFapunif X PZ X PF) S 20 -+ 5\/2l_Hr5nin(PXZ|Z)




Leftover Hash Lemma with Smoothing

Apply triangular inequality for smoothed distribution...
/7

For 2-UHF F' | K = F'(X) satisfies

heorem (Leftover Hash Lemma with smoothing)

1
d(PKZFapunif X PZ X PF) S 20 -+ 5\/2l_Hr5nin(PXZ|Z)

o J

J -secure secret key of length

Hw ""?(Px 7 2) — 21og(1/21) — 1

min

can be generated for 0 < n < o.



Leftover Hash Lemma with Smoothing

Apply triangular inequality for smoothed distribution...
/7

For 2-UHF F' | K = F'(X) satisfies

heorem (Leftover Hash Lemma with smoothing)

1
d(PKZFapunif X PZ X PF) S 20 -+ §\/2l_Hr5nin(PXZ|Z)

o J

J -secure secret key of length

Hw ""?(Px 7 2) — 21og(1/21) — 1

min

can be generated for 0 < n < o.

For i.1.d. observation,

1 _
lim = H " (Py 4| Z") = H(X|Z)
n—oo N,

for 0 <n <o.



Leftover Hash Lemma with Extra Message

The following variant of LHL for P xzv is useful for later application:

/Theorem (Leftover Hash Lemma with extra message) \
For 2-UHF F' | K = F'(X) satisfies
1
d(PrvzF, Pamis X Pyz X Pp) <26 + —\/W|2l_H§1m(PXZ|Z)
x - y,




Leftover Hash Lemma with Extra Message

The following variant of LHL for P xzv is useful for later application:

/Theorem (Leftover Hash Lemma with extra message) \
For 2-UHF F' | K = F'(X) satisfies
1
d(PrvzF, Pamis X Pyz X Pp) <26 + —\/W|2l_H§1m(PXZ|Z)
x - y,

J -secure secret key of length

HY=D/2(Py417) — 2log(1/28) — 1 — log |V

min

for 0 < n < ¢; extra message reduces key length at most log |V|.



Composition of IR and PA

When message of rate R is revealed to Eve in IR

Alice and Bob can generate SK at rate

H(X|Z)- R

—> H(X|Z)— H(X|Y) is attainable



Composition of IR and PA

When message of rate R is revealed to Eve in IR

Alice and Bob can generate SK at rate

H(X|Z)- R

—> H(X|Z)— H(X|Y) is attainable

More generally,

(Randomness unknown to Eve initially) — (Rate revealed in IR)



ldea of Converse: a property of interactive communication

Interactive communication

Alice Bob

I, = I (X) .

I3 = [I3(X, I, I15) >



ldea of Converse: a property of interactive communication

Interactive communication

Alice Bob
I, = I, (X) .
< 2 — Z(Yy 1)
I3 = [I3(X, I, I15) >

/Lemma [Maurer 93, Ahlswede-Csiszar 93]
For any protocol IT = (I14,...,IL,),

(X AY|Z,T) < (X AY|Z)

In particular,

 DIxvz=PxizPy 2Pz = Pxvyzn = Pxjznly|znlPzn




A Basic Converese Bound

By the Fano inequality argument,...

(T N

Forevery 0 <e,0 <1 with e+ 0 < 1,

S.5(X,Y|Z) < I(X A Y|12_) :_h(;) + h(6)

. J

heorem [Maurer 93, Ahlswede-Csiszar 93]




A Basic Converese Bound

By the Fano inequality argument,...

Kl'heorem [Maurer 93, Ahlswede-Csiszar 93] \
Forevery 0 <¢e,0 <1 with ¢ +0 < 1,
I(XANY|Z)+h h(o
’ 1—e—0
N /

For i.i.d. observations,

1
C(X,Y|Z) = lim liminf =S. §(X",Y"|Z") < (X AY|Z)

£,0—-0 n—o0 N

It is tight when (X, Y, Z) form Markov chain (degraded):

(X AY|Z) = H(X|Z) — HX|Y)



Conditional Independence Testing Bound

By relating SK and hypothesis testing, ...

-

Forevery ) < e,0 < land 0 <n <1—¢e—9,wehave

heorem [Tyagi-W. 14]

Ses(X,Y|Z) < —log Beys+n(Pxyz,@xyz)+ 2log(1/n)

forany Qxyz = Qx|zQv|zQz.




Conditional Independence Testing Bound

By relating SK and hypothesis testing, ...

Kl'heorem [Tyagi-W. 14] \
Forevery ) < e,0 < land 0 <n <1—¢e—9,wehave

Ses(X,Y|Z) < —log Beys+n(Pxyz,@xyz)+ 2log(1/n)

forany Qxyz = Qx|zQv|zQz.

For i.i.d. observations,

1
C. s(X,Y|Z) = liminf = S. 5(X™,Y"|Z") < I(X AY|Z)

n—oo 1

strong converse can be proved.

It is also tight up to the second-order term for degraded case.



Second-Order Rate of
Secret Key Agreement




Second-Order Rate of Secret Key Agreement

The standard protocol with
¢ information reconciliation
. . no interaction
e privacy amplification
achieves the secrecy capacity: H(X|Z) — H(X|Y)=I(X ANY|Z)

The standard protocol is always optimal? Does interaction help in some case?



Second-Order Rate of Secret Key Agreement

The standard protocol with
¢ information reconciliation
. . no interaction
e privacy amplification
achieves the secrecy capacity: H(X|Z) — H(X|Y)=I(X ANY|Z)

The standard protocol is always optimal? Does interaction help in some case?

-

For 0 <e, 0 <1lwithed+d<1,

heorem [Hayashi-Tyagi-W. 14]

S.s(X™Y™MZ™) =nl(X AY|Z) —VnVQ e+ 68) + O(logn)

where

P X, Y7
V := Var {log XY|Z( 2) }

Pxz(X|Z) Py z(Y|Z)

1 2

\ o= [ Lo ()




Does Standard Protocol Work?

e information reconciliation

e privacy amplification
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Does Standard Protocol Work?

e information reconciliation

nH(X|Y) + \/nVX|yQ_1(5) + O(logn)

1
VX|Y — Var |:10g PXY(XY):|

e privacy amplification

nH(X|Z) — \/nVX|ZQ_1(5) + O(logn)

1
VX|Z p— V&I’ |:10g PXZ(X‘Z):|

nl(X NY|Z) — \/nVX|YQ_1(5) - \/nVX|zQ_1(5) + O(logn)

The standard protocol does not achieve the optimal second-order rate.



Does Standard Protocol Work?

e information reconciliation

nH(X|Y) + \/nVX|yQ_1(5) + O(log n)

1
VX|Y — Var |:10g PXY(XY):|

e privacy amplification

nH(X|Z) — \/nVX|ZQ_1(5) + O(logn)

1
VX|Z p— V&I’ |:10g PXZ(X‘Z):|

nl(X NY|Z) — \/nVX|YQ_1(5) - \/nVX|zQ_1(5) + O(logn)

The standard protocol does not achieve the optimal second-order rate.

The optimal second-order rate is achieved by an interactive protocol.



Achievabillity Idea

Use interactive Slepian-Wolf coding (cf. [Draper 04, Feder-Schulman 02, Yang-He 10])
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* But neither party know the realization of hp, (X|Y);



Achievabillity Idea

Use interactive Slepian-Wolf coding (cf. [Draper 04, Feder-Schulman 02, Yang-He 10])

Basic ideas are...

1

* Alice should communicate at small rate if hp, . (X[Y) = log Py (X[V) is small;
XY

* But neither party know the realization of hp, (X|Y);

e Alice gradually increase rate until Bob is able to decode _X;



Achievabillity Idea

Use interactive Slepian-Wolf coding (cf. [Draper 04, Feder-Schulman 02, Yang-He 10])

Basic ideas are...

Alice should communicate at small rate if 1p, . (X[Y) = log
But neither party know the realization of hp (X|Y);
Alice gradually increase rate until Bob is able to decode X;

Bob return Ack/Nack until it decode X.

1

Px |y (X[Y)

IS small;



Achievabillity Idea

Use interactive Slepian-Wolf coding (cf. [Draper 04, Feder-Schulman 02, Yang-He 10])

Basic ideas are...

1

* Alice should communicate at small rate if hp, . (X[Y) = log Py (X[V) is small;
XY

e But neither party know the realization of thIY (X|Y);
e Alice gradually increase rate until Bob is able to decode _X;

e Bob return Ack/Nack until it decode X.

The usage of interaction decreases information revealed to Eve...



Multi-Party Secret Key Agreement




Multi-Party Setting

[Csiszar-Narayan 04]

Eve

11

Interactive Public Communication

1= (IL,...,II,)

<
(! T (i
Party 1 Party 2 Party m
X1H XQH e o o XmH
& N AN
K K5 K,

ACM:={1,..., M} Xpm=(X1,...,X0mn)
XA::(X,,;:iEA) KMI:(Kl,...,Km)



Problem Formulation of Multi-Party SK

-

-

The generate key is (¢,0)-SK (0 < ¢e,0 < 1) ifthere exists K such that

Reliability Pr{K;=.---=K,,=K}>1—¢

Security d(Pan, Pois X PHZ) <9

.

Se 5(X ) maximum log |KC| such that a protocol generating (¢, §)-SK exists

1
C(Xam) = lim liminf —S; s(X )

£,0—-0 n—oo M




2 Party Revisited

(Randomness unknown to Eve initially) — (Rate revealed in IR)
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= H(X1) — H(X1|X2)

It iIs asymmetric...



2 Party Revisited

(Randomness unknown to Eve initially) — (Rate revealed in IR)

C(X1,X2) = I(X1 N X>)

= H(X1) — H(X1|X2)

It iIs asymmetric...

= H(X1,X2) — H(X1|X2) — H(X5|X1)



2 Party Revisited

(Randomness unknown to Eve initially) — (Rate revealed in IR)

C(X1,X2) = I(X1 N X>)

= H(X1) — H(X1|X2)

It iIs asymmetric...

= H(X1,X2) — H(X1|X2) — H(X5|X1)

H (X A()— communication rate needed to agree on X \



Omniscience (Data Exchange) Problem

[Csiszar-Narayan 04]

Interactive Communication

1= (I,...,II,)

>

<
T T I
Party 1 Party 2 Party m
Xl H X2 H e o o Xm H
NSNS NS
X X X

L<(X A1) : minimum sum-rate for omniscience with
P(XV) = Xp, VI<i<m)>1—¢



Asymptotic Omniscience Rate

1
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Asymptotic Omniscience Rate

1
R(Px,,) = lim limsup —L(X )

c=0 nosoco N

\

R(PXM) — min { ZR¢:ZR7; > H(Xp|Xp:), VBC M

L 1—=1 1€B y

[Csiszar-Narayan 04]

Achieved by Slepian-Wolf coding; interaction not needed.



Asymptotic Omniscience Rate

. 1 "
R(Px,,) = 21_]{)1”(1) hrrlrisolip gLe(XM)

R(PXM) — min <

\

.
=1 1€B y
> [Csiszar-Narayan 04]
— oeX(M)

Achieved by Slepian-Wolf coding; interaction not needed. [Chan 08]

o]
1
Ho (MIPx ) :

T ‘O" 1 ZH(XM’X%)

o partition of AM
1=1




Asymptotic Omniscience Rate

1
R(Px,,) = lim limsup —L(X/)

c=0 nosoo N

\

0
=1 i€B )
> [Csiszar-Narayan 04]
= max H,(M|Px,,)
— oceX(M)
Achieved by Slepian-Wolf coding; interaction not needed. [Chan 08]
1 o]
H, M|Px,,) := = 1ZH(XM]XJ) o partition of A
1=1
m = 2

R(Px,,) = H(X1|X2)

H(X2|X1)



Asymptotic Omniscience Rate

. 1 "
R(Px,,) = 21_]{)1”(1) hrrlrisolip gLe(XM)

R(PXM) — min <

\

0
\ 1=1 1€B )
> [Csiszar-Narayan 04]
= max H,(M|Px,,)
— oceX(M)
Achieved by Slepian-Wolf coding; interaction not needed. [Chan 08]
1 o]
H, M|Px,,) := ZH(XM]XJZ.) o partition of A
o] =1 =
m=3

Y(M) = {11123}, 112]3},123[1}, 1112[3}}

R(PXM) — IMax {H(Xl‘XQ,Xg) -+ H(XQ,XS’Xl), H(Xg’Xl,XQ) —+ H(Xl,XQ‘Xg),

H(Xo, X3|X H(Xq, X3|X H(Xq, X9l X
H(X2| X5, X3) + H(X:, X3 X2), (X2, X3|X1) + H(Xy, X3|Xo) + H (X1, X3|Xs)

z }




Multi-Party Secrecy Capacity

-~

Theorem [Csiszar-Narayan 04]




Multi-Party Secrecy Capacity

-~

Theorem [Csiszar-Narayan 04, Chan 08]

C(Xm)=H(Xm)— R(Px,,)

o
1
= mli D P ||P
aezl(I/{/l) o] —1 ( Al XUi)




Multi-Party Secrecy Capacity

/Theorem [Csiszar-Narayan 04, Chan 08] \
C(Xm) = H(Xm) — R(Px )
1 o
— ' D|(P P
aergl(%/l) o] —1 ( A 71;[1 XGZ)
N /

A single-shot converse can be proved via hypothesis testing [Tyagi-W. 14]



Universal Protocol
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We shall construct a SK/Data exchange protocol that does not rely on knowledge of P x IV

It suffices to construct a universal data exchange protocol.



Universal Protocol

We shall construct a SK/Data exchange protocol that does not rely on knowledge of P x IV

It suffices to construct a universal data exchange protocol.

In fact, it works for a given individual sequence...

-

heorem [Tyagi-W. 16]

~

There exists a universal data exchange protocol such that, for a given X A4, it communicates

where Py , , is the joint type.

nR*(Px,) + O(Vn)

The universal protocol is called recursive data exchange (RDE) protocol.



Universal RDE Protocol

Two-step coding for single-terminal source coding:
(1) Send the type  O(logn)
(2) Send the index among the type class nH (Px) + O(logn)
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e The decoder return Ack/Nack until it recovers X



Universal RDE Protocol

Two-step coding for single-terminal source coding:
(1) Send the type  O(logn)
(2) Send the index among the type class nH (Px) + O(logn)

In the data exchange problem, observations are distributed over the parties...

Use interactive Slepian-Wolf coding [Draper 04, Yang-He 10]

e The encoder gradually increment rate until the decoder recovers X

e The decoder return Ack/Nack until it recovers X

The decoder looks for joint type Pﬁ s.t. there exists a unique X satisfying
) Pry = Pxv
2) Ry > HX|Y)+ A

3) Hash values (bin indices) of X up to round t are compatible.



Decoding Rule for Local Omniscience

Local omniscience region for A C M ::

R&y(AlPg,) = {(Ri i€ A): > Ry > H(Xp[Xap)+|B|A, VB C A}
1€B



Decoding Rule for Local Omniscience

Local omniscience region for A C M ::

R&y(AlPg,) = {(Ri i€ A): > Ry > H(Xp[Xap)+|B|A, VB C A}
1€B

i th party looks for maximal i € A C M and Px, s.t. there exists a unique X A satisfying
1) )A(Z — X P)A(A :PYA

1

2) (R i€ A) e RG(A|Px,)

3) Hash values (bin indices) of }A(A up to round ¢ are compatible.



Decoding Rule for Local Omniscience

Local omniscience region for A C M ::

Rep(APx,) = {(Ri i€ A): Y R >H(Xp|Xap)+I|BIA, VB C A}
i€B
i th party looks for maximal i € A C M and Px, s.t. there exists a unique X A satisfying
1) )A(Z — X P)A(A :PYA
2) (R i€ A) e RG(A|Px,)

3) Hash values (bin indices) of }A(A up to round ¢ are compatible.

Once accumulated rate vector enters a local omniscience region, local omniscience

occur automatically. Difficulty is how to increment rates...
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Rate Increment Rule

Two-party case:

Ro

A

IO I R —

W.L.G., assume H(X{) > H(X>)
Party 1: R](LO) =0; Rgtﬂ) 1= Rgt) + A
Party 2: start communication if R\" > H(X1) — H(X,); R =0;: Rt = R + A
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Rate Increment Rule

Multi-party case:

W.L.G., assume H(X) > H(X,) > ---> H(X,,)
Party 1: R =0; RI'"™ .= RIY + A
Party 2: start communication if Rg ) > H(X,) - H(X,); RéO) =0; Rétﬂ) = R;t) + A

Party 3: start communication if Rgt) > H(X,) - H(X3); R:gO) = 0; R:(gtﬂ) — Rét) + A

Rate assignment for the tipping

Y R (A)=H(X4lX;), jeA
i€ A\{j}

Property:
R;(A) — R;(4) = H(X;) - H(X)
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Recursive Structure

Theorem (rough statement)

At some point, (R\") : i € A) for some A C M reaches Réy(AP%,) at

(RI(A):i€ A) modulo O(A)

Parties in A attain local omniscience.

From that point, the parties in A behaves as if one large party: increment rule is

A
RV = R® 4 e (RUHD = RD 4 A)

Theorem (rough statement)

The protocol proceed as if A were one party from the begin with...
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Recursive Structure

P3 P5

P4

N
recursive




Performance of Universal RDE

Corollary (rough statement)

The protocol recursively attain omniscience with rate

R(Py,,) + O(A) + O (%) o <logn>

n

slack of rate increment rate for Ack/Nack
proportional to #rounds O(1/A)
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Some Open Problems

(1) Non-degraded case:

e Even the first-order capacity is not known in general.
¢ When interaction is not allowed, capacity is known but involves auxiliary RVs.

¢ What is the second-order rate when the capacity is known?

(2) Necessity of interaction to attain the optimal second-order rate

e Even for the degraded case, the standard protocol does not attain the optimal
second-order rate.

e How about other non-interactive protocols? Interaction is necessary?
(3) Universal protocol for the case with helpers

e When only subset A C M try to attain omniscience, is there universal protocol?

¢ Slepian-Wolf coding is known to be optimal, but the rate formula is more involved.



Thank you for listening.



