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Shannon’s Pessimistic Result

A secret key crypto system is secure only if

H(K) � H(M)

Key length must be as large as message length…



Wyner’s Wiretap Channel

[Wyner 75]

M M̂Enc. Dec.W (y, z|x)

W (y, z|x) = W1(y|x)W2(z|y) : Degraded Wiretap Channel

Alice Bob

Eve

General wiretap channel [Csiszár-Körner]



[Maurer 93, Ahlswede-Csiszár 93]
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Secret Key Agreement: Model



[Maurer 93, Ahlswede-Csiszár 93]

Interactive Public Communication

Alice Bob

Eve

Secret Key Agreement: Protocol

⇧ = (⇧1, . . . ,⇧r)

⇧ ⇧

⇧1 = ⇧1(X)

⇧2 = ⇧2(Y,⇧1)

⇧r = ⇧r(Y,⇧1, . . . ,⇧r�1)

⇧



[Maurer 93, Ahlswede-Csiszár 93]

Interactive Public Communication

Alice Bob

Eve

Secret Key Agreement: Protocol

⇧ = (⇧1, . . . ,⇧r)

⇧ ⇧

⇧

K1 = K1(X,⇧) K2 = K2(Y,⇧)



Example 1: Maurer’s Satellite Model

Alice BobEve



Example 2: Fading of Wireless Communication

Fading

[Hassan et. al. ’96] 
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Example 3: Fuzzy Extractor (Biometric Security)

[Dodis et. al. 04]

Alice Bob

Eve

⇧



Reliability

Security

-SK

Problem Formulation of SK

: marginal of

if there exists      such thatKThe generate key is

Pr{K1 = K2 = K} � 1� "

d(PK⇧Z , Punif ⇥ P⇧Z)  �

P⇧Z PK⇧Z

(", �) (0  ", � < 1)



Problem Formulation of SK

:maximum              such that a protocol generating         -SK existsS",�(X,Y |Z)

Reliability
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-SK
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if there exists      such thatKThe generate key is
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Secret Key Capacity

C(X,Y |Z) := lim
",�!0

lim inf
n!1

1

n
S",�(X

n, Y n|Zn)

For i.i.d. observations                                    ,{(Xn, Y n, Zn)}1n=1
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lim inf
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1

n
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For i.i.d. observations                                    ,{(Xn, Y n, Zn)}1n=1

Basic lower (achievability) bound:

C(X,Y |Z) � H(X|Z)�H(X|Y )

Basic upper (converse) bound:
C(X,Y |Z)  I(X ^ Y |Z)



Secret Key Capacity

C(X,Y |Z) := lim
",�!0

lim inf
n!1

1

n
S",�(X

n, Y n|Zn)

For i.i.d. observations                                    ,{(Xn, Y n, Zn)}1n=1

Basic lower (achievability) bound:

C(X,Y |Z) � H(X|Z)�H(X|Y )

Basic upper (converse) bound:
C(X,Y |Z)  I(X ^ Y |Z)

Theorem [Maurer 93, Ahlswede-Csiszár 93]
X ��� Y ��� ZWhen                                 holds, 

C(X,Y |Z) = I(X ^ Y |Z)
In particular, 

C(X,Y ) = I(X ^ Y )



Idea of achievability

• Information reconciliation

• Privacy amplification

share a common random variable

extract a secret key



Information Reconciliation 
Use Slepian-Wolf coding:

Enc. Dec.
X̂nR

If                         , there exists a code such that R > H(X|Y ) Pr{Xn 6= X̂n} ! 0



Privacy Amplification

Definition (2-Universal hash family)

A random function                               is called 2-UHF ifF : X ! {0, 1}l

P
�
F (x) = F (x0)

�
 1

2l
, 8x 6= x

0 2 X

eg)

• the set of all functions from      to  X {0, 1}l

• the set of all linear functions from      to  X {0, 1}l

Alice and Bob shall generate secret key from       when      is known to Eve.  X Z



Privacy Amplification
Definition (Conditional min-entropy)

For            and       , the conditional min-entropy of           given        is

Then, the conditional min-entropy of           given       isZ

PXZ QZ QZPXZ

PXZ

Hmin(PXZ

|Q
Z

) := min

x2X ,z2supp(QZ)
log

Q
Z

(z)

P
XZ

(x, z)

Hmin(PXZ |Z) := max

QZ

Hmin(PXZ |QZ)



Privacy Amplification
Definition (Conditional min-entropy)

For            and       , the conditional min-entropy of           given        is

Then, the conditional min-entropy of           given       isZ

The closed form (-log of success guessing probability):

PXZ QZ QZPXZ

PXZ

Hmin(PXZ

|Q
Z

) := min

x2X ,z2supp(QZ)
log

Q
Z

(z)

P
XZ

(x, z)

Hmin(PXZ |Z) := max

QZ

Hmin(PXZ |QZ)

Hmin(PXZ

|Z) = � log

X

z

P
Z

(z)max

x

P
X|Z(x|z)

Q

⇤
Z

(z) / P

Z

(z)max

x

P

X|Z(x|z)



Leftover Hash Lemma

Theorem (Leftover Hash Lemma)

For 2-UHF       ,                     satisfies F K = F (X)

d(PKZF , Punif ⇥ PZ ⇥ PF ) 
1

2

p
2l�Hmin(PXZ |Z)

The following bound is useful (cf. [Impagliazzo-Levin-Luby 89, Renner 05]).
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Leftover Hash Lemma

Theorem (Leftover Hash Lemma)

For 2-UHF       ,                     satisfies F K = F (X)

d(PKZF , Punif ⇥ PZ ⇥ PF ) 
1

2

p
2l�Hmin(PXZ |Z)

The following bound is useful (cf. [Impagliazzo-Levin-Luby 89, Renner 05]).

   -secure secret key of length�

can be generated.

Typically, this bound is loose…; for i.i.d., 

1

n
Hmin(P

n
XZ |Zn) = Hmin(PXZ |Z) < H(X|Z)

Hmin(PXZ |Z)� 2 log(1/2�)



Smoothing
Smoothing: under the condition

(allow sub-normalized distribution)

We allow sub-normalized distribution since we typically choose truncated distribution

for some      withT

PXZ ! P̃XZ d(P̃XZ , PXZ)  �

P̃XZ(x, z) = PXZ(x, z)1[(x, z) 2 T ]

PXZ(T ) � 1� 2�



Smooth Conditional Min-Entropy

Definition (Smooth conditional min-entropy)

For            and       , the smooth conditional min-entropy of           given        is

Then, the smooth conditional min-entropy of           given       isZ

PXZ QZ PXZ QZ

H�
min(PXZ |QZ) := max

P̃XZ2B�(PXZ)
Hmin(

˜PXZ |QZ)

B�(PXZ) := {P̃XZ 2 Psub(X ⇥ Z) : d(P̃XZ , PXZ)  �}

PXZ

H�
min(PXZ |Z) := max

QZ

H�
min(PXZ |QZ)



Leftover Hash Lemma with Smoothing

Theorem (Leftover Hash Lemma with smoothing)

For 2-UHF       ,                     satisfies F K = F (X)

Apply triangular inequality for smoothed distribution…

d(PKZF , Punif ⇥ PZ ⇥ PF )  2� +
1

2

p
2l�H�

min(PXZ |Z)



Leftover Hash Lemma with Smoothing

Theorem (Leftover Hash Lemma with smoothing)

For 2-UHF       ,                     satisfies F K = F (X)

Apply triangular inequality for smoothed distribution…

d(PKZF , Punif ⇥ PZ ⇥ PF )  2� +
1

2

p
2l�H�

min(PXZ |Z)

   -secure secret key of length�

H
(��⌘)/2
min (PXZ |Z)� 2 log(1/2⌘)� 1

can be generated for                  .0 < ⌘  �



Leftover Hash Lemma with Smoothing

Theorem (Leftover Hash Lemma with smoothing)

For 2-UHF       ,                     satisfies F K = F (X)

Apply triangular inequality for smoothed distribution…

d(PKZF , Punif ⇥ PZ ⇥ PF )  2� +
1

2

p
2l�H�

min(PXZ |Z)

   -secure secret key of length�

H
(��⌘)/2
min (PXZ |Z)� 2 log(1/2⌘)� 1

can be generated for                  .0 < ⌘  �

For i.i.d. observation, 

lim
n!1

1

n
H

(��⌘)/2
min (Pn

XZ |Zn) = H(X|Z)

for                 . 0 < ⌘ < �



Leftover Hash Lemma with Extra Message

The following variant of LHL for              is useful for later application:                             

Theorem (Leftover Hash Lemma with extra message)

For 2-UHF       ,                     satisfies F K = F (X)

PXZV

d(PKV ZF , Punif ⇥ PV Z ⇥ PF )  2� +
1

2

q
|V|2l�H�

min(PXZ |Z)



Leftover Hash Lemma with Extra Message

The following variant of LHL for              is useful for later application:                             

Theorem (Leftover Hash Lemma with extra message)

For 2-UHF       ,                     satisfies F K = F (X)

PXZV

for                 ; extra message reduces key length at most            .                                               

Corollary 3 (Leftover Hash Lemma with Smoothing). For a mapping F chosen uniformly at
random from a 2-UHF F , K = F (X) satisfies

d (PKZF ,Punif ⇥ PZ ⇥ PF )  2"+
1

2

p

2l�H"
2(PXZ |Z). (7)

 2"+
1

2

p

2l�H"
min(PXZ |Z). (8)

Thus, K = F (X) and F satisfy

d(PKZF ,Punif ⇥ PZ ⇥ PF )  "

if

l  H("�⌘)/2
min

(PXZ |QZ)� log(1/4⌘2)� 1 (9)

for 0 < ⌘  ".
A common smoothing technique is to consider the set B"(PXZ) containing the subnormalized

distribution P̃XZ obtained by removing the set of “nontypical” sequences, i.e.,

P̃XZ(x, z) = PXZ (x, z)1



log
1

PX|Z (x|z) > r

�

.

Then, we have

H"/2
min

(PXZ |PZ) � sup

⇢

r : P

✓

log
1

PX|Z (X|Z)
 r

◆

 "

�

. (10)

When Pn
XZ is an i.i.d. distribution, (9), (10), together with the law of large number imply

l � nH(X|Z)� o(n).

Furthermore, by applying the central limit theorem, we have

l � nH(X|Z)�
p
nV Q�1(")�O(log n), (11)

which is optimal.

Remark 1. The min-entropy bound (8) su�ces to derive the asymptotic limit up to the second-
order term (11). However, when security parameter " is very small, such as the large deviation
regime, it is known that the collision entropy bound (7) provides much tighter bound.

Finally, we review a useful variant of the leftover hash lemma. Suppose that the side-information
comprises V on V and Z on Z, and consider the joint distribution PXV Z .

Theorem 4. For a mapping F chosen uniformly at random from a 2-UHF F , K = F (X) satisfies

d(PKV ZF ,Punif ⇥ PV Z ⇥ PF )  2"+
1

2

q

|V|2l�H✏
min(PXZ |Z). (12)

In other word, if an extra log |V| bit side information V is revealed, the extracted randomness
K reduces by at most log |V| bits.

5

log |V|

d(PKV ZF , Punif ⇥ PV Z ⇥ PF )  2� +
1

2

q
|V|2l�H�

min(PXZ |Z)

H
(��⌘)/2
min (PXZ |Z)� 2 log(1/2�)� 1� log |V|

   -secure secret key of length�



Composition of IR and PA
When message of rate      is revealed to Eve in IRR

Alice and Bob can generate SK at rate

H(X|Z)�R

=) H(X|Z)�H(X|Y ) is attainable



Composition of IR and PA
When message of rate      is revealed to Eve in IRR

Alice and Bob can generate SK at rate

H(X|Z)�R

=) H(X|Z)�H(X|Y ) is attainable

More generally, 

(Randomness unknown to Eve initially)      (Rate revealed in IR) �



Idea of Converse: a property of interactive communication

Interactive communication             

⇧1 = ⇧1(X)

⇧2 = ⇧2(Y,⇧1)

⇧3 = ⇧3(X,⇧1,⇧2)
...

Alice Bob



Idea of Converse: a property of interactive communication

Interactive communication             

⇧1 = ⇧1(X)

⇧2 = ⇧2(Y,⇧1)

⇧3 = ⇧3(X,⇧1,⇧2)
...

Lemma [Maurer 93, Ahlswede-Csiszár 93] 
For any protocol                               ,             

2.3 Information theoretic limits: Achievability

Using the development of the previous section, we can find a lower bound S",�(X,Y ) by appropri-
ately choosing l and then fixing k to satisfy (17). Specifically, we let the lists Ly be given by (15).
Then, by (16) and (17), on choosing l = �+ � we get an (", �)-SK of length

H⌘
min

(PXZ |Z)� �� � � 2 log
1

� � ⌘
,

where � > 0 satisfies

Pr
�

{(x, y) : � log PX|Y (x|y)  �}
�

� 1� "+ 2�� .

For the i.i.d. case, we can evaluate an explicit bound for H⌘
min

(PXZ |Z) and � above using the
central limit theorem as in (11) to obtain the following result.

Theorem 5. For an i.i.d. distribution PXnY nZn and 0  ", � < 1

S",�(X
n, Y n|Zn) � n(H(X|Z)�H(X|Y )) +O(

p
n).

2.4 Fuzzy extractors

3 Converse techniques

In this section, we review the techniques for deriving converse bounds (impossibility results) for
the secret key agreement problem.

3.1 A Basic Converse Bound

We start with a basic converse bound. This basic bound is tight enough to show the weak converse.
The following lemma gives a property of interactive communication protocol, which will be also
used latter sections.

Lemma 6. For any protocol ⇧,

I(X ^ Y |Z,⇧)  I(X ^ Y |Z).

In particular, if PXY Z = PX|ZPY |ZPZ , then PX|Z⇧

PY |Z⇧

PZ⇧

.

By combining Lemma 6 with the Fano inequality argument, we can derive the following bound.

Theorem 7. For every 0  ", � < 1 with 0  "+ � < 1, it holds that

S",�(X,Y |Z)  I(X ^ Y |Z) + h(") + h(�)

1� "� �

Proof Outline By the Fano inequality and by the continuity of the entropy, (", �)-SK (K
1

,K
2

)
satisfies

H(K
1

|K
2

)  h(") + " log |K|,
log |K|�H(K

1

|Z,⇧)  h(�) + � log |K|.

8

In particular,        

⇧ = (⇧1, . . . ,⇧r)

Alice Bob

PXY Z = PX|ZPY |ZPZ =) PXY Z⇧ = PX|Z⇧PY |Z⇧PZ⇧



A Basic Converese Bound
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3 Converse techniques

In this section, we review the techniques for deriving converse bounds (impossibility results) for
the secret key agreement problem.

3.1 A Basic Converse Bound

We start with a basic converse bound. This basic bound is tight enough to show the weak converse.
The following lemma gives a property of interactive communication protocol, which will be also
used latter sections.

Lemma 6. For any protocol ⇧,
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In particular, if PXY Z = PX|ZPY |ZPZ , then PX|Z⇧
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1
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For i.i.d. observations,

C(X,Y |Z) = lim
",�!0

lim inf
n!1

1

n
S",�(X

n, Y n|Zn)  I(X ^ Y |Z)

It is tight when                  form Markov chain (degraded):(X,Y, Z)

I(X ^ Y |Z) = H(X|Z)�H(X|Y )



Conditional Independence Testing Bound

0  ", � < 1 0 < ⌘ < 1� "� �

S",�(X,Y |Z)  � log �"+�+⌘(PXY Z , QXY Z) + 2 log(1/⌘)

Theorem [Tyagi-W. 14] 
For every                         and                                    , we have

for any                                                 .

By relating SK and hypothesis testing,…



Conditional Independence Testing Bound

0  ", � < 1 0 < ⌘ < 1� "� �

S",�(X,Y |Z)  � log �"+�+⌘(PXY Z , QXY Z) + 2 log(1/⌘)

Theorem [Tyagi-W. 14] 
For every                         and                                    , we have

for any                                                 .

By relating SK and hypothesis testing,…

For i.i.d. observations,

C",�(X,Y |Z) = lim inf
n!1

1

n
S",�(X

n, Y n|Zn)  I(X ^ Y |Z)

strong converse can be proved. 

It is also tight up to the second-order term for degraded case. 



Second-Order Rate of
 Secret Key Agreement



Second-Order Rate of Secret Key Agreement
The standard protocol with

• information reconciliation

• privacy amplification

achieves the secrecy capacity: H(X|Z)�H(X|Y ) = I(X ^ Y |Z)

The standard protocol is always optimal? Does interaction help in some case?

no interaction



Second-Order Rate of Secret Key Agreement
The standard protocol with

• information reconciliation

• privacy amplification

achieves the secrecy capacity: H(X|Z)�H(X|Y ) = I(X ^ Y |Z)

The standard protocol is always optimal? Does interaction help in some case?

Theorem [Hayashi-Tyagi-W. 14] 

0 < ", � < 1 "+ � < 1For                        with                   , 

Example 4 (Reduction of BC to OT). Suppose two parties have at their disposal an OT of length
n. Using this as a resource, what is the length l of (", �

1

, �
2

)-BC that can be constructed?
Denoting by K

0

,K
1

the OT strings, and by B the OT bit of P
2

, let X
1

= (K
0

,K
1

) and
X

2

= (B,KB). Note thaat

D(PX1X1X2kPX1|X2
PX1X2) = n.

Therefore, by Theorem 18, we get

l  n+ log(1/(1� "� �
1

� �
2

� ⌘)) + 2 log(1/⌘),

where 0 < ⌘ < 1� "� �
1

� �
2

.

5 Interactive secret key agreement

In this section, we describe more sophisticated protocols than those described in previous sections.

5.1 Second-Order Rate of Secret Key Agreement

One of motivation to introduce a sophisticated protocol is to characterize the second-order rate of
the secret key agreement. When (X,Y, Z) is degraded, i.e., X ��� Y ���Z, the secrecy capacity (the
first-order rate) is given by

C(X,Y |Z) = I(X ^ Y |Z).

The following theorem characerizes the second-order rate under the degraded condition.

Theorem 21. For 0 < ", � < 1 with 0 < "+ � < 1, it holds that

S",�(X
n, Y n|Zn) = nI(X ^ Y |Z)�

p
nV Q�1("+ �) +O(log n),

where

V = Var



log
PXY |Z (X,Y |Z)

PX|Z (X|Z) PY |Z (Y |Z)

�

.

The converse proof of Theorem 21 follows from Theorem 8 by the central limit theoerm. In the
following, we will explain how to prove the achievability part. Even though the secrecy capacity
can be achieved by a simple protocol that consists of the information reconciliation and the privacy
amplification, our protocol shown below is an interactive scheme.

5.2 Why The Standard Protocol Does Not Work?

In the standard Slepian-Wolf coding, the sender send hash value (bin index) f(X) of observation.
Then, the receiver looks for a unique x in the typical set

T
PX|Y = {(x, y) : h

PX|Y (x|y)  l � �}

that is compatible with the hash value received. The protocol is described in Protocol 1.
The error probability of this simple protocol is bounded as

Pr

✓

X 6= X̂

◆

 PXY

⇣

T c
PX|Y

⌘

+ 2�� .

17

where

no interaction

V := Var


log

PXY |Z(X,Y |Z)

PX|Z(X|Z)PY |Z(Y |Z)

�
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Does Standard Protocol Work?
• information reconciliation

• privacy amplification

nH(X|Y ) +

q
nVX|Y Q

�1
(") +O(log n)

VX|Y = Var


log

1

PX|Y (X|Y )

�

VX|Z = Var


log

1

PX|Z(X|Z)

�
nH(X|Z)�

q
nVX|ZQ

�1
(�) +O(log n)

nI(X ^ Y |Z)�
q
nVX|Y Q

�1
(")�

q
nVX|ZQ

�1
(�) +O(log n)

The optimal second-order rate is achieved by an interactive protocol.

The standard protocol does not achieve the optimal second-order rate.
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Achievability Idea

• Alice should communicate at small rate if                                                           is small;                                              

• But neither party know the realization of                           ;                                                           

Basic ideas are…                                         

Use interactive Slepian-Wolf coding (cf. [Draper 04, Feder-Schulman 02, Yang-He 10])                           

hPX|Y (X|Y ) = log

1

PX|Y (X|Y )

hPX|Y (X|Y )

The usage of interaction decreases information revealed to Eve…                                        

• Bob return Ack/Nack until it decode     .                                                        X

• Alice gradually increase rate until Bob is able to decode      ;                                                        X
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Multi-Party Setting

[Csiszár-Narayan 04]

Party 1 Party mParty 2

Eve

Interactive Public Communication

⇧ = (⇧1, . . . ,⇧r)

⇧ ⇧

⇧

⇧



Problem Formulation of Multi-Party SK

:maximum              such that a protocol generating         -SK exists

Reliability

Security

-SK if there exists      such thatKThe generate key is

d(PK⇧Z , Punif ⇥ P⇧Z)  �

(", �) (0  ", � < 1)

(", �)

Pr{K1 = · · · = Km = K} � 1� "

S",�(XM)

C(XM) := lim
",�!0

lim inf
n!1

1

n
S",�(X

n
M)
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2 Party Revisited

(Randomness unknown to Eve initially)      (Rate revealed in IR) �

it is asymmetric…

= H(X1, X2)�H(X1|X2)�H(X2|X1)

C(X1, X2) = I(X1 ^X2)

= H(X1)�H(X1|X2)

H(XM)� communication rate needed to agree on XM



Omniscience (Data Exchange) Problem
[Csiszár-Narayan 04]

Party 1 Party mParty 2

Interactive Communication
⇧ = (⇧1, . . . ,⇧r)

⇧ ⇧ ⇧

: minimum sum-rate for omniscience with L✏(XM)

X̂(1)
M X̂(2)

M X̂(m)
M

P
�
X(i)

M = XM, 81  i  m
�
� 1� ✏
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1
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R(PXM) = lim

✏!0
lim sup
n!1
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n
L✏(X

n
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[Csiszár-Narayan 04]

R(PXM) min

(
mX

i=1

Ri :
X

i2B

Ri � H(XB |XBc), 8B ( M
)

=

�
= max

�2⌃(M)
H�(M|PXM)

[Chan 08]

H�(M|PXM) :=
1

|�|� 1

|�|X

i=1

H(XM|X�i) :partition of � M

m = 2 ⌃(M) = {{1|2}}

R(PXM) = H(X1|X2) +H(X2|X1)

Achieved by Slepian-Wolf coding; interaction not needed.



Asymptotic Omniscience Rate
R(PXM) = lim

✏!0
lim sup
n!1

1

n
L✏(X

n
M)

[Csiszár-Narayan 04]

R(PXM) min

(
mX

i=1

Ri :
X

i2B

Ri � H(XB |XBc), 8B ( M
)

=

�
= max

�2⌃(M)
H�(M|PXM)

[Chan 08]

H�(M|PXM) :=
1

|�|� 1

|�|X

i=1

H(XM|X�i) :partition of � M

m = 3 ⌃(M) = {{1|23}, {12|3}, {23|1}, {1|2|3}}
R(PXM) = max

⇢
H(X1|X2, X3) +H(X2, X3|X1), H(X3|X1, X2) +H(X1, X2|X3),

H(X2|X1, X3) +H(X1, X3|X2),
H(X2, X3|X1) +H(X1, X3|X2) +H(X1, X2|X3)

2

�

Achieved by Slepian-Wolf coding; interaction not needed.
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Multi-Party Secrecy Capacity
Theorem [Csiszár-Narayan 04, Chan 08] 

C(XM) = H(XM)�R(PXM)

= min
�2⌃(M)

1

|�|� 1
D

✓
PXM

����
|�|Y

i=1

PX�i

◆

A single-shot converse can be proved via hypothesis testing [Tyagi-W. 14]



Universal Protocol



Universal Protocol
We shall construct a SK/Data exchange protocol that does not rely on knowledge of           . PXM

It suffices to construct a universal data exchange protocol.



Universal Protocol
We shall construct a SK/Data exchange protocol that does not rely on knowledge of           . PXM

It suffices to construct a universal data exchange protocol.

In fact, it works for a given individual sequence…

Theorem [Tyagi-W. 16] 

xMThere exists a universal data exchange protocol such that, for a given        , it communicates

nR⇤(P
xM) +O(

p
n)

where           is the joint type.P
xM

The universal protocol is called recursive data exchange (RDE) protocol.
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(2) Send the index among the type class

In the data exchange problem, observations are distributed over the parties… 

O(log n)

nH(P
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) +O(log n)

Use interactive Slepian-Wolf coding [Draper 04, Yang-He 10]

• The encoder gradually increment rate until the decoder recovers  

• The decoder return  Ack/Nack until it recovers 

x

x

The decoder looks for joint type             s.t. there exists a unique      satisfying  PXY
x̂

1) P
x̂y

= PXY

2)

3) Hash values (bin indices) of      up to round     are compatible.
x̂ t

Rt � H(X|Y ) +�



Decoding Rule for Local Omniscience
Local omniscience region for               :A ✓ M

R�
CO(A|PXA

) =

(
(Ri : i 2 A) :

X

i2B

Ri � H(XB |XA\B) + |B|�, 8B ✓ A

)



Decoding Rule for Local Omniscience

    th party looks for maximal                       and        s.t. there exists a unique          satisfying  i

Local omniscience region for               :A ✓ M

x̂A

    1)               , 

    2)

i 2 A ✓ M

    3) Hash values (bin indices) of          up to round     are compatible. 
x̂A t

PXA

R�
CO(A|PXA

) =

(
(Ri : i 2 A) :

X

i2B

Ri � H(XB |XA\B) + |B|�, 8B ✓ A

)

(R(t)
i : i 2 A) 2 R�

CO(A|PXA
)

P
x̂A = PXA

x̂i = xi



Decoding Rule for Local Omniscience

    th party looks for maximal                       and        s.t. there exists a unique          satisfying  i

Local omniscience region for               :A ✓ M

x̂A

    1)               , 

    2)

i 2 A ✓ M

    3) Hash values (bin indices) of          up to round     are compatible. 
x̂A t

occur automatically. Difficulty is how to increment rates…
Once accumulated rate vector enters a local omniscience region, local omniscience 

PXA

R�
CO(A|PXA

) =

(
(Ri : i 2 A) :

X

i2B

Ri � H(XB |XA\B) + |B|�, 8B ✓ A

)

(R(t)
i : i 2 A) 2 R�

CO(A|PXA
)

P
x̂A = PXA

x̂i = xi
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Party 1:                  ;   R(t+1)
1 := R(t)

1 +�R(0)
1 = 0

Party 2:   start communication if                                             ;                  ;      R
(t)
1 � H(X1)�H(X2) R(0)

2 = 0 R(t+1)
2 = R(t)

2 +�

H(X1) � H(X2) � · · · � H(Xm)

Party 3:   start communication if                                             ;                  ;      R
(t)
1 � H(X1)�H(X3) R(0)

3 = 0 R(t+1)
3 = R(t)

3 +�

...
Rate assignment for the tipping
X

i2A\{j}

R⇤
i (A) = H(XA|Xj), j 2 A

Property:

R⇤
i (A)�R⇤

j (A) = H(Xi)�H(Xj)
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At some point,                          for some                reaches                          at A ✓ M(R(t)
i : i 2 A)

Parties in     attain local omniscience.A

From that point, the parties in     behaves as if one large party: increment rule is A

R(t+1)
i = R(t)

i +
�

|A| , i 2 A (R(t+1)
A = R(t)

A +�)

The protocol proceed as if     were one party from the begin with…A

Theorem (rough statement)

Theorem (rough statement)

(R⇤
i (A) : i 2 A) O(�)modulo

R�
CO(A|PXA

)
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Recursive Structure

P1
P2

P3

P4

P5

X1

X2

X3

X4

X5

recursive



Performance of Universal RDE

The protocol recursively attain omniscience with rate

Corollary (rough statement)

R(P

xM) +O(�) +O
✓

1

n�

◆
+O

✓
log n

n

◆

slack of rate increment rate for Ack/Nack
proportional to #rounds O(1/�)
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Some Open Problems

(1) Non-degraded case:

(2) Necessity of interaction to attain the optimal second-order rate 

(3) Universal protocol for the case with helpers 

• Even the first-order capacity is not known in general.

• When interaction is not allowed, capacity is known but involves auxiliary RVs.

• What is the second-order rate when the capacity is known?

• Even for the degraded case, the standard protocol does not attain the optimal 
second-order rate.

• How about other non-interactive protocols? Interaction is necessary?

• When only subset                 try to attain omniscience, is there universal protocol? A ⇢ M

• Slepian-Wolf coding is known to be optimal, but the rate formula is more involved.



Thank you for listening.


