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Wireless networks must deal with interference & noise
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Routing vs.
Network Coding

Capacity: max rate from source to destination
Routing
o Capacity = 3/2




Routing vs.
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Capacity: max rate from source to destination
Routing

o Capacity = 3/2

e Wy © we Network Coding

e Internal nodes perform linear operations

w1 P uN o (Capacity = 2

Forwarding combinations of messages can
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1772 increase capacity

matrix form...




Matrix Form Recovery of Messages
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source (Generalized Network Coding

w, u, ¢ in a field. Allow relay to multiply by ¢
d11 di2 - di1L
d21 d22 - d2L
¢ Q- ;

drm1l 49y 0 ML

‘ If () has rank L, then all messages w recoverable
How to design () 7
‘ e Algorithmic approach (Jaggi et al.)
Success if field size p > number of destinations
‘ e« Random approach (Kotter and Medard. Ho et al.)
Decstination Probability of valid solutions increases with p



Source has w1, wa, ... ACtion Of One ROW

A “Relay”
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received messages desired messages

Destination has w1, uo, .. “




Action of One Row

A “Relay”
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What if the relay is wireless...”




m PLNC = Physical Layer Network Coding

Addition occurs over the air

User]

Y—X1—|— .+ XM

+ noise Xrelay

User 2

I

User M

Relay

Wireless
Multiple-Access Channel




Network Coding vs. PLNC

411 relay Network Coding:
N q1w1 D qaw? . .
relay adds incoming
q2W2 / Network Coding HICE5a5C5
L1 :
h1£131 _|_ h2$2 relay PLNC
@—’O_’ addition over the air
9 / fading plays a role

Physical Layer Network Coding combat noise “




PLNC with Error-Correction

relay

y W1 ®d W
X9 EP—O—

Z

Perform error-correction coding on vectors:

x; = Enc(wj)

Relay performs two functions:

x1 + x2 = Decoder(y)

w1l D wa = Enc_l(x1 + x2)




PLNC with Error-Correction
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Powerftul idea:
e Relay only eliminates noise
e Relay does not need to separate inference

o« Converted a noisy network into a noiseless network




We Need A Code to Perform PLNC

Code must correct errors, for noisy wireless channels

e (Code must satisty a power constraint.

Code must form a group over addition

e so addition over the channel makes sense.

Code must have a group isomorphism: Enc(w1 @ w2) = x1 + X2,

e so network coding can be performed

These properties are satisfied by nested lattice codes.




Quotient Groups
( / >
AC /AS

oroup subgroup




Definition of a Coset

Definition Let GG be a group and let H be a subgroup ot G.
For any a € G, theset a+ H = {a+ H | h € H} is called
the coset of H in G containing a.

Quotient Groups

Let G/H be the set of all cosets of H in G, that is:
G/H ={a+ Hl|a € G}

Note that G/H is a set of sets. The set G/H is called a
quotient group.




e Integers Z are a group under addition

Example

The quotient group is closed under addition:

e 47, 1s a subgroup: 47 C Z. 0+47 1447 2+47 3+ 47
e The quotient group Z/47Z, has four sets: 0+44 | 0+44 1+44 2+44 3+ 44
14+47 | 14+47 2+47 3+47Z 0+ 4%

0+4Z=1...,-8,-4,0,4,8,---} 2447 | 24+47 3447 0+47 1+ 47
l+4Z=1...,=7,-3,1,5,9,--} 3+47 | 3+47Z 0447 1447 2+ 47

2+47 ={...,—6,-2,2.6,10,-- -}
3+47Z ={...,—5,—1,3,7,11,---}




Coset Leader (Coset Representative)

A coset leader is a single representative element from each coset.

Continue 7Z /47, example:

Coset leaders: {0, 1, 2, 3} Coset leaders: {—2, -1, 0, 1}
+ 10 1 2 3 + 0 1 -2 -1
O(10 1 2 3 0 0 1 -2 -1
111 2 3 0 1 1 -2 -1 0
2 12 3 0 1 —2 | =2 -1 0 1
313 0 1 2 —1 | —1 0 1 =2




Lattice: Linear code over real numbers

As or “hex” lattice

A lattice A is a linear additive subgroup of R". . .
A may be represented by a basisof g1,82,...,2,. : 5
A lattice point x € A is an integral, linear com- ng " o
bination of the basis vectors: - é )
X = 8101 + 82ba + - - - + gnbn, y -
where the b; are integers. ) L0
(05 1




Quotient Groups Based on Lattices

Let A. be a lattice

e “coding lattice” corrects errors. Also called fine lattice.

Let Ay be a sublattice: Ay C A..

e “shaping lattice” enforces power constraint.
Also called coarse lattice.

KA. is a lattice expanded by K.

e Choosing Ay = KA. resultsin A; C A, for K =1,2,3,---
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° ®
o C1 + /g
° e Co + Ag
® e Co + Ag ®
® e C3 + A
® ° °

4 cosets. Coset containing cg, €1,C2,C3.




Cosets form a group under addition

The set A./Ag is a quotient group.

T'his table expresses group addition:

co+As c1+As ca+ Ay 3+ Ag
co+As | co+Ay c1+Ay co+Ay c3+ A
ci+As | c1+Ay co+As c3+ Ay co+ A
Co+Ag | ca+ Ay c3+ Ay co+ Ay ¢+ Ag
Ca+As | cg+Ay co+Ay cqi+Ay cg+ A




Nested Lattice Codes

Construct a lattice code C: o ° o

C=A-NF

We need:

e Quotient Group A./Aq

e F is a fundamental region for A

The code C are coset leaders A./Ag, and S a
oToup.




Fundamental Regions

°
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o Voronoi region .
- (hyper-) rectangle

_ - parallelotope

A fundamental region F C R" is a shape that, if shifted by each
lattice point, will exactly cover the whole real space.

Volume V (F) of F is constant and V(F) = |det A]



Selecting the Coset Leaders




Nested Lattice Codes Form a Group

codebook C = {cg,cq1,ca,C3}

c; are coset leaders of A./Ag.

C is closed under addition




Various Nested Lattice Codes

¢

e JF defines the coset leaders:
3 Different Voronoi regions — All codes form Groups



Various Nested Lattice Codes

¢

parallelotope Voronoi region Rectangle
Important for Best transmit Fasier to

theory, not very power, not always implement, no

practical easy to implement shaping gain



Voronoi is Best for AWGN Channel

Voronoi regions are sphere-like in high

dimension.

A sphere satisfies the AWGN power

constraint

iéaz?<P




Encoding and Isomorphism

Encoding: mapping information to codewords
Indexing: mapping codewords to information

[somorphism between information (ring) and codewords

(group)




Quantization and Modulo

Quantization Closest point in Ag:

_ - 2
QA (Y) = arg min |x —y|




Quantization and Modulo

®
Voronoi region

at origin




Quantization and Modulo

Modulo operation:




Real Addition with Lattice Codes

Recall the multiple-access scenario

® C, Co € C are finite group elements

ci1 €C

ci + ¢o relay e c; b co €C is well defined
/ CD_> e But, real addition in the channel:
C2 = C Cq Co g C

e Solution: ¢; +co mod A; € C




Real Addition with Lattice Codes

Example As/3A5




Encoding and Indexing

Index b is information: b = {by by --- bn]t,

where b; € {0,1,--- , K — 1}.

oiven index b, find x € C ogiven x € C, find index b
x = enc(b) b = enc ' (x)

= index(x)



Encoding Parallelotope

Example: A2/4A2

Index b is information b; € {0, 1,2, 3}:

X

g1 82 - 8n

N ——  —

generator matrix

b1
b2

N

® [0, 3]

® [0, 2]

®[1, 3]

@1, 2]

®[1, 1]

@ [2, 3]

@ [2, 2]

®[2 1]

® [3, 3]

® [3, 2]

@[3, 1]




/ \

Encoding the . e
- - < ®[2, 3]

Voronoi Region o3/ ez
\\\ ® [0, 3] /o/[z, 2]

T'wo steps: ' ®[1,2] ®[3, 1]
) o0 2-< @2 1]

1. Parallelotope encoding o ®[1, 1] ®[3, 0]
®[0, 1] 2, 0]
x =G "-b C ®[1, 0]
- - ® ® [0, O] °
. ® ®
2. Modulo operation .
o o

X =G -b—Qx(G-b)




/ \

Encoding the e
V = R = I\ ‘[Z,B‘]
oronoi Region o licblrasioid
\\ ® [0, 3] /‘ 2, 2]
T'wo steps: \ olt,2 51
) o021« @[2 1]
1. Parallelotope encoding 3, 2] o1, 3,0l
® 0, 1] 2, 0]
<=C-b o3, 1] o1, 0]
— < e[21] ® [0, 0] o2, 3]
| o3, 0] o1, 3]
2. Modulo operation o0, 3 2 2]
® 3, 3] o1,
x=G-b—Qx (G-b) /



Group Isomorphism for PLNC

Information (indices) b; € Z/K7Z form a ring with operation
®, ® (integers modulo K).

Lattice codewords x € C for a group with operation + (vector
addition modulo Ay).

Fasy to show there is isomorphism:

enc(by @ by) = enc(by) + enc(bsy) or

index(x7) @ index(x7) = index(x1 + X2)




Group Isomorphism for PLNC

User 1

User 2

Simple multiple access channel

noise

X1+ X X1 1 X9 b; & bs

Assuming successful decoding:

Decoder produces x; + X2 (not xi, x2 individually)

Indexing produces b; ® b (not by, by individually)
Highly suitable for network coding



And now for something new...

Nested lattice codes with non-selt-similar lattices
e High dimension lattices (LDLC, etc.): excellent

coding gain, computationally hard to perform shaping,
o Low dimension lattices (E8, Barnes-Wall): Good

shaping gain with efficient algorithms, not very good

coding gain.

Brian Kurkoski, JAIST



Nested lattice codes with non-self-similar lattices

Proposed method. Construct a quotient group:

Ac/ A,
A/

High-dimension lattice\ Eg, Barnes-Wall, etc. lattice
n = 1,000 to 10° n =28, 16

Brian Kurkoski, JAIST



Nested lattice codes with non-self-similar lattices

Proposed method. Construct a quotient group:

Ac/Ag X -+ X Ag
/

High-dimension lattice\ Eg, Barnes-Wall, etc. lattice
n = 1,000 to 10° n =28, 16

Brian Kurkoski, JAIST



Sufficient Conditions to form a Group

Given a coding lattice A. and a shaping lattice As, we need to test the condition

As C A..
Let G5 be a n X n generator matrix for As.

Let H = G~ ! be the check matrix for A

Lemma Ay C A, if and only if H - (G4 is a matrix of integers.

Fasy to design A, such that A, C Aq

Brian Kurkoski, JAIST



Achieving As C Ac is easy. Indexing Non-Nested Lattice Codes

Encoding/indexing is nontrivial.

/ \ / \
Example for n = 2: / N\ / N\
/ N\ / AN
o / \ / \
Gy = — A / N\ / N
4 8 / N\ / N\
AN N
\ ¢ A ¢ /
AN / AN /
AN / AN /
AN / AN /
AN / AN /
AN / AN /
AN p / AN /
N/
X ¢ /N
/ N\ / AN
/ N\ / AN
/ N\ / AN
/ N\ / AN
/ N\ / AN
/ N\ / AN

‘ N\
Brian Kurkoski, JAIST ¢ ) /\ ¢ /w



Achieving As C Ac is easy. Indexing Non-Nested Lattice Codes

Encoding/indexing is nontrivial.

Example for n = 2:

0
Gy = 48 «— A
- [8/9 2/9
Ge=1_4/9 89|
|1 =1/4
(GC 12 1 )
Note:

o A\, # KA. not self similar

e but Ay C Ac = Ac/Aq

Brian Kurkoski, JAIST O




Indexing Non-Nested
Lattice Codes

Number of codewords:

det(Gy)

det(Ge) =90

Natural candidate:

by € {0,1,2,3,4,5)
bo € {0,1,2,3,4,5}

Parallelotope encoding step:

' 8/9  2/9] [b1

Geb = —4/9 8/9| by

Do these points form coset leaders?

Brian Kurkoski, JAIST




Indexing Non-Nested
Lattice Codes

Encoding Step 2:
= Gb — Qu, (Gb)

No! Coset leaders not formed.

What about a change of basis?

@ @
Brian Kurkoski, JAIST




Finding a Basis Suitable for Encoding

We want to transform the basis of G,: | |
g, from shaping lattice

G = G.W

where W is has integer entires and det 4~= 1. New basis is:

) |&s1 8 ... 81
GC_ My Mo My 1 q

where q 1s some vector to be found. Find W

linearly dependent
(GC)_l ' Gz: =W / y

Then det W =1 is a linear diophantine equation in z1, 29, ..., 2,.

Brian Kurkoski, JAIST



Indexing Non-Nested
Lattice Codes
Using a Suitable Basis

1 —1/4 | 4/3 q1 1 2z
_1/2 1 ] _4/3 q2 _2 <2 |

det W =1 = 129 — 227 = 1 has nu-
merous solutions.

Brian Kurkoski, JAIST ¢



Summary - Physical Layer Network Coding

PLNC:

e Technique for cooperative wireless networks

e Exploit network coding to increase capacity

e Lattices: real codes to correct errors, shaping gain
e Remove noise first, and interference later

o« Compute-and-Forward relaying also deals with fading
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