Application of Lattice to Convolutional Codes： Signal Codes and Turbo Signal Codes
（格子の畳込み符号への応用）

電子情報通信学会ソサイエティ大会 2015年9月11日

横浜国立大学（YNU）
落合 秀樹（Hideki Ochiai）

YNU 榡溫国立太学

## Outline

－A very brief review of lattices
－Convolutional lattice codes（Signal codes）
－Shalvi，Feder \＆Sommer，＂Signal codes：Convolutional lattice codes，＂IEEE Trans．Inform．Theory，August 2011.
－Recursive convolutional lattice codes and their parallel concatenation（Turbo signal codes）
－Mitran \＆Ochiai，＂Parallel concatenated convolutional lattice codes with constrained states，＂IEEE Trans．Commun．，March 2015.
－Some performance comparison
－Conclusions

## Lattice（1）

－Let $\mathbf{g}_{1}$ and $\mathbf{g}_{2}$ denote the $n$－dimensional（real－ valued）vectors that are linearly independent．
$-\mathbf{g}_{1}$ and $\mathbf{g}_{2}$ are called the basis vectors of the $n$（real）dimensional Euclidean space．

$$
\begin{aligned}
& n=2 \\
& \mathbf{g}_{1}=\left(\begin{array}{ll}
1 & 0
\end{array}\right)^{T}, \mathbf{g}_{2}=\left(\begin{array}{ll}
0 & 1
\end{array}\right)^{T}
\end{aligned} \quad \mathbf{g}_{1}=\left(\cos 30^{\circ} \sin 30^{\circ}\right)^{T},
$$



$$
\begin{aligned}
& \mathbf{g}_{1}=\left(\cos 30^{\circ} \sin 30^{\circ}\right)^{T}, \\
& \mathbf{g}_{2}=\left(\cos 90^{\circ} \sin 90^{\circ}\right)^{T}
\end{aligned}
$$

## Lattice（2）

－Two－dimensional lattice $\Lambda$ is given by a set of real－valued points that are specified by linear combination of the basis vectors with integer coefficient．

$$
\begin{aligned}
\Lambda & =\left\{\lambda=\sum_{k=1}^{2} a_{k} \mathbf{g}_{k}: a_{k} \in \mathbb{Z}\right\} \\
& =\left\{\lambda=\mathbf{G} \mathbf{a}: \mathbf{a} \in \mathbb{Z}^{2}\right\} \text { where } \mathbf{G}=\left(\mathbf{g}_{1} \mid \mathbf{g}_{2}\right)
\end{aligned}
$$

$\mathbf{G}$ is a generator matrix of lattice
Note that $\operatorname{rank}(\mathbf{G})=2, \operatorname{det}(\mathbf{G}) \neq 0$

## Lattices and Sublattices

－For a given lattice $\Lambda$ ，its subset $\Lambda^{\prime} \subset \Lambda$ is called sublattice．

$$
\Lambda=\mathbf{Z}^{2} \quad \Lambda^{\prime}=2 \mathbf{Z}^{2} \quad \Lambda^{\prime \prime}=4 \mathbf{Z}^{2}
$$

$\left[\begin{array}{llllllll}\bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet\end{array}\right]$


## Partition of Lattice

－$\Lambda^{\prime}$ induces a partition of $\Lambda$ ，i．e．，$\Lambda / \Lambda^{\prime}$ ，into equivalent classes modulo $\Lambda^{\prime}$（quotient group）．
－Each equivalent class is called a coset of $\Lambda^{\prime}$ ．
－The number of the cosets，$\left|\Lambda / \Lambda^{\prime}\right|$ ，is called the order of the quotient group．
cosets of $\Lambda^{\prime}$ for $\mathbf{Z}^{2} / 2 \mathbf{Z}^{2}$

coset representative YNU 费臤童大等

## A Practical Example of Lattice Codes

－Ungerboeck＇s 2－D 64－QAM TCM（coset code）：

$\mathbf{Z}^{2} / 2 \mathbf{Z}^{2} \mid=4$

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\bullet$ | 0 | $\bullet$ | 0 | $\bullet$ | 0 | $\bullet$ | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\bullet$ | 0 | $\bullet$ | 0 | $\bullet$ | 0 | $\bullet$ | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | $\bullet$ | 0 | $\bullet$ | 0 | $\bullet$ | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | $\bullet$ | 0 | $\bullet$ | 0 | $\bullet$ | 0 |

$\left[\begin{array}{llllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \bullet & 0 & \bullet & 0 & \bullet & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \bullet & 0 & \bullet & 0 & \bullet & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \bullet & 0 & \bullet & 0 & \bullet & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \bullet & 0 & \bullet & 0 & 0 & 0 & \bullet \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \bullet & 0 & \bullet & 0 & \bullet & 0 & \bullet & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \bullet & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \bullet & 0 & 0 & 0 & \bullet & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$

| 0 | $\bullet$ | 0 | $\bullet$ | 0 | $\bullet$ | 0 | $\bullet$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | $\bullet$ | 0 | $\bullet$ | 0 | $\bullet$ | 0 | $\bullet$ |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | $\bullet$ | 0 | $\bullet$ | 0 | $\bullet$ | 0 | $\bullet$ |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | $\bullet$ | 0 | $\bullet$ | 0 | $\bullet$ | 0 | $\bullet$ |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

## Coset Decomposition

- If we denote a set of coset representatives by [ $\left.\Lambda / \Lambda^{\prime}\right]$, then each lattice point $\lambda$ of $\Lambda$ is expressed with respect to the point $\lambda$ 'of the sublattice $\Lambda$ 'as

$$
\lambda \in \Lambda, \lambda^{\prime} \in \Lambda^{\prime} \Rightarrow \lambda=\lambda^{\prime}+\mathbf{c}, \quad \mathbf{c} \in\left[\Lambda / \Lambda^{\prime}\right]
$$

or alternatively

$$
\frac{\Lambda=\Lambda^{\prime}+\left[\Lambda / \Lambda^{\prime}\right]}{\mathbb{Z}^{2}=2 \mathbb{Z}^{2}+\{(0,0),(0,1),(1,0),(1,1)\}}
$$

## Signal Codes（1）

－Convolutional lattice codes（Shalvi 201 1）
－Input：$L^{2}$－QAM constellation（uncoded）
－For memory size $P$ ，constraint length $K=P+1$

$$
P=2 \quad L=4
$$

## Signal Codes (2)

- Lattice structure

Example: $P=2, k=3, n=k+P=5$
$\Lambda=\left\{\lambda=\mathbf{G} \mathbf{a}: \mathbf{a} \in\left(\mathbb{Z}_{L}[j]\right)^{3}\right\}$
where

$$
\mathbf{G}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
g_{1} & 1 & 0 \\
g_{2} & g_{1} & 1 \\
0 & g_{2} & g_{1} \\
0 & 0 & g_{2}
\end{array}\right) \quad g_{k}, g_{2} \in \mathbf{C}
$$

## Signal Codes (3)

Average Power: $\quad P_{\mathrm{av}}=E\left\{\left|\tilde{x}_{i}\right|^{2}\right\}=1+\sum_{k=1}^{2}\left|g_{k}\right|^{2}$
FIR tap

$$
G(z)=\left(1-z_{0} z^{-1}\right)^{P}
$$

$z_{0}=-0.90 e^{j 0.12 \pi}, P=2$
※ Poles close to a unit circle yield high coding gain

$$
\Rightarrow P_{\mathrm{av}}=6.9 \mathrm{~dB}
$$



Average power reduction by shaping is essential.


## Signal Codes（4）




The number of trellis states is unbounded！

## Recursive Convolutional Lattice Code（RCLC）

－Convolutional lattice codes with constrained states（Mitran 2015）
－Recursive form State is defined by こes the state bounded the output symbol．


YNU 横浜国立大学

## Constellation Design (1)

We consider the following formal power series:

$$
\mathbb{Z}[\omega]:=\left\{a_{0}+a_{1} \omega+a_{2} \omega^{2}+\cdots+a_{n-1} \omega^{n-1}: a_{k} \in \mathbb{Z}\right\}, \quad \omega=e^{j \frac{\pi}{n}}
$$

which has the following ring property (note: $\omega^{n}=-\omega$ )

$$
\alpha, \beta \in \mathbb{Z}[\omega] \Rightarrow \alpha+\beta \in \mathbb{Z}[\omega], \alpha \beta \in \mathbb{Z}[\omega]
$$

Since $e^{j \pi / 2}=j$, for even values of $n=2 N_{\mathrm{bv}}$, we have

$$
\begin{aligned}
& \mathbb{Z}[\omega]:=\left\{a_{0}+b_{0} j+\left(a_{1}+b_{1} j\right) \omega+\cdots+\left(a_{N_{0,-1}-1}+b_{N_{0,1}-1} j\right) \omega^{N_{w-1}}: a_{k}, b_{k} \in \mathbb{Z}\right\} \\
& =\left\{c_{0}+c_{1} \omega+\cdots+c_{N_{\mathrm{b},-1}} \omega^{N_{\mathrm{bv}}-1}: c_{k} \in \mathbb{Z}[j]\right\}, \quad \omega=e^{j \pi / 2 N_{\mathrm{bv}}}
\end{aligned}
$$

## Constellation Design（2）

To limit the size of signal points，we further put a constraint that $a_{k}$ and $b_{k}$ are integer rings （i．e．，coset leaders of the following quotient）：

$$
\begin{aligned}
C & \left(L, N_{\mathrm{bv}}\right):=\mathbb{Z}[\omega] / L \mathbb{Z}[\omega] \\
& =\left\{a_{0}+b_{0} j+\left(a_{1}+b_{1} j\right) \omega+\cdots+\left(a_{N_{\mathrm{bv}}-1}+b_{N_{\mathrm{bv}-1}} j\right) \omega^{N_{\mathrm{bol}}-1}: a_{k}, b_{k} \in \mathbb{Z}_{L}\right\} \\
& =\left\{c_{0}+c_{1} \omega+\cdots+c_{N_{\mathrm{bv}}-1} \omega^{N_{\mathrm{ov}-1}}: c_{k} \in \mathbb{Z}_{L}[j]\right\}, \quad \omega=e^{j \pi / 2 N_{\mathrm{bv}}}
\end{aligned}
$$

$$
\Rightarrow \quad C\left(L, N_{\mathrm{bv}}\right) \subset \mathbb{Z}\left[e^{j \pi / 2 N_{\mathrm{bv}}}\right]
$$

## Constellation Design（3）

In general，for $N_{\text {bv }}>1$ ，we have

$$
C(L, 1) \subset C\left(L, N_{\mathrm{bv}}\right) \subset C\left(L+1, N_{\mathrm{bv}}\right) \subset \mathbb{Z}\left[e^{j \pi / 2 N_{\mathrm{u}}}\right]
$$




YNU 樍溫思立太学

## State-Constrained Signal Codes



## Constrained Capacity

Information rate（bits）： $\log _{2}|C(L, 1)|=\log _{2} L^{2}=2 \log _{2} L$
Constellation size： $\log _{2}\left|C\left(L, N_{\mathrm{bv}}\right)\right|=\log _{2} L^{2 N_{\mathrm{bv}}}=2 N_{\mathrm{bv}} \log _{2} L$


YNU 横宬国立大学

## Some Remarks

－The information rate is $2 \log _{2} L$ bits per 2D．
－Code（tap）selection：Unlike the conventional lattice codes，it is difficult to analyze minimum Euclidean distance due to the lack of regularity，resorting to brute－force search


## Turbo Signal Codes

- By constraining the state size ( $L^{2 N_{\mathrm{b}} P}$ states), trellis based decoding such as Viterbi algorithm can be now employed.
- However, the performance may not be significant because it is a variant of recursive convolutional codes.
- Due to the limited number of states, the BCJR decoding can be used.
- Since the code is recursive, can we take an approach similar to binary turbo codes and perform MAP decoding?


## Turbo Signal Codes



YNU 敖垖国立太学

## Comparison with Non－binary LDPC

Lattice：$P=1, L=2, N_{\mathrm{bv}}=2$
LDPC： QPSK，rate $=1 / 2$
（frame length 4096 bits）


松峯，落合，RCS研究会（2015年8月）
YNU 横浜国立大学

## Comparison of Decoding Complexity



松峯，落合，RCS研究会（2015年8月）
YNU 横浜国立大学

## Conclusions

－We have considered application of lattice in an unconventional scenario：
－Signal Codes
－Turbo Signal Codes
－Due to the lack of structure，optimal design of coding（filter taps）is challenging from a theoretical viewpoint
－There are many issues unknown：
－Performance analysis and code design
－Extension to even higher constellation size
－Complexity vs．performance trade－off
－Puncturing for higher rate

