#### Application of Lattice to Convolutional Codes: Signal Codes and Turbo Signal Codes (格子の畳込み符号への応用)

#### 電子情報通信学会ソサイエティ大会 2015年9月11日

#### 横浜国立大学 (YNU) 落合 秀樹 (Hideki Ochiai)



# Outline

- A very brief review of lattices
- Convolutional lattice codes (Signal codes)
  - Shalvi, Feder & Sommer, "Signal codes: Convolutional lattice codes," IEEE Trans. Inform. Theory, August 2011.
- Recursive convolutional lattice codes and their parallel concatenation (Turbo signal codes)
  - Mitran & Ochiai, "Parallel concatenated convolutional lattice codes with constrained states," IEEE Trans. Commun., March 2015.
- Some performance comparison
- Conclusions



# Lattice (1)

- Let  $\mathbf{g}_1$  and  $\mathbf{g}_2$  denote the *n*-dimensional (real-valued) vectors that are linearly independent.
  - $-\mathbf{g}_1$  and  $\mathbf{g}_2$  are called the basis vectors of the *n* (real) dimensional Euclidean space.

$$n = 2$$
  

$$\mathbf{g}_1 = \begin{pmatrix} 1 & 0 \end{pmatrix}^T, \quad \mathbf{g}_2 = \begin{pmatrix} 0 & 1 \end{pmatrix}^T$$
  

$$1 \quad \mathbf{g}_2$$
  

$$\mathbf{g}_1$$
  

$$\mathbf{g}_1$$
  

$$\mathbf{g}_1$$
  

$$\mathbf{g}_1$$

$$\mathbf{g}_{1} = \left(\cos 30^{\circ} \sin 30^{\circ}\right)^{T},$$
$$\mathbf{g}_{2} = \left(\cos 90^{\circ} \sin 90^{\circ}\right)^{T}$$
$$\mathbf{g}_{2}$$
$$\mathbf{g}_{1}$$
$$\mathbf{g}_{2}$$
$$\mathbf{g}_{1}$$

# Lattice (2)

 Two-dimensional lattice Λ is given by a set of real-valued points that are specified by linear combination of the basis vectors with integer coefficient.

$$\Lambda = \left\{ \lambda = \sum_{k=1}^{2} a_{k} \mathbf{g}_{k} : a_{k} \in \mathbb{Z} \right\}$$
$$= \left\{ \lambda = \mathbf{G} \mathbf{a} : \mathbf{a} \in \mathbb{Z}^{2} \right\} \text{ where } \mathbf{G} = \left( \begin{array}{c} \mathbf{g}_{1} \\ \mathbf{g}_{2} \end{array} \right)$$

→ **G** is a generator matrix of lattice Note that  $rank(\mathbf{G}) = 2$ ,  $det(\mathbf{G}) \neq 0$ 

#### Lattices and Sublattices

For a given lattice Λ, its subset Λ' ⊂ Λ is called sublattice.

| $\Lambda = \mathbb{Z}^2$ | $\Lambda' = 2\mathbf{Z}^2$                                | $\Lambda$ " = 4 $\mathbb{Z}^2$                        |
|--------------------------|-----------------------------------------------------------|-------------------------------------------------------|
|                          | 0 0 0 0 0 0 0 0                                           | 0 0 0 0 0 0 0 0                                       |
|                          |                                                           | 0 0 0 0 0 0 0                                         |
|                          | 0 0 0 0 0 0 0                                             | 0 0 0 0 0 0 0                                         |
|                          | $\bullet \circ \bullet \circ \bullet \circ \bullet \circ$ |                                                       |
|                          | 0 0 0 0 0 0 0                                             | 0 0 0 0 0 0 0                                         |
|                          |                                                           | 0 0 0 0 0 0 0                                         |
|                          | 0 0 0 0 0 0 0                                             | 0 0 0 0 0 0 0                                         |
|                          | $\bullet \circ \bullet \circ \bullet \circ \bullet \circ$ | $\bullet \circ \circ \circ \bullet \circ \circ \circ$ |
|                          |                                                           |                                                       |

YNU 横浜国立大学 YOKOHAMA National University

#### Partition of Lattice

- $\Lambda$ ' induces a partition of  $\Lambda$ , i.e.,  $\Lambda / \Lambda$ ', into equivalent classes modulo  $\Lambda$ ' (quotient group).
- Each equivalent class is called a coset of  $\Lambda$ '.
- The number of the cosets,  $|\Lambda\,/\,\Lambda'|,$  is called the order of the quotient group.



Coset representative YNU 横浜国立大学



### **Coset Decomposition**

• If we denote a set of coset representatives by  $[\Lambda/\Lambda]$ , then each lattice point  $\lambda$  of  $\Lambda$  is expressed with respect to the point  $\lambda'$  of the sublattice  $\Lambda'$  as

$$\lambda \in \Lambda, \lambda' \in \Lambda' \implies \lambda = \lambda' + \mathbf{c}, \ \mathbf{c} \in [\Lambda / \Lambda']$$

or alternatively

$$\Lambda = \Lambda' + \left[\Lambda / \Lambda'\right]$$

$$\Rightarrow \mathbb{Z}^2 = 2\mathbb{Z}^2 + \{(0,0), (0,1), (1,0), (1,1)\}$$

# Signal Codes (1)

- Convolutional lattice codes (Shalvi 2011)
- Input: L<sup>2</sup>-QAM constellation (uncoded)
- For memory size P, constraint length K = P+1



# Signal Codes (2)

Lattice structure

Example: P = 2, k = 3, n = k + P = 5 $\Lambda = \left\{ \lambda = \mathbf{G} \, \mathbf{a} : \, \mathbf{a} \in \left( \mathbb{Z}_{L}[j] \right)^{3} \right\}$  $\mathbf{G} = \begin{pmatrix} 1 & 0 & 0 \\ g_1 & 1 & 0 \\ g_2 & g_1 & 1 \\ 0 & g_2 & g_1 \\ 0 & 0 & g_2 \end{pmatrix}$ where  $g_1, g_2 \in \mathbf{C}$ k 横浜国立大学



#### Signal Codes (4)



The number of trellis states is unbounded!

YNU 横浜国立大学 YOKOHAMA National University Recursive Convolutional Lattice Code (RCLC)

- Convolutional lattice codes with constrained states (Mitran 2015)
- Recursive form State is defined by ces the state bounded the output symbol. Im Im  $L^{2N_{\rm bv}}$  points DC Shift  $L^2$  points **Trellis State** P = 2 $\chi_{:}$  $X_{i-2}$  $x_{i-1}$ Im  $h_1$ → Re  $Lb_i$  $I^{2N_{\rm bv}P}$  states  $b_i \in \mathbb{Z}[j]$ L = 2横浜国立大学 12

### Constellation Design (1)

We consider the following formal power series:

$$\mathbb{Z}[\omega] := \{ a_0 + a_1 \omega + a_2 \omega^2 + \dots + a_{n-1} \omega^{n-1} : a_k \in \mathbb{Z} \}, \quad \omega = e^{j\frac{n}{n}}$$

which has the following ring property (note:  $\omega^n = -\omega$ )

$$\alpha, \beta \in \mathbb{Z}[\omega] \Rightarrow \alpha + \beta \in \mathbb{Z}[\omega], \alpha \beta \in \mathbb{Z}[\omega]$$

Since  $e^{j\pi/2} = j$ , for even values of  $n = 2N_{bv}$ , we have

$$\mathbb{Z}[\omega] := \left\{ a_0 + b_0 j + (a_1 + b_1 j) \omega + \dots + (a_{N_{bv}-1} + b_{N_{bv}-1} j) \omega^{N_{bv}-1} : a_k, b_k \in \mathbb{Z} \right\}$$
$$= \left\{ c_0 + c_1 \omega + \dots + c_{N_{bv}-1} \omega^{N_{bv}-1} : c_k \in \mathbb{Z}[j] \right\}, \quad \omega = e^{j\pi/2N_{bv}}$$

#### Constellation Design (2)

To limit the size of signal points, we further put a constraint that  $a_k$  and  $b_k$  are integer rings (i.e., coset leaders of the following quotient):

$$C(L, N_{bv}) := \mathbb{Z}[\omega] / L\mathbb{Z}[\omega]$$
  
=  $\{a_0 + b_0 j + (a_1 + b_1 j)\omega + \dots + (a_{N_{bv}-1} + b_{N_{bv}-1} j)\omega^{N_{bv}-1} : a_k, b_k \in \mathbb{Z}_L\}$   
=  $\{c_0 + c_1\omega + \dots + c_{N_{bv}-1}\omega^{N_{bv}-1} : c_k \in \mathbb{Z}_L[j]\}, \quad \omega = e^{j\pi/2N_{bv}}$ 

$$C(L, N_{\rm bv}) \subset \mathbb{Z}\left[e^{j\pi/2N_{\rm bv}}\right]$$

YNU 横浜国立大学 YOKOHAMA National University





#### **Constrained Capacity**

Information rate (bits):  $\log_2 |C(L, 1)| = \log_2 L^2 = 2\log_2 L$ Constellation size:  $\log_2 |C(L, N_{bv})| = \log_2 L^{2N_{bv}} = 2N_{bv} \log_2 L$ 



### Some Remarks

- The information rate is  $2 \log_2 L$  bits per 2D.
- Code (tap) selection: Unlike the conventional lattice codes, it is difficult to analyze minimum Euclidean distance due to the lack of regularity, resorting to brute-force search



# Turbo Signal Codes

- By constraining the state size ( $L^{2N_{bv}P}$  states), trellis based decoding such as Viterbi algorithm can be now employed.
- However, the performance may not be significant because it is a variant of recursive convolutional codes.
- Due to the limited number of states, the BCJR decoding can be used.
- Since the code is recursive, can we take an approach similar to binary turbo codes and perform MAP decoding?







#### Comparison of Decoding Complexity



松峯, 落合, RCS研究会 (2015年8月)

# Conclusions

- We have considered application of lattice in an unconventional scenario:
  - Signal Codes
  - Turbo Signal Codes
- Due to the lack of structure, optimal design of coding (filter taps) is challenging from a theoretical viewpoint
- There are many issues unknown:
  - Performance analysis and code design
  - Extension to even higher constellation size
  - Complexity vs. performance trade-off
  - Puncturing for higher rate