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Outline 
•  A very brief review of lattices 
•  Convolutional lattice codes (Signal codes) 

–  Shalvi, Feder & Sommer, “Signal codes: Convolutional lattice 
codes,” IEEE Trans. Inform. Theory, August 2011. 

•  Recursive convolutional lattice codes and their 
parallel concatenation (Turbo signal codes) 
–  Mitran & Ochiai, “Parallel concatenated convolutional lattice 
codes with constrained states,” IEEE Trans. Commun., March 
2015. 

•  Some performance comparison 
•  Conclusions 

	



g1 = cos30!( sin30!)
T
,

g2 = cos90!( sin90!)
T

Lattice (1) 
•  Let g1 and g2 denote the n-dimensional (real-
valued) vectors that are linearly independent. 
– g1 and g2 are called the basis vectors of 
the n (real) dimensional Euclidean space. 
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Lattice (2) 
•  Two-dimensional lattice Λ is given by a set of 
real-valued points that are specified by linear 
combination of the basis vectors with integer 
coefficient. 
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= λ =G a : a ∈ !2{ } where G = g1 g2( )

G is a generator matrix of lattice 
rank(G) = 2, det(G) ≠ 0Note that



Lattices and Sublattices 
•  For a given lattice Λ, its subset Λ’ ⊂ Λ is 
called sublattice. 

 

Λ = Z2 Λ  = 2Z2 Λ  = 4Z2



Partition of Lattice 
•  Λ’ induces a partition of Λ, i.e., Λ / Λ’, into 
equivalent classes modulo Λ’ (quotient group). 

•  Each equivalent class is called a coset of Λ’. 
•  The number of the cosets, |Λ / Λ’|, is called the 
order of the quotient group.    

 

cosets of Λ’ for Z2/2Z2 
Λ + (0,0)! Λ  + (1,0)! Λ  + (0,1)! Λ  + (1,1)!

coset representative   



A Practical Example of Lattice Codes  
•  Ungerboeck’s 2-D 64-QAM TCM (coset code): 

 

rate-1/2 binary 
convolutional  
encoder

1 bit 2 bits

4 bits

select a coset

select a lattice point

| Z2/2Z2 | = 4



Coset Decomposition 
•  If we denote a set of coset representatives 
by [Λ/Λ’], then each lattice point λ of Λ is 
expressed with respect to the point λ’ of the 
sublattice Λ’ as 

 
or alternatively 
 

λ ∈ Λ, #λ ∈ #Λ ⇒ λ = #λ + c, c ∈ Λ / #Λ[ ]

Λ = "Λ + Λ / "Λ[ ]

!2 = 2!2 + (0, 0), (0,1), (1, 0), (1,1){ }



Signal Codes (1) 
•  Convolutional lattice codes (Shalvi 2011) 
•  Input: L2-QAM constellation (uncoded) 
•  For memory size P, constraint length K = P+1
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Signal Codes (2) 
•  Lattice structure

Λ = λ =G a : a ∈ ! L j[ ]( )
3{ }

where
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Example:  P = 2,  k = 3,!!n = k + P=5!
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Signal Codes (3) 

	

Pav = E !xi
2{ }=1+ gk
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∑Average Power: 

G(z) = 1− z0z
−1( )

P

z0 = −0.90e
j0.12π , P = 2

※ Poles close to a unit circle 
    yield high coding gain 

FIR tap 

Average power reduction by shaping is essential. 

Pav = 6.9dB



Signal Codes (4) 

		

The number of trellis states is unbounded! 
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Recursive Convolutional Lattice Code (RCLC) 
•  Convolutional lattice codes with constrained 
states (Mitran 2015) 

•  Recursive form with TH shaping forces the 
state bounded 
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the output symbol. 



Constellation Design (1) 

![ω] := a0 + a1ω + a2 ω
2 +!+ an−1ω

n−1 : ak ∈ !{ }, ω = e
jπ
n

We consider the following formal power series: 

Since ejπ/2 = j, for even values of n = 2Nbv, we have 
![ω] := a0+ b0 j + a1 + b1 j( )ω +!+ aNbv−1 + bNbv−1 j( )ω Nbv−1 : ak, bk ∈ !{ }

= c0+ c1ω +!+ cNbv−1ω
Nbv−1 : ck ∈ ![ j]{ }, ω = e jπ /2Nbv

	

α, β ∈ ![ω] ⇒ α +β ∈ ![ω],α β ∈ ![ω]

which has the following ring property  
(note: ωn = -ω) 



Constellation Design (2) 
To limit the size of signal points, we further put  
a constraint that ak and bk are integer rings  
(i.e., coset leaders of the following quotient): 

	

C L,Nbv( ) := ![ω] / L![ω]

= a0+ b0 j + a1 + b1 j( )ω +!+ aNbv−1 + bNbv−1 j( )ω Nbv−1 : ak, bk ∈ ! L{ }
= c0 + c1ω +!+ cNbv−1ω

Nbv−1 : ck ∈ ! L[ j]{ }, ω = e jπ /2Nbv

C L,Nbv( )⊂ ! e jπ /2Nbv"# $%



Constellation Design (3) 

C L, 1( )⊂C L, Nbv( )⊂C L +1, Nbv( )⊂ ! e jπ /2Nbv"# $%

In general, for Nbv > 1, we have  

	



State-Constrained Signal Codes 
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Constrained Capacity 
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log2 C L, Nbv( ) = log2 L2Nbv = 2Nbv log2 L

Information rate (bits): 
Constellation size: 

log2 C L, 1( ) = log2 L2 = 2 log2 L



Some Remarks 
•  The information rate is 2 log2 L bits per 2D. 
•  Code (tap) selection: Unlike the conventional 
lattice codes, it is difficult to analyze 
minimum Euclidean distance due to the lack 
of regularity, resorting to brute-force search 
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Turbo Signal Codes 
•  By constraining the state size (L2NbvP states), 
trellis based decoding such as Viterbi 
algorithm can be now employed. 

•  However, the performance may not be 
significant because it is a variant of 
recursive convolutional codes. 

•  Due to the limited number of states, the 
BCJR decoding can be used. 

•  Since the code is recursive, can we take an 
approach similar to binary turbo codes and 
perform MAP decoding? 

	



Turbo Signal Codes 
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Comparison with Non-binary LDPC 
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Lattice: P = 1, L = 2, Nbv = 2 

松峯, 落合, RCS研究会 (2015年8月) 

LDPC: QPSK, rate = 1/2 (frame length 4096 bits) 



Comparison of Decoding Complexity 
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Conclusions 
•  We have considered application of lattice in 
an unconventional scenario: 
– Signal Codes 
– Turbo Signal Codes 

•  Due to the lack of structure, optimal design 
of coding (filter taps) is challenging from a 
theoretical viewpoint 

•  There are many issues unknown: 
– Performance analysis and code design 
– Extension to even higher constellation size 
– Complexity vs. performance trade-off 
– Puncturing for higher rate 


