SITA2013 ワークショップ

様々な情報スペクトル量を用いた操作的な話の例

有村光晴 (湘南工科大学)

2013年11月27日
アウトライン

新しい情報スペクトル量の単体としての操作的な意味。
様々な情報スペクトル量を組み合わせて用いることで、エントロピースペクトルの「動き」を観察する。

【前半の話】

1. (復習) 4 種類の極限
2. $W(X), W^*(X)$

【後半の話】

3. (復習) $\overline{H}(X)$ と $H(X)$
4. $\overline{H}(X)$ と $\overline{H}^*(X)$
5. $W(X)$ の上下界
【前半の話】
新しい情報スペクトル量の単体としての操作的な意味
アウトライン

【前半の話】

1. (復習) 4 種類の極限
 ◦ $\overline{H}(X)$ の場合
 ◦ $H(X)$ の場合
 ◦ $\overline{H}^*(X)$ の場合
 ◦ $H^*(X)$ の場合

2. $W(X), W^*(X)$

【後半の話】

3. (復習) $\overline{H}(X)$ と $H(X)$
4. $\overline{H}(X)$ と $\overline{H}^*(X)$
5. $W(X)$ の上下界
$H(X)$ の場合

<table>
<thead>
<tr>
<th>アウトライン</th>
</tr>
</thead>
<tbody>
<tr>
<td>情報スペクトル量としての意味:</td>
</tr>
<tr>
<td>エントロピースペクトルの右端が最も右に来る点</td>
</tr>
</tbody>
</table>

\[
\frac{1}{n} \log M_n
\]

操作的な意味:
最小の達成可能な (誤り確率の上極限が 0 となる) FF 符号化レート
情報スペクトル量としての意味:
エントロピースペクトルの左端が最も左に来る点

操作的な意味:
誤り確率の下極限が 1 となる最大の符号化レート
$H^* (X)$ の場合

- 情報スペクトル量としての意味:
 エントロピースペクトルの右端が最も左に来る点

- 操作的な意味:
 1. 楽観的な最小達成可能 (誤り確率の下極限が 0 となる) 符号化レート
 2. 最大の達成不可能 (誤り確率の下極限が 0 にならない) 符号化レート
$H^*(X)$ の場合

● 情報スペクトル量としての意味:
エントロピースペクトルの左端が最も右に来る点

1. (復習) 4 種類の極限
 - $H(X)$ の場合
 - $\overline{H}(X)$ の場合
 - $H^*(X)$ の場合
 - $\overline{H}^*(X)$ の場合

2. $W(X), W^*(X)$

【後半の話】
3. (復習) $\overline{H}(X)$ と $H(X)$
4. $\overline{H}(X)$ と $\overline{H}^*(X)$
5. $W(X)$ の上下界

● 操作的性質:
誤り確率の上極限が 1 となる最大の符号化レート
2. エントロピースペクトルの幅 $W(X), W^*(X)$ の操作的な意味
エントロピースペクトルの幅
(Koga 2000, Koga-Arimura-Iwata 2011)

- $W(\mathbf{X}) = \inf \limsup_{G, n \to \infty} (b_n - a_n)$ (漸近的な最大幅)
- \mathcal{G} は区間の無限列の集合 $\{(a_n, b_n)\}_{n=1}^{\infty}$:
 \[
 \mathcal{G} = \left\{ \left\{ (a_n, b_n) \right\}_{n=1}^{\infty} : \forall \gamma > 0, \right\}
 \lim_{n \to \infty} \Pr \left\{ \frac{1}{n} \log \frac{1}{P_{X^n}(X^n)} \in (a_n - \gamma, b_n + \gamma) \right\} = 1
 \}

- $W^*(\mathbf{X}) = \inf \limsup_{G^*, n \to \infty} (b_n - a_n)$ (漸近的な最小幅)
- \mathcal{G}^* は区間の無限列の集合 $\{(a_n, b_n)\}_{n=1}^{\infty}$:
 \[
 \mathcal{G}^* = \left\{ \left\{ (a_n, b_n) \right\}_{n=1}^{\infty} : \forall \gamma > 0, \right\}
 \limsup_{n \to \infty} \Pr \left\{ \frac{1}{n} \log \frac{1}{P_{X^n}(X^n)} \in (a_n - \gamma, b_n + \gamma) \right\} = 1
 \}

- アウトライン
 - 前半の話
 - (復習) 4 種類の極限
 - $W(\mathbf{X}), W^*(\mathbf{X})$
 - スペクトルの幅
 - スペクトルの幅の例
 - 固定長 Homophonic 符号化
 - レートと誤り確率
 - 最小達成可能レート
 - 最小達成可能冗長度
 - レートと冗長度
 - FF 最悪冗長度
 - 後半の話
 - (復習) $\overline{H}(\mathbf{X})$ と $H(\mathbf{X})$
 - $\overline{H}(\mathbf{X})$ と $\overline{H}^*(\mathbf{X})$
 - $W(\mathbf{X})$ の上下界
例題 2.1

【前半の話】

1. (復習) 4 種類の極限
2. $W(X), W^*(X)$
3. スペクトルの幅

【スペクトルの幅の例】

- 固定長 Homophonic
- 符号化

- レートと誤り確率
- 最小達成可能レート
- 最小達成可能冗長度
- レートと冗長度
- FF 最低冗長度

【後半の話】

3. (復習) $\overline{H}(X)$ と $H(X)$
4. $\overline{H}(X)$ と $\overline{H}^*(X)$
5. $W(X)$ の上下界
Example 2.2

● アウトライン

【前半の話】

1. (復習) 4 種類の極限
2. $W(X)$, $W^*(X)$
3. スペクトルの幅
4. スペクトルの幅の例
5. 固定長 Homophonic
6. 符号化
7. レートと誤り確率
8. 最小達成可能レート
9. 最小達成可能冗長度
10. レートと冗長度
11. FF 最悪冗長度

【後半の話】

3. (復習) $\overline{H}(X)$ と $\overline{H}(X)$
4. $\overline{H}(X)$ と $\overline{H}^*(X)$
5. $W(X)$ の上下界

\[n: \text{odd} \]

\[W^*(X) \]

\[a \quad b \quad c \]

\[\overline{H}(X) \quad \overline{H}^*(X) \]

\[\frac{1}{n} \log \frac{1}{P_{X^n}(X^n)} \]
Example 2.2

1. (Review) 4 types of limits

2. $W(X)$, $W^*(X)$

3. Homophonic

4. Rate and error probability

5. Rate and length

n: even

\[\begin{align*}
\bar{H}(X) & \quad \bar{H}^*(X) \\
\bar{H}_n(X) & \quad \bar{H}_n^*(X) \\
\frac{1}{n} \log \frac{1}{P_{X^n}(X^n)} & \\
\end{align*} \]
Example 2.3

1. (復習) 4 種類の極限
2. $W(X), W^*(X)$
3. $H(X)$, $H^*(X)$
4. $H(X)$
5. $W(X)$ の上下界

n: odd

- $W(X)$
- $W^*(X)$

$H(X)$
$H^*(X)$
$rac{1}{n} \log \frac{1}{P_{X^n}(X^n)}$
Example 2.3

1. (復習) 4 種類の極限
2. $W(X), W^*(X)$

スペクトルの幅

スペクトルの幅の例
- 固定長 Homophonic
- 符号化
- レートと誤り確率
- 最小達成可能レート
- 最小達成可能冗長度
- レートと冗長度
- FF 最悪冗長度

【前半の話】

3. (復習) $H(X)$
4. $H^*(X)$
5. $W(X)$ の上下界
例 2.4

例題

【前半の話】
1. (復習) 4 種類の極限
2. \(W(X), W^*(X) \)

【スペクトルの幅】

【スペクトルの幅の例】

【固定長 Homophonic 符号化】

【レートと誤り確率】

【最少達成可能レート】

【最少達成可能冗長度】

【レートと冗長度】

【FF 最短冗長度】

【後半の話】

3. (復習) \(\overline{H}(X) \) と \(H(X) \)

4. \(\overline{H}(X) \) と \(\overline{H}^*(X) \)

5. \(W(X) \) の上下界

\[n: \text{odd} \]

\[
\begin{align*}
W(X) & \quad \overline{H}(X) \quad \overline{H}^*(X) \quad 1 \quad \frac{1}{n} \quad \frac{1}{n} \log \frac{1}{P_{X^n}(X^n)}
\end{align*}
\]

\(a \quad b \quad c \)
Example 2.4

1. (Review) 4 types of limits

2. $W(X), W^*(X)$

- Spectral gap

- Spectral gap's example
 - Fixed length Homophonic
 - Symbolization
 - Rate and error rate
 - Minimum achievable rate
 - Minimum achievable spectral gap
 - Rate and spectral gap
 - FF Minimum spectral gap

【Front half】

3. (Review) $H(X)$ and $H(X)$

4. $H(X)$ and $H^*(X)$

5. $W(X)$'s upper bound

\[
\begin{align*}
 H(X) & \quad H^*(X) \\
 \overline{H}(X) & \quad \overline{H}^*(X)
\end{align*}
\]

\[n: \text{even}\]

\[
\begin{align*}
 W^*(X) & \\
 c & \quad \frac{1}{n} \log \frac{1}{P_{X^n}(X^n)}
\end{align*}
\]
固定長 Homophonic 符号化 (Koga 2000)

- 問題設定:

1. 一般情報源 X^n を，
2. レート $\frac{1}{n} \log N_n$ の一様乱数 V_n を用いて
 レート $\frac{1}{n} \log M_n$ のほぼ一様な乱数 Y_n に変換
 \[
 \limsup_{n \to \infty} \frac{1}{n} \log N_n \leq R_V, \quad \limsup_{n \to \infty} \frac{1}{n} \log M_n \leq R_Y
 \]
3. V_n を用いずに Y_n を X^n に戻す
4. このときの誤り確率が漸近的に 0 に収束

- 達成可能なレート領域 $\{(R_Y, R_V)\}$ は次に等しい；
 \[
 \{(R_Y, R_V) : R_Y \geq \overline{H}(X), \ R_V \geq W(X)\}
 \]
固定長 Homophonic 符号化の例

1. $n = 1$ とする

2. $P_{X^n}(x_1) = \frac{1}{2}, P_{X^n}(x_2) = \frac{1}{4}, P_{X^n}(x_3) = \frac{1}{8}, P_{X^n}(x_4) = \frac{1}{8}$

3. このとき，作成できる一様乱数 Y^n は

 $P_{Y^n}(y_1) = P_{Y^n}(y_2) = \cdots = P_{Y^n}(y_8) = \frac{1}{8}$

4. X^n から Y^n を作るための一様乱数 V_n は

 $P_{V_n}(v_1) = P_{V_n}(v_2) = P_{V_n}(v_3) = P_{V_n}(v_4) = \frac{1}{4}$

5. $(x_1, v_1) \rightarrow y_1, (x_1, v_2) \rightarrow y_2, (x_1, v_3) \rightarrow y_3, (x_1, v_4) \rightarrow y_4, (x_2, v_1) \cup (x_2, v_2) \rightarrow y_5,$

 $(x_2, v_3) \cup (x_2, v_4) \rightarrow y_6,$

 $(x_3, v_1) \cup (x_3, v_2), \cup (x_3, v_3), \cup (x_3, v_4) \rightarrow y_7,$

 $(x_4, v_5) \cup (x_4, v_6) \cup (x_4, v_7) \cup (x_4, v_8) \rightarrow y_8$

6. $\frac{1}{n} \log \frac{1}{P_{Y^n}(Y^n)} = 3, \frac{1}{n} \log \frac{1}{P_{V_n}(V_n)} = 2$
固 定 長 Homophonic 符号化の例

図で示すと：

1. (復習) 4 種類の極限
2. $W(X), W^*(X)$
3. (復習) $\overline{H}(X)$ と $H(X)$
4. $\overline{H}(X)$ と $\overline{H}^*(X)$
5. $W(X)$ の上下界
FF符号のレートと誤り確率

● FF符号

\[
\begin{cases}
\varphi_n : X^n \rightarrow M_n = \{1, 2, \ldots, M_n\} \\
\psi_n : M_n \rightarrow X^n
\end{cases}
\]

系列 \(C = \{ (\varphi_n, \psi_n) \}_{n=1}^{\infty} \) を符号と呼ぶことにする。

● レート:

\[
\frac{1}{n} \log M_n
\]

● 誤り確率:

\[
\varepsilon_n = \Pr\{\psi_n(\varphi_n(X^n)) \neq X^n\}
\]

\(\varepsilon_n \to 0\) の条件の下でレートを小さくしたい。
FF符号の最小達成可能レート

- (Definition) レート R が達成可能である
 \iff 以下を満たす符号 $C = \{(\varphi_n, \psi_n)\}_{n=1}^\infty$ が存在する；
 \[
 \begin{aligned}
 \limsup_{n \to \infty} \frac{1}{n} \log M_n &\leq R \\
 \lim_{n \to \infty} \varepsilon_n &= 0.
 \end{aligned}
 \]

- $R_{rate}(X) =$ 達成可能なレート R の下限 (最小達成可能レート)

Theorem 2.1 (Han-Verdú 1993) $R_{rate}(X) = \overline{H}(X)$
FF符号の最小達成可能レート

アプローチ

【前半の話】
1. (復習) 4 種類の極限
2. \(W(X), W^*(X) \)
 - スペクトルの幅
 - スペクトルの幅の例
 - 固定長 Homophonic 符号化
3. レートと誤り確率
4. 最小達成可能レート

5. (復習) \(H(X) \) と \(\overline{H}(X) \)
6. \(\overline{H}(X) \) と \(\overline{H}^*(X) \)
7. \(W(X) \) の上下界
FF符号の最小達成可能レート

アウトライン

【前半の話】
1. (復習) 4 種類の極限
2. $W(X), W^*(X)$
 - スペクトルの幅
 - スペクトルの例
 - 固定長 Homophonic 符号化
 - レートと誤り確率
 - 最小達成可能レート
 - 最小達成可能冗長度
 - レートと冗長度
 - FF 最悪冗長度

【後半の話】
3. (復習) $\overline{H}(X)$ と $H(X)$
4. $\overline{H}(X)$ と $\overline{H}^*(X)$
5. $W(X)$ の上下界

\[
\frac{1}{n} \log M_n \quad \frac{1}{n} \log \frac{1}{P_{X^n}(X^n)}
\]
FF符号の最小達成可能冗長度

- 冗長度 = レート - 自己情報量 (理想符号語長):
 \[
 - \frac{1}{n} \log M_n - \frac{1}{n} \log \frac{1}{P_{X^n}(X^n)}
 \]

- (Definition) 冗長度 R が 達成可能である
 \[
 \begin{align*}
 &\text{def} \quad \text{以下の条件を満たす符号 } C = \{(\varphi_n, \psi_n)\}_{n=1}^\infty \text{ が存在する;}
 \\
 &\quad \left\{ \lim_{n \to \infty} \Pr\left\{ \frac{1}{n} \log M_n - \frac{1}{n} \log \frac{1}{P_{X^n}(X^n)} \leq R + \gamma \right\} = 1 \quad \forall \gamma > 0, \\
 &\quad \lim_{n \to \infty} \varepsilon_n = 0.
 \right.
 \end{align*}
 \]

- \(R_{\text{red}}(X) \) = 達成可能な冗長度 R の下限 (最小達成可能冗長度)

Theorem 2.2 (Arimura-Koga-Iwata 2013) \(R_{\text{red}}(X) = W(X) \)

- アウトライン
 - 【前半の話】
 1. (復習) 4 種類の極限
 2. \(W(X), W^*(X) \)
 - スペクトルの幅
 - スペクトルの幅の例
 - 固定長 Homophonic 符号化
 - レートと誤り確率
 - 最小達成可能レート
 - 最小達成可能冗長度
 - レートと冗長度
 - FF 最悪冗長度
 - 【後半の話】
 3. (復習) \(\overline{H}(X) \) と \(H(X) \)
 4. \(\overline{H}(X) \) と \(\overline{H}^*(X) \)
 5. \(W(X) \) の上下界
FF符号の最小達成可能冗長度

- アウトライン

【前半の話】
1. (復習) 4 種類の極限
2. $W(X), W^*(X)$
 - スペクトルの幅
 - スペクトルの幅の例
 - 固定長 Homophonic 符号化
 - レートと誤り確率
 - 最小達成可能レート

- 最小達成可能冗長度
 - レートと冗長度
 - FF 最悪冗長度

【後半の話】
3. (復習) $\overline{H}(X)$ と $H(X)$
4. $\overline{H}(X)$ と $\overline{H}^*(X)$
5. $W(X)$ の上下界
FF符号の最小達成可能冗長度

アウトライン

【前半の話】
1. (復習) 4 種類の極限
2. \(W(\mathbf{X}), W^*(\mathbf{X}) \)
 - スペクトルの幅
 - スペクトルの幅の例
 - 固定長 Homophonic 符号化
 - レートと誤り確率
 - 最小達成可能レート

最小達成可能冗長度
- レートと冗長度
- FF 最悪冗長度

【後半の話】
3. (復習) \(\overline{H}(\mathbf{X}) \) と
 \(H(\mathbf{X}) \)
4. \(\overline{H}(\mathbf{X}) \) と
 \(\overline{H}^*(\mathbf{X}) \)
5. \(W(\mathbf{X}) \) の上下界

\[\frac{1}{n} \log M_n \]

\[\frac{1}{n} \log \frac{1}{P_{X^n}(X^n)} \]
レートと冗長度の違い (Example 2.3 の情報源)

- レートで最適だが冗長度で最適でない符号の例:

- レートでも冗長度で最適な符号の例:

- アウトライン
 - 前半の話
 1. (復習) 4 種類の極限
 2. $W(X)$, $W^*(X)$
 - スペクトルの幅
 - スペクトルの幅の例
 - 固定長 Homophonic 符号化
 - レートと誤り確率
 - 最小達成可能レート
 - 最小達成可能冗長度
 - レートと冗長度
 - FF 最悪冗長度

- 後半の話
 3. (復習) $\bar{H}(X)$ と $H(X)$
 4. $\bar{H}(X)$ と $\bar{H}^*(X)$
 5. $W(X)$ の上下界
FF符号の最悪冗長度

- 正しく復号できる系列の集合:
 \[D_n = \{ x^n \in \mathcal{X}^n : x^n = \psi_n(\varphi_n(x^n)) \} \]

- 最悪冗長度 = レート - 理想符号語長の \(D_n \) 内での最大値:
 \[
 \max_{x^n \in D_n} \left\{ \frac{1}{n} \log M_n - \frac{1}{n} \log \frac{1}{P_{X^n}(x^n)} \right\}
 \]

- (Definition) 最悪冗長度 \(R \) が達成可能である
 \[
 \limsup_{n \to \infty} \max_{x^n \in D_n} \left\{ \frac{1}{n} \log M_n - \frac{1}{n} \log \frac{1}{P_{X^n}(x^n)} \right\} \leq R,
 \]

- \(R_{\text{worst}}(X) \) = 達成可能な最悪冗長度 \(R \) の下限

Theorem 2.3 (Koga-Arimura-Iwata 2011)

\[R_{\text{worst}}(X) = W(X) \]
アウトライン

【前半の話】
1. (復習) 4 種類の極限
2. $W(X), W^*(X)$

【後半の話】
3. (復習) $\overline{H}(X)$ と $H(X)$
4. $\overline{H}(X)$ と $\overline{H}^*(X)$
5. $W(X)$ の上下界

【後半の話】
様々な情報スペクトル量を組み合わせて用いることで、情報スペクトルの「動き」を観察する。
アウトライン

【前半の話】
1. (復習) 4 種類の極限
2. $W(X), W^*(X)$

【後半の話】
3. (復習) $\overline{H}(X)$ と $H(X)$ の組み合わせ
 - $\overline{H}(X)$ と $H(X)$ の組み合わせ (1)
 - $\overline{H}(X)$ と $H(X)$ の組み合わせ (2)
4. $\overline{H}(X)$ と $\overline{H}^*(X)$
5. $W(X)$ の上下界

3. (復習) $\overline{H}(X)$ と $H(X)$ の組み合わせ
$\overline{H}(X)$ と $\underline{H}(X)$ の組み合わせ (1)

- $\overline{H}(X) = \underline{H}(X)$ の情報スペクトル量としての意味:
 エントロピースペクトルが収束する点

$\overline{H}(X) = \underline{H}(X)$

- 操作的な意味: FF 符号で強逆性が成立
$H(X)$ と $H(X)$ の組み合わせ (2)

- $H(X) < H(X)$ の情報スペクトル量としての意味:

1. エントロピースペクトルが幅を持つ (非エルゴード情報源)
2. エントロピースペクトルが振動する (非定常情報源)

操作的な意味: FF 符号で強逆性が成立しない

もう少し細かく見られないか？$\Rightarrow H^*(X)$ と $H^*(X)$
4. $H(X)$ と $H^*(X)$ の組み合わせ
定常無記憶情報源に対する_FF符号の最適レート

● アウトライン

【前半の話】
1. (復習) 4 種類の極限
2. $W(X), W^*(X)$

【後半の話】
3. (復習) $\overline{H}(X)$ と $H(X)$
4. $\overline{H}(X)$ と $\overline{H}^*(X)$

【定常無記憶情報源】
● 定常無記憶情報源の場合:

$$
\lim_{n \to \infty} \varepsilon_n = 0
$$

$$
\limsup_{n \to \infty} \frac{1}{n} \log M_n \leq \overline{H}(X)
$$

(最適な符号の符号化レートの上極限が
スペクトル上エントロピーレート)

● 一般情報源の場合:

$$
\lim_{n \to \infty} \varepsilon_n = 0
$$

$$
\lim_{n \to \infty} \frac{1}{n} \log M_n = H(X) = \overline{H}(X) = \underline{H}(X)
$$

(最適な符号の符号化レートはエントロピーに収束する)

● では、全ての最適な符号の符号化レートが収束する条件は？
$\overline{H}^*(X)$ と楽観的に達成可能なレート
 (*Chen-Alajaji 1999*)

- **(Definition)**
 レート R が楽観的に達成可能である
 \[
 \begin{align*}
 & \text{任意の } \delta > 0 \text{ と } \tau > 0 \text{ に対して，可算無限個の } n \text{ で} \\
 & \text{以下を満たす符号 } C = \{(\varphi_n, \psi_n)\}_{n=1}^{\infty} \text{ が存在する;} \\
 & \left\{ \begin{array}{l}
 \frac{1}{n} \log M_n \leq R + \delta, \\
 \varepsilon_n \leq \tau.
 \end{array} \right.
 \end{align*}
 \]

- $T(X) = $ 楽観的に達成可能なレート R の下限

Theorem 4.1 (Chen-Alajaji 1999)
\[
T(X) = \overline{H}^*(X).
\]
$H^*(X)$ と強楽観的に達成可能なレート

- **(Definition)**

レート R が強楽観的に達成可能である

\[\def \iff{\leftrightarrow} \iff \text{部分列 } \{n_i\}_{i\geq 1} \text{ に対して以下を満たす符号} \]

\[C = \{(\varphi_n, \psi_n)\}_{n=1}^\infty \text{ が存在する;}
\]

\[
\begin{aligned}
\limsup_{i \to \infty} \frac{1}{n_i} \log M_{n_i} &\leq R, \\
\lim_{i \to \infty} \varepsilon_{n_i} &= 0.
\end{aligned}
\]

- $T^*(X) = \text{強楽観的に達成可能なレート } R \text{ の下限}$

Theorem 4.2 (Arimura-Koga-Iwata 2013)

$T^*(X) = \overline{H}^*(X)$.

アウトライン

【前半の話】

1. (復習) 4 種類の極限
2. $W(X), W^*(X)$

【後半の話】

3. (復習) $\overline{H}(X)$ と $H(X)$
4. $\overline{H}(X)$ と $\overline{H}^*(X)$

定常無記憶情報源

楽観的に達成可能

強楽観的に達成可能

最適符号の性質

5. $W(X)$ の上下界
最適な FF 符号の性質

Theorem 4.3 (Arimura-Koga-Iwata 2013) 情報源 X に対する全ての \overline{H}-最適な符号が

$$\lim_{n \to \infty} \frac{1}{n} \log M_n = \overline{H}(X)$$ を満たす

\iff X が $\overline{H}(X) = \overline{H}^*(X)$ を満たす.

- \overline{H}-最適な符号:

\[
\left\{ \begin{array}{l}
\limsup_{n \to \infty} \frac{1}{n} \log M_n \leq \overline{H}(X), \\
\lim_{n \to \infty} \varepsilon_n = 0.
\end{array} \right.
\]

- エントロピースペクトルの動きを見ることができる.
5. $W(X)$ の上下界を用いる場合
スペクトルの幅の上下界

● 以下の上界、下界が成立:

\[
W(X) \leq \bar{H}(X) - H(X),
\]

\[
W(X) \geq \bar{H}(X) - \bar{H}^*(X),
\]

\[
W(X) \geq \bar{H}^*(X) - H(X).
\]

⇒ Examples 5.1–5.4
Example 5.1
\[
(\overline{H}(X) - \overline{H}^*(X) = W(X) = \overline{H}(X) - \overline{H}(X))
\]
Example 5.2

\[
(H(X) - H^*(X)) = W(X) = H(X) - \bar{H}(X)
\]
Example 5.2
\[
(H(X) - H^*(X)) = W(X) = \overline{H}(X) - \overline{H}(X)
\]
Example 5.3

\((\overline{H}(X) - \overline{H}^*(X) = W(X) < \overline{H}(X) - \overline{H}(X)) \)
Example 5.3

\[(\overline{H}(X) - \overline{H}^*(X) = W(X) < \overline{H}(X) - \overline{H}(X)) \]

n: even

\[W(X) \]

\[\frac{1}{n} \log \frac{1}{P_{X^n}(X^n)} \]
Example 5.4
\[
(\overline{H}(X) - \overline{H}^*(X) < W(X) < \overline{H}(X) - \overline{H}(X))
\]
Example 5.4

\[
\overline{H}(X) - \overline{H}^*(X) < W(X) < \overline{H}(X) - \overline{H}(X)
\]
情報源の例

● アウトライン

【前半の話】
1. (復習) 4 種類の極限
2. \(W(X), W^*(X) \)

【後半の話】
3. (復習) \(\overline{H}(X) \) と \(H(X) \)
4. \(\overline{H}(X) \) と \(\overline{H}^*(X) \)
5. \(W(X) \) の上下界

幅の上下界

例

最適性
関係
符号の例
本発表のまとめ

● 定常無記憶情報源, 定常エルゴード情報源:
\[
H(X) = H^*(X) = \overline{H}^*(X) = \overline{H}(X),
\]
\(W(X) = 0. \)
エントロピースペクトルが 1 点に収束する.

● 定常情報源:
\[
H(X) = H^*(X) \leq \overline{H}^*(X) = \overline{H}(X),
\]
\(W(X) = \overline{H}(X) - H(X). \)
エントロピースペクトルの両端がそれぞれ収束する.

● \(H(X) = H^*(X) \):
エントロピースペクトルの左端が収束することを意味する.

● \(\overline{H}(X) = \overline{H}^*(X) \):
エントロピースペクトルの右端が収束することを意味する.
(定義) $C_{\overline{H}}: \overline{H}$-最適 (レート最適) な符号クラス

- レート R が達成可能である

 \[
 \begin{cases}
 \limsup_{n \to \infty} \frac{1}{n} \log M_n \leq R,
 \\
 \lim_{n \to \infty} \varepsilon_n = 0.
 \end{cases}
 \]

- $R_{rate}(X) = \overline{H}(X)$ は達成可能なレート R の下限

- 符号 $C = \{(\varphi_n, \psi_n)\}_{n=1}^{\infty}$ が \overline{H}-最適 (レート最適)

- $C_{\overline{H}}(X) = \text{情報源 } X \text{ に対して } \overline{H}$-最適 (レート最適) な符号のクラス
(定義) $C_W : W$-最適 (冗長度最適) な符号クラス

- 冗長度 = レート - 理想符号化レート
- 冗長度 R が達成可能である
 \[\begin{align*}
 \text{def} & \quad \text{以下を満たす符号} \ C = \{(\varphi_n, \psi_n)\}_{n=1}^\infty \text{が存在する;}
 \\
 & \begin{cases}
 \lim_{n \to \infty} \Pr \left\{ \frac{1}{n} \log M_n - \frac{1}{n} \log \frac{1}{P_{X^n}(X^n)} \leq R + \gamma \right\} = 1 \quad \forall \gamma > 0, \\
 \lim_{n \to \infty} \varepsilon_n = 0.
 \end{cases}
 \end{align*} \]

- $R_{red}(X) = \text{達成可能な冗長度} R$ の下限
 \[\[R_{red}(X) = W(X) \]

- 符号 $C = \{(\varphi_n, \psi_n)\}_{n=1}^\infty$ が W-最適 (冗長度最適)
 \[\begin{align*}
 \text{def} & \quad \text{冗長度} R = W(X) \text{が符号} \ C \text{によって達成可能}
 \\
 \leftrightharpoons & \quad \text{情報源} X \text{に対して} W\text{-最適 (冗長度最適) な符号のクラス}
 \end{align*} \]
2つの符号クラス C_H と C_W の関係 (予想)

- $C_H = C_W \iff \overline{H}(X) = \overline{H}^*(X)$ と $H(X) = H^*(X)$

【アウトライン】

【前半の話】
1. (復習) 4 種類の極限
2. $W(X), W^*(X)$

【後半の話】
3. (復習) $\overline{H}(X)$ と $H(X)$
4. $\overline{H}(X)$ と $\overline{H}^*(X)$

5. $W(X)$ の上下界
 - 幅の上下界
 - 例
 - 最適性

関係
- 符号の例
- 本発表のまとめ

- 右辺の条件は全ての定常情報源を含むクラス。
- 実は \iff のみが成立。
2つの符号クラス C_H と C_W の包含関係 (結果)

- $W(X)$ の上界と下界 (Koga 2000, 2001, 2011) を用いる:

 $\overline{H}(X) - H^*(X) \leq W(X) \leq \overline{H}(X) - H(X)$

- 結果: (全ての関係は 必要十分である)

<table>
<thead>
<tr>
<th>$W = \overline{H} - H^*$</th>
<th>$W \geq \overline{H} - H^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W = \overline{H} - H$</td>
<td>$C_W = C_H$</td>
</tr>
<tr>
<td>$C_W \supseteq C_H$</td>
<td>$C_W \subsetneq C_H$</td>
</tr>
</tbody>
</table>

| $W < \overline{H} - H$ | $C_W \subset C_H$ |
| $C_W \supset C_H$ | $C_W \cap C_H \neq \emptyset$ |
| $C_W \setminus C_H \neq \emptyset$ |
| $C_H \setminus C_W \neq \emptyset$ |

- 上記の関係は下記の 3 つと同値である;

1. $C_H(X) \subseteq C_W(X) \iff W(X) = \overline{H}(X) - H(X)$ (上界)
2. $C_W(X) \subseteq C_H(X) \iff W(X) = \overline{H}(X) - H^*(X)$ (下界)
3. $C_W(X) \cap C_H(X) \neq \emptyset$
\[C_{\overline{H}}(X) \subseteq C_W(X) \iff W(X) = \overline{H}(X) - \underline{H}(X) \]

Theorem 5.1
\[W(X) = \overline{H}(X) - \underline{H}(X) \implies C_{\overline{H}}(X) \subseteq C_W(X) \]
「情報源 \(X \) が \(W(X) = \overline{H}(X) - \underline{H}(X) \) を満たすなら、
\(X \) に対する全てのレート最適な符号は冗長度最適である」

Theorem 5.2
\[C_{\overline{H}}(X) \subseteq C_W(X) \implies W(X) = \overline{H}(X) - \underline{H}(X) \]
「情報源 \(X \) に対する全てのレート最適な符号が冗長度最適なら、
\(X \) は \(W(X) = \overline{H}(X) - \underline{H}(X) \) を満たす」

\[C_{\overline{H}}(X) : \text{rate-optimal code class} \]
\[C_W(X) : \text{redundancy-optimal code class} \]
\(C_W(X) \subseteq C_{\overline{H}}(X) \iff W(X) = \overline{H}(X) - \overline{H}^*(X) \)

Theorem 5.3 \(W(X) = \overline{H}(X) - \overline{H}^*(X) \implies C_W(X) \subseteq C_{\overline{H}}(X) \)

「情報源 \(X \) が \(W(X) = \overline{H}(X) - \overline{H}^*(X) \) を満たすなら、
\(X \) に対する全ての冗長度最適な符号はレート最適である」

Theorem 5.4 \(C_W(X) \subseteq C_{\overline{H}}(X) \implies W(X) = \overline{H}(X) - \overline{H}^*(X) \)

「情報源 \(X \) に対する全ての冗長度最適な符号がレート最適なら、
\(X \) は \(W(X) = \overline{H}(X) - \overline{H}^*(X) \) を満たす」

\(C_{\overline{H}}(X) \)：rate-optimal code class

\(C_W(X) \)：redundancy-optimal code class
Corollary 5.1 \[C_W(X) = C_H(X) \iff H(X) = H^*(X) \]

Proof: \[W(X) = \overline{H}(X) - H^*(X) \text{ and } W(X) = \overline{H}(X) - H(X) \]

\[\iff H(X) = H^*(X). \]

Note: 右辺の条件は定常情報源を含むクラス.
\[C_W(X) \cap C_{\overline{H}}(X) \neq \emptyset \]

Theorem 5.5 \(C_W(X) \cap C_{\overline{H}}(X) \neq \emptyset \).

「\(\overline{H}(X) < \infty \) を満たす任意の情報源 \(X \) に対して，
\(\overline{H} \)-最適かつ \(W \)-最適な FF 符号が存在する」

\(C_{\overline{H}}(X) \): rate-optimal code class

\(C_W(X) \): redundancy-optimal code class

nonempty
符号の例

アオトライン

【前半の話】
1. (復習) 4 種類の極限
2. \(W(X), W^*(X) \)

【後半の話】
3. (復習) \(H(X) \) と \(H(X) \)
4. \(H(X) \) と \(H^*(X) \)
5. \(W(X) \) の上下界

例

最適性

関係

符号の例

情報源: Example 2.4

\[\overline{H}(X) - H^*(X) < W(X) < \overline{H}(X) - \overline{H}(X) \]

定理より，この情報源に対しては，\(C_H \) と \(C_W \) の間に包含関係が存在しない

Example 5.5–5.7: 様々な符号が存在

Example 5.5 冗長度最適だがレート最適でない符号の例

Example 5.6 レート最適だが冗長度最適でない符号の例

Example 5.7 レート最適かつ冗長度最適な符号の例
Example 5.5:
冗長度最適だがレート最適でない符号の例

アウトライン

【前半の話】
1. (複習) 4 種類の極限
2. $W(X), W^*(X)$

【後半の話】
3. (複習) $\overline{H}(X)$ と $H(X)$
4. $\overline{H}(X)$ と $\overline{H}^*(X)$
5. $W(X)$ の上下界
 - 幅の上下界
 - 例
 - 最適性
 - 関係
 - 符号の例
 - 本発表のまとめ

\[
\frac{1}{n} \log M_n \quad \text{Redundancy} \\
\frac{1}{n} \log M_n \quad \text{Redundancy}
\]

n: odd

\[
\begin{align*}
W(X) & \quad (X) \\
\overline{H}(X) & \quad \overline{H}^*(X)
\end{align*}
\]

\[
\begin{align*}
\frac{1}{n} \log \frac{1}{P_X^n(X^n)} & \quad \frac{1}{n} \log \frac{1}{P_X^n(X^n)}
\end{align*}
\]
Example 5.5:
冗長度最適だがレート最適でない符号の例

【アウトライン】

【前半の話】
1. (復習) 4 種類の極限
2. $W(X), W^*(X)$

【後半の話】
3. (復習) $\overline{H}(X)$ と $H(X)$
4. $\overline{H}(X)$ と $\overline{H}^*(X)$
5. $W(X)$ の上下界

Metricsの上下界
例
最適性
関係
符号の例
本発表のまとめ

$\frac{1}{n} \log M_n \quad n: \text{even}$

Redundancy

$H(X) \quad \overline{H}(X) \quad H^*(X) \quad \overline{H}^*(X)$

$\frac{1}{n} \log P_{X^n}(X^n)$
Example 5.6:
レート最適だが冗長度最適でない符号の例

【前半の話】
1. (復習) 4 種類の極限
2. \(W(X), W^*(X) \)

【後半の話】
3. (復習) \(\overline{H}(X) \) と \(H(X) \)
4. \(\overline{H}(X) \) と \(\overline{H}^*(X) \)
5. \(W(X) \) の上下界

- 幅の上下界
- 例
- 最適性
- 関係

公式

\[
\begin{align*}
H(X) & \quad \overline{H}(X) \\
\overline{H}^*(X) & \quad \overline{H}^*(X)
\end{align*}
\]

\[
\begin{align*}
1 \log M_n & \quad n: \text{odd} \\
\frac{1}{n} \log P_{X^n}(X^n) & \quad \text{Redundancy}
\end{align*}
\]
例 5.6:
レート最適だが冗長度最適でない符号の例

- アウトライン
 - 【前半の話】
 1. (復習) 4 種類の極限
 2. $W(X), W^*(X)$
 - 【後半の話】
 3. (復習) $\overline{H}(X)$ と $H(X)$
 4. $\overline{H}(X)$ と $\overline{H}^*(X)$
 5. $W(X)$ の上下界
 - 幅の上下界
 - 例
 - 最適性
 - 関係
- 符号の例
- 本発表のまとめ
Example 5.7:
レート最適かつ冗長度最適な符号の例

アウトライン

【前半の話】
1. (復習) 4 種類の極限
2. $W(\mathbf{X}), W^*(\mathbf{X})$

【後半の話】
3. (復習) $\overline{H}(\mathbf{X})$ と $H(\mathbf{X})$
4. $\overline{H}(\mathbf{X})$ と $\overline{H}^*(\mathbf{X})$
5. $W(\mathbf{X})$ の上下界

- 幅の上下界
- 例
- 最適性
- 関係
- 符号の例
- 本発表のまとめ

\[
\frac{1}{n} \log M_n \quad \text{Redundancy} \\
W(\mathbf{X})
\]

\[
\begin{align*}
\overline{H}(\mathbf{X}) & \quad \overline{H}^*(\mathbf{X}) \\
\frac{1}{n} \log \frac{1}{P_X(x^n)} & \quad \frac{1}{n} \log \frac{1}{P_{X^n}(X^n)}
\end{align*}
\]
Example 5.7：
レート最適かつ冗長度最適な符号の例

アウトライン

【前半の話】
1. (復習) 4 種類の極限
2. \(W(\mathbf{X}), W^*(\mathbf{X}) \)

【後半の話】
3. (復習) \(\overline{H}(\mathbf{X}) \) と \(H(\mathbf{X}) \)
4. \(\overline{H}(\mathbf{X}) \) と \(\overline{H}^*(\mathbf{X}) \)
5. \(W(\mathbf{X}) \) の上下界

幅の上下界
例
最適性
関係
符号の例
本発表のまとめ
【まとめ】
本発表のまとめ

・ 新しい情報スペクトル量 $W(X)$ と $W^*(X)$ に対する操作的意味を紹介した

・ 複数の情報スペクトル量を組み合わせて用いることで、エントロピースペクトルの動きがより細かく見られる

1. $\overline{H}(X)$ と $\overline{H}^*(X)$ を用いる場合
2. $W(X)$ の上下界の式を用いる場合