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Outline	

•  Caching and inter-domain traffic engineering 
in CCN 

•  Joint optimization of caching and inter-domain 
traffic engineering for a single ISP (Feng et al. 
2015) 

•  Interaction of multiple peering ISPs in caching 
and inter-domain traffic engineering (Pacifici 
et al. 2016) 

•  Problems and opportunities for future research	
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Caching and inter-domain traffic engineering in CCN	
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l  Opportunities and challenges to ISPs: 
Ø  Make better decision in caching (what to cache) and inter-domain routing (to 

whom to send specific interests) 
Ø  Explore the opportunities in coordination with neighboring ISPs considering the 

business relationships (free-settle peering, transit, etc.)  
 

l  Premises and assumptions on 
caching and inter-domain traffic 
engineering in CCN 
Ø  The intra-domain cache 

nodes are abstracted as a 
single node  

Ø  ISP determines which 
content to cache according 
to the properties of content 

Ø  ISP has full control of both 
outbound traffic and 
inbound traffic  

	

ISP A	

ISP C	 ISP D	

ISP B 	

caching nodes	

30/s	
50/s	

miss	

request frequency: 80/s	
: Interest flow	
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Joint Optimization of Content Replication and Traffic 
Engineering in ICN 

 
 

Authors: Z. Feng et al. 
Proc. IEEE LCN 2015	
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Introduction	

•  The opportunity of jointly optimizing caching and 
inter-domain traffic engineering for CCN-enabled 
ISP is explored 

•  A jointly optimization frame work for caching and 
inter-domain traffic engineering is introduced 

•  Simulations show that the proposed method can 
increase the ISP’s profit significantly 
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A toy example	
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Contents	 Requested 
frequency 
(times/s)	

Size 
(GB)	

Monetary 
cost ($/s) if 
not cached	

C1	 5	 0.1	 $0.5	

C2	 2.5	 0.1	 $0.25	

C3	 2	 0.2	 $0.8	

C4	 2	 0.1	 $0.4	

Strategies	 Cache	 Monetary cost ($/s)	

Popularity prioritized	 C1, C2	 $1.2	

Price prioritized	 C3	 $1.15	

Joint optimization	 C1, C4	 $1.05	

Cache capacity: 0.2 GB	



System model and solutions	
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xi: whether 
to cache 
content i	

tij: whether 
to obtain 
content i 

from 
neighbor j	 NP-hard problem even without xi !	

Heuristic algorithm	

select 
contents to 
cache with 

Knapsack (to 
decide xi)	

select 
neighbor ISPs 

greedily (to 
decide tij)	

request rate 
of content i	

size of 
content i	
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Evaluation	
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Request rate	 Sizes of contents	 Average size of content	 Bandwidth of links	 Transit fee	

Zipf’s law	 Pareto distribution	 1.7 MB	 40Gbps	 U(0.1,  0.2)	

Profit 
decreases 
since links 

are saturated	

JOpCRTE: the proposed method; Non-CoCRTE: Greedy algorithm with popularity; CoCRTE: Greedy algorithm with price	



Summary	

•  A jointly optimization frame work for caching and inter-domain traffic 
engineering which is difficult for IP networking was introduced 

•  Simulations show that the proposed method can increase ISP’s profit up to 
66% 

•  Cache level coordination among ISPs is not considered 

•  A disputable assumption about routing policy in this work:   
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A	

B	 C	

Userc	

Interests from A are 
likely to be discarded 

in practice, which 
contradicts with the 
assumptions in this 

work	

: transit link	 : Interest flow	
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Coordinated Selfish Distributed Caching for Peering 
Content-Centric Networks 

 
Authors: V. Pacifici et al. 

 
IEEE/ACM Trans. Networking, March 2016 
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Introduction	

•  A model of the interaction between the caches 
managed by peering ISPs is introduced 

•  Peering ISPs can converge to a stable 
configuration efficiently by avoiding 
simultaneous updates 

•  The analytical results are validated using 
simulations on the measured peering topology of 
more than 600 ISP 
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Problem definition and model	
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under perfect information, and in Section IV we consider the case
of imperfect information. In Section V we present numerical
results, and in Section VI we review related work. Section VII
concludes the paper.

II. SYSTEM MODEL

We consider a set N of autonomous ISPs. Each ISP i ∈ N is
connected via peering links to some ISPs j ∈ N . We model the
peering links among ISPs by an undirected graph G = (N,E),
called the peering graph. We call N (i) the set of neighbors
of ISP i ∈ N in the peering graph, i.e. N (i) = {j|(i, j) ∈ E}.
Apart from the peering links, every ISP can have one or more
transit links.

A. Content Items and Caches
We denote the set of content items by O. We follow common

practice and consider that every item o ∈ O has unit size[12],
[13], which is a reasonable simplification if content is divisible
into unit-sized chunks. Each item o ∈ O is permanently stored
at one or more content custodians in the network. We denote by
Hi the set of items kept by the custodians within ISP i. Since
the custodians are autonomous entities, ISP i cannot influence
the set Hi. Similar to other modeling works, we adopt the
Independent Reference Model (IRM) [14], [12], [13] for the
arrival process of interest messages for the items in O generated
by the local users of the ISPs. Under the IRM, the probability
that the next interest message at ISP i is for item o is independent
of earlier events. An alternative definition of the IRM is that
the inter-arrival time of interest messages for item o at ISP i
follows an exponential distribution with distribution function
F o
i (x) = 1 − e−wo

i x, where wo
i ∈ R+ is the average arrival

intensity of interest messages for item o at ISP i.
Each ISP i ∈ N maintains a network of content caches

within its network, and jointly engineers the eviction policies
of the caches, the routing of interest messages and the routing
of contents via the caches to optimize performance. The set of
items cached by ISP i is described by the set Ci ∈ Ci = {C ⊂
O : |C| = Ki}, where Ki ∈ N+ is the maximum number of
items that ISP i can cache. A summary cache in each ISP keeps
track of the configuration of the local caches and of the content
stored in local custodians, it thus embodies the information about
what content is available within ISP i. We call Li = Ci ∪Hi

the set of items available within ISP i.
We denote by αi > 0 the unit cost of retrieving an item

from a local cache. We consider that retrieving an item from a
peering ISP is not more costly than retrieving it locally. The
assumption of equal local and peering cost is justified by the
fact that in general, once a peering link has been established,
there is no additional cost for traffic. The traffic on the transit
link is charged by volume with unit cost γi, and we make the
reasonable assumption that γi > αi.

B. Content-peering
Upon receiving an interest message for an item, ISP i consults

its summary cache to see if the item is available locally. If it is,
ISP i retrieves the item from a local cache. Otherwise, before

ISP i would forward the interest message to its transit provider,
it can leverage its neighbors’ caches according to one of two
scenarios.

a) Uncoordinated Content-peering: Without coordination,
if ISP i finds that an item o is not available locally, it forwards
the interest message to all of its neighbors j ∈ N (i). If a
neighbor has the item in cache, it returns the item to ISP i. If
none of the neighbors has the item, ISP i forwards the interest
message to its transit provider.

b) Coordinated Content-peering: In the case of coordina-
tion peering ISPs synchronously exchange information about
the contents of their summary caches periodically, at the end
of every time slot. If, upon an interest message for item o, ISP
i finds that item o is not available locally, it consults its most
recent copy of the summary caches of its peering ISPs N (i). In
case a peering ISP j ∈ N (i) is caching the item, ISP i forwards
the request to ISP j and fetches the content. If not, the interest
message is sent to a transit ISP through a transit link.

Using the above notation, and denoting by C−i the set of
the cache configurations of every ISP other than ISP i, we can
express the cost of ISP i to obtain item o ∈ O as

Co
i (Ci, C−i) = wo

i

{
αi if o ∈ Li ∪Ri

γi otherwise, (1)

where Ri =
⋃

j∈N (i) Lj is the set of items ISP i can obtain
from its peering ISPs. The total cost can then be expressed as

Ci(Ci, C−i) = αi

∑

Li∪Ri

wo
i + γi

∑

O!{Li∪Ri}

wo
i , (2)

which is a function of the cache contents of the peering
ISPs N (i).

C. Caching Policies and Cost Minimization
A content item o that is not available either locally or from

a peering ISP is obtained through a transit link, and is a
candidate for caching in ISP i. The cache eviction policy of ISP
i determines if item o should be cached, and if so, which item
p ∈ Ci should be evicted to minimize the expected future cost.
There is a plethora of cache eviction policies for this purpose,
such as Least recently used (LRU), Least frequently used (LFU),
LRFU (we refer to [15] for a survey of some recent algorithms).
We model the eviction decision as a comparison of the estimate
wo

i of the arrival intensity wo
i for the item o to be cached and

that for the items p in the cache, wp
i .

Perfect information: Under perfect information wo
i = wo

i , and
only the items with highest costs Co

i (Ci, C−i) are cached.
Imperfect information: Under imperfect information wo

i is
a random variable with mean wo

i , and we assume that the
probability of misestimation decreases exponentially with the
difference in arrival intensities, that is, for wo

i > wp
i we have

P (wo
i < wp

i ) ∝ ϵe−
1
β (wo

i−wp
i ). (3)

This assumption is reasonable for both the LRU and the LFU
cache eviction policies. Under LRU the cache miss rate was
shown to be an exponentially decreasing function of the item
popularity [13]. Under a perfect LFU policy, if we denote the
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under perfect information, and in Section IV we consider the case
of imperfect information. In Section V we present numerical
results, and in Section VI we review related work. Section VII
concludes the paper.
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connected via peering links to some ISPs j ∈ N . We model the
peering links among ISPs by an undirected graph G = (N,E),
called the peering graph. We call N (i) the set of neighbors
of ISP i ∈ N in the peering graph, i.e. N (i) = {j|(i, j) ∈ E}.
Apart from the peering links, every ISP can have one or more
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A. Content Items and Caches
We denote the set of content items by O. We follow common

practice and consider that every item o ∈ O has unit size[12],
[13], which is a reasonable simplification if content is divisible
into unit-sized chunks. Each item o ∈ O is permanently stored
at one or more content custodians in the network. We denote by
Hi the set of items kept by the custodians within ISP i. Since
the custodians are autonomous entities, ISP i cannot influence
the set Hi. Similar to other modeling works, we adopt the
Independent Reference Model (IRM) [14], [12], [13] for the
arrival process of interest messages for the items in O generated
by the local users of the ISPs. Under the IRM, the probability
that the next interest message at ISP i is for item o is independent
of earlier events. An alternative definition of the IRM is that
the inter-arrival time of interest messages for item o at ISP i
follows an exponential distribution with distribution function
F o
i (x) = 1 − e−wo

i x, where wo
i ∈ R+ is the average arrival

intensity of interest messages for item o at ISP i.
Each ISP i ∈ N maintains a network of content caches

within its network, and jointly engineers the eviction policies
of the caches, the routing of interest messages and the routing
of contents via the caches to optimize performance. The set of
items cached by ISP i is described by the set Ci ∈ Ci = {C ⊂
O : |C| = Ki}, where Ki ∈ N+ is the maximum number of
items that ISP i can cache. A summary cache in each ISP keeps
track of the configuration of the local caches and of the content
stored in local custodians, it thus embodies the information about
what content is available within ISP i. We call Li = Ci ∪Hi

the set of items available within ISP i.
We denote by αi > 0 the unit cost of retrieving an item

from a local cache. We consider that retrieving an item from a
peering ISP is not more costly than retrieving it locally. The
assumption of equal local and peering cost is justified by the
fact that in general, once a peering link has been established,
there is no additional cost for traffic. The traffic on the transit
link is charged by volume with unit cost γi, and we make the
reasonable assumption that γi > αi.

B. Content-peering
Upon receiving an interest message for an item, ISP i consults

its summary cache to see if the item is available locally. If it is,
ISP i retrieves the item from a local cache. Otherwise, before

ISP i would forward the interest message to its transit provider,
it can leverage its neighbors’ caches according to one of two
scenarios.

a) Uncoordinated Content-peering: Without coordination,
if ISP i finds that an item o is not available locally, it forwards
the interest message to all of its neighbors j ∈ N (i). If a
neighbor has the item in cache, it returns the item to ISP i. If
none of the neighbors has the item, ISP i forwards the interest
message to its transit provider.

b) Coordinated Content-peering: In the case of coordina-
tion peering ISPs synchronously exchange information about
the contents of their summary caches periodically, at the end
of every time slot. If, upon an interest message for item o, ISP
i finds that item o is not available locally, it consults its most
recent copy of the summary caches of its peering ISPs N (i). In
case a peering ISP j ∈ N (i) is caching the item, ISP i forwards
the request to ISP j and fetches the content. If not, the interest
message is sent to a transit ISP through a transit link.

Using the above notation, and denoting by C−i the set of
the cache configurations of every ISP other than ISP i, we can
express the cost of ISP i to obtain item o ∈ O as

Co
i (Ci, C−i) = wo

i

{
αi if o ∈ Li ∪Ri

γi otherwise, (1)

where Ri =
⋃

j∈N (i) Lj is the set of items ISP i can obtain
from its peering ISPs. The total cost can then be expressed as

Ci(Ci, C−i) = αi

∑

Li∪Ri

wo
i + γi

∑

O!{Li∪Ri}

wo
i , (2)

which is a function of the cache contents of the peering
ISPs N (i).

C. Caching Policies and Cost Minimization
A content item o that is not available either locally or from

a peering ISP is obtained through a transit link, and is a
candidate for caching in ISP i. The cache eviction policy of ISP
i determines if item o should be cached, and if so, which item
p ∈ Ci should be evicted to minimize the expected future cost.
There is a plethora of cache eviction policies for this purpose,
such as Least recently used (LRU), Least frequently used (LFU),
LRFU (we refer to [15] for a survey of some recent algorithms).
We model the eviction decision as a comparison of the estimate
wo

i of the arrival intensity wo
i for the item o to be cached and

that for the items p in the cache, wp
i .

Perfect information: Under perfect information wo
i = wo

i , and
only the items with highest costs Co

i (Ci, C−i) are cached.
Imperfect information: Under imperfect information wo

i is
a random variable with mean wo

i , and we assume that the
probability of misestimation decreases exponentially with the
difference in arrival intensities, that is, for wo

i > wp
i we have

P (wo
i < wp

i ) ∝ ϵe−
1
β (wo

i−wp
i ). (3)

This assumption is reasonable for both the LRU and the LFU
cache eviction policies. Under LRU the cache miss rate was
shown to be an exponentially decreasing function of the item
popularity [13]. Under a perfect LFU policy, if we denote the
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periodically 
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ISPs to save transit fee	
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under perfect information, and in Section IV we consider the case
of imperfect information. In Section V we present numerical
results, and in Section VI we review related work. Section VII
concludes the paper.

II. SYSTEM MODEL

We consider a set N of autonomous ISPs. Each ISP i ∈ N is
connected via peering links to some ISPs j ∈ N . We model the
peering links among ISPs by an undirected graph G = (N,E),
called the peering graph. We call N (i) the set of neighbors
of ISP i ∈ N in the peering graph, i.e. N (i) = {j|(i, j) ∈ E}.
Apart from the peering links, every ISP can have one or more
transit links.

A. Content Items and Caches
We denote the set of content items by O. We follow common

practice and consider that every item o ∈ O has unit size[12],
[13], which is a reasonable simplification if content is divisible
into unit-sized chunks. Each item o ∈ O is permanently stored
at one or more content custodians in the network. We denote by
Hi the set of items kept by the custodians within ISP i. Since
the custodians are autonomous entities, ISP i cannot influence
the set Hi. Similar to other modeling works, we adopt the
Independent Reference Model (IRM) [14], [12], [13] for the
arrival process of interest messages for the items in O generated
by the local users of the ISPs. Under the IRM, the probability
that the next interest message at ISP i is for item o is independent
of earlier events. An alternative definition of the IRM is that
the inter-arrival time of interest messages for item o at ISP i
follows an exponential distribution with distribution function
F o
i (x) = 1 − e−wo

i x, where wo
i ∈ R+ is the average arrival

intensity of interest messages for item o at ISP i.
Each ISP i ∈ N maintains a network of content caches

within its network, and jointly engineers the eviction policies
of the caches, the routing of interest messages and the routing
of contents via the caches to optimize performance. The set of
items cached by ISP i is described by the set Ci ∈ Ci = {C ⊂
O : |C| = Ki}, where Ki ∈ N+ is the maximum number of
items that ISP i can cache. A summary cache in each ISP keeps
track of the configuration of the local caches and of the content
stored in local custodians, it thus embodies the information about
what content is available within ISP i. We call Li = Ci ∪Hi

the set of items available within ISP i.
We denote by αi > 0 the unit cost of retrieving an item

from a local cache. We consider that retrieving an item from a
peering ISP is not more costly than retrieving it locally. The
assumption of equal local and peering cost is justified by the
fact that in general, once a peering link has been established,
there is no additional cost for traffic. The traffic on the transit
link is charged by volume with unit cost γi, and we make the
reasonable assumption that γi > αi.

B. Content-peering
Upon receiving an interest message for an item, ISP i consults

its summary cache to see if the item is available locally. If it is,
ISP i retrieves the item from a local cache. Otherwise, before

ISP i would forward the interest message to its transit provider,
it can leverage its neighbors’ caches according to one of two
scenarios.

a) Uncoordinated Content-peering: Without coordination,
if ISP i finds that an item o is not available locally, it forwards
the interest message to all of its neighbors j ∈ N (i). If a
neighbor has the item in cache, it returns the item to ISP i. If
none of the neighbors has the item, ISP i forwards the interest
message to its transit provider.

b) Coordinated Content-peering: In the case of coordina-
tion peering ISPs synchronously exchange information about
the contents of their summary caches periodically, at the end
of every time slot. If, upon an interest message for item o, ISP
i finds that item o is not available locally, it consults its most
recent copy of the summary caches of its peering ISPs N (i). In
case a peering ISP j ∈ N (i) is caching the item, ISP i forwards
the request to ISP j and fetches the content. If not, the interest
message is sent to a transit ISP through a transit link.

Using the above notation, and denoting by C−i the set of
the cache configurations of every ISP other than ISP i, we can
express the cost of ISP i to obtain item o ∈ O as

Co
i (Ci, C−i) = wo

i

{
αi if o ∈ Li ∪Ri

γi otherwise, (1)

where Ri =
⋃

j∈N (i) Lj is the set of items ISP i can obtain
from its peering ISPs. The total cost can then be expressed as

Ci(Ci, C−i) = αi

∑

Li∪Ri

wo
i + γi

∑

O!{Li∪Ri}

wo
i , (2)

which is a function of the cache contents of the peering
ISPs N (i).

C. Caching Policies and Cost Minimization
A content item o that is not available either locally or from

a peering ISP is obtained through a transit link, and is a
candidate for caching in ISP i. The cache eviction policy of ISP
i determines if item o should be cached, and if so, which item
p ∈ Ci should be evicted to minimize the expected future cost.
There is a plethora of cache eviction policies for this purpose,
such as Least recently used (LRU), Least frequently used (LFU),
LRFU (we refer to [15] for a survey of some recent algorithms).
We model the eviction decision as a comparison of the estimate
wo

i of the arrival intensity wo
i for the item o to be cached and

that for the items p in the cache, wp
i .

Perfect information: Under perfect information wo
i = wo

i , and
only the items with highest costs Co

i (Ci, C−i) are cached.
Imperfect information: Under imperfect information wo

i is
a random variable with mean wo

i , and we assume that the
probability of misestimation decreases exponentially with the
difference in arrival intensities, that is, for wo

i > wp
i we have

P (wo
i < wp

i ) ∝ ϵe−
1
β (wo

i−wp
i ). (3)

This assumption is reasonable for both the LRU and the LFU
cache eviction policies. Under LRU the cache miss rate was
shown to be an exponentially decreasing function of the item
popularity [13]. Under a perfect LFU policy, if we denote the
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connected via peering links to some ISPs j ∈ N . We model the
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called the peering graph. We call N (i) the set of neighbors
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[13], which is a reasonable simplification if content is divisible
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Hi the set of items kept by the custodians within ISP i. Since
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that the next interest message at ISP i is for item o is independent
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follows an exponential distribution with distribution function
F o
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assumption of equal local and peering cost is justified by the
fact that in general, once a peering link has been established,
there is no additional cost for traffic. The traffic on the transit
link is charged by volume with unit cost γi, and we make the
reasonable assumption that γi > αi.
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the contents of their summary caches periodically, at the end
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i finds that item o is not available locally, it consults its most
recent copy of the summary caches of its peering ISPs N (i). In
case a peering ISP j ∈ N (i) is caching the item, ISP i forwards
the request to ISP j and fetches the content. If not, the interest
message is sent to a transit ISP through a transit link.

Using the above notation, and denoting by C−i the set of
the cache configurations of every ISP other than ISP i, we can
express the cost of ISP i to obtain item o ∈ O as
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i (Ci, C−i) = wo
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{
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γi otherwise, (1)

where Ri =
⋃
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from its peering ISPs. The total cost can then be expressed as
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∑
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∑

O!{Li∪Ri}
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i , (2)

which is a function of the cache contents of the peering
ISPs N (i).

C. Caching Policies and Cost Minimization
A content item o that is not available either locally or from

a peering ISP is obtained through a transit link, and is a
candidate for caching in ISP i. The cache eviction policy of ISP
i determines if item o should be cached, and if so, which item
p ∈ Ci should be evicted to minimize the expected future cost.
There is a plethora of cache eviction policies for this purpose,
such as Least recently used (LRU), Least frequently used (LFU),
LRFU (we refer to [15] for a survey of some recent algorithms).
We model the eviction decision as a comparison of the estimate
wo

i of the arrival intensity wo
i for the item o to be cached and

that for the items p in the cache, wp
i .

Perfect information: Under perfect information wo
i = wo

i , and
only the items with highest costs Co

i (Ci, C−i) are cached.
Imperfect information: Under imperfect information wo

i is
a random variable with mean wo

i , and we assume that the
probability of misestimation decreases exponentially with the
difference in arrival intensities, that is, for wo

i > wp
i we have

P (wo
i < wp

i ) ∝ ϵe−
1
β (wo

i−wp
i ). (3)

This assumption is reasonable for both the LRU and the LFU
cache eviction policies. Under LRU the cache miss rate was
shown to be an exponentially decreasing function of the item
popularity [13]. Under a perfect LFU policy, if we denote the
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alphai: unit cost for ISP i to obtain contents from local cache or peering ISP’s cache 
gamai: unit traffic fee for ISP i to obtain contents from transit ISP	

request frequency to content o	

l  The decision variant Ci of ISP i : the content set in its local cache	

Ci: the content set in ISP i’s local cache 
Hi: the original contents hosted in ISP i’s network	 12	16/05/19	

ISP A	 ISP B 	 ISP C	

Internet	



A toy example showing the oscillation of 
cached contents 	

13	

Time sequence	 Contents in ISP1’s cache	 Contents in ISP2’s cache	
t0	 A, B	 A, B	

t1	 C, D	 C, D	

t2	 A, B	 A, B	

t3	 C, D	 C, D	

……	 ……	 ……	

l  Scenario：  
l  ISP 1 and ISP 2 are in content-peering relationship 
l  The capacity of both the caches equals “2” 
l  The popularity of the contents: A > B > C > D 
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interval over which the request frequencies are calculated by
τ , then wp

i follows a Poisson distribution with parameter wp
i τ .

The difference k = wo
i τ − wp

i τ of two estimates thus follows
the Skellam distribution [16] with density function

f(k,wo
i τ, w

p
i τ) = e−τ(wo

i +wp
i )

(
wo

i

wp
i

)k/2

I|k|(2τ
√

wo
iw

p
i ),

where I|k|(.) is the modified Bessel function of the first kind.
The probability of misestimation is

∑−1
k=−∞ f(k, wo

i τ, w
p
i τ),

which decreases exponentially in wo
i − wp

i for τ > 0.

III. CONTENT-PEERING UNDER PERFECT INFORMATION

We start the analysis by considering the case of perfect
information, that is, when the cache eviction policies are not
prone to misestimation, and we first consider the case of
coordinated peering.

The key question we ask is whether the profit-maximizing
behavior of the individual ISPs would allow the emergence of
an equilibrium allocation of items. If an equilibrium cannot be
reached then content-peering could potentially lead to increased
costs for the peering ISPs, as shown by the following simple
example in which as a consequence of coordination every
ISP evicts and fetches the same items repeatedly over transit
connections, thereby increasing their traffic costs compared to
no content-peering.

Example 1. Consider two ISPs and O = {1, 2}. Let K1 =
K2 = 1. Without content peering both ISPs cache their most
popular item and forward interest messages to their transit
provider for the least popular item. Their cost is thus Ci =
αiw

hi
i + γiw

li
i , where whi

i > wli
i . With content peering, if the

initial allocation strategies are C1 = C2 = {1}, then the cache
contents of the ISPs will evolve indefinitely as ({1}, {1}) →
({2}, {2})→ ({1}, {1}), etc. The average cost for the ISPs is

thus C ′i = αi

(
w

hi
i +w

li
i

2

)
+ γi

(
w

hi
i +w

li
i

2

)
> Ci.

This simple example illustrates that content peering could
potentially lead to undesired oscillations of the cache contents
of the ISPs, with the consequence of increased traffic costs.
Ideally, for a stationary arrival of interest messages the cache
contents should stabilize in an equilibrium state that satisfies the
ISPs’ interest of traffic cost minimization. In the following we
propose two distributed algorithms that avoid such inefficient
updates and allow the system to reach an equilibrium allocation
of items from which no ISP has an interest to deviate. Such an
allocation is a pure strategy Nash equilibrium of the strategic
game < N, (Ci)i∈N , (Ci)i∈N >, in which each ISP i aims to
minimize its own cost Ci defined in (2).

Definition 1. A cache allocation C∗ ∈ ×i∈NCi is an equilibrium
allocation (pure strategy Nash equilibrium) if no single ISP can
decrease its cost by deviating from it, that is

∀i ∈ N, ∀Ci ∈ Ci : Ci(C∗i , C∗−i) ≤ Ci(Ci, C∗−i) (4)

A. Cache-or-Wait (COW) Algorithm
Example 1 suggests that if one does not allow peering ISPs

to update their cache configurations simultaneously, then they
would converge to an allocation from which neither of them
would have an interest to deviate. In the case of Example 1, such
allocations are ({1}, {2}) or ({2}, {1}). Before we describe the
Cache-or-Wait (COW) algorithm, let us recall the notion of an
independent set.

Definition 2. We call a set I ⊆ N an independent set of the
peering graph G if it does not contain peering ISPs. Formally

∀i, j ∈ I, j /∈ N (i).

We denote by I the set of all the independent sets of the
peering graph G. Consider a sequence of time slots t and a
sequence of independent sets I1, I2, . . . ∈ I indexed by t, such
that for every time slot t ≥ 1 and every ISP i ∈ N there is
always a time slot t′ > t such that i ∈ It′ . At each time slot t
we allow every ISP i ∈ It to update the set of its cached content
Ci. ISP i ∈ It can decide to insert in its cache the items that
are requested by one or more of its local users during time slot
t but were not cached at the beginning of the time slot. At the
same time, ISPs j ̸∈ It are not allowed to update the set of
their cached contents. The pseudocode of the COW algorithm
for every time slot t ≥ 1 is then the following:

• Pick It.
• Allow ISPs i ∈ It to change their cached items from

Ci(t− 1) to Ci(t),
• For all j /∈ It, Cj(t) = Cj(t− 1).
• At the end of the time slot inform the ISPs j ∈ N (i) about

the new cache contents Ci(t)

Fig. 1. Pseudo-code of the Cache-or-Wait (COW) Algorithm

What we are interested in is whether ISPs following the COW
algorithm would reach an equilibrium allocation from which
none of them would like to deviate. If COW reaches such an
allocation, then it terminates, and no other cache update will
take place. In the following we provide a sufficient condition
for COW to terminate in a finite number of steps. We call the
condition efficiency, and the condition concerns the changes that
an ISP can make to its cache configuration.

Definition 3. Consider the updated cache configuration Ci(t)
of ISP i ∈ It immediately after time slot t. Define the evicted
set as Ei(t) = Ci(t− 1) \ Ci(t) and the inserted set as Ii(t) =
Ci(t) \ Ci(t− 1). Ci(t) is an efficient update if for any o ∈ Ii(t)
and any p ∈ Ei(t)

Co
i (C(t)) + Cp

i (C(t)) < Co
i (C(t− 1)) + Cp

i (C(t− 1)) (5)

The requirement of efficiency is rather reasonable. Given that
the ISPs are profit maximizing entities, it is natural to restrict the
changes in the cache configuration to changes that actually lead
to lower cost. In order to prove that the efficiency condition is
sufficient for COW to converge, we will rely on the generalized
group ordinal potential function defined as follows.
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Independent set： A set I is an independent set of peering graph G if it does not contain peering ISPs 

algorithm summary： In time slot t, the ISPs in the independent set It update cache to 
minimize their total cost. The ISPs not belonging It are not allowed to update cache, and 
have to wait for their time slot	

Algorithm１： Cache-or-Wait (CoW):	

Algorithm ２： Cache-No-Wait(CnW):	

4

Definition 4. A function Ψ : ×i(Ci) → R is a
generalized group ordinal potential function for the game
< N, (Ci)i∈N , (Ci)i∈N > if the change of Ψ is strictly positive
whenever an arbitrary subset V ⊆ I ∈ I of ISPs decrease their
costs by changing their strategies,

Ci(C′i, C−i)− Ci(Ci, C−i) > 0, ∀i ∈ V ⇒
Ψ(CV , C−V)−Ψ(C′V , C−V) > 0. (6)

Observe that if we define every independent set to be a
singleton, then the group ordinal potential function Ψ is the
generalized ordinal potential function defined in [17].
We start constructing a generalized group ordinal potential
function by defining the cost saving of ISP i for cache allocation
Ci as Ψi(C) = Ci(∅, C−i)− Ci(Ci, C−i). After substituting (2)
we obtain

Ψi(C) = αi

∑

Hi∪Ri

wo
i + γi

∑

O!{Hi∪Ri}

wo
i −

[
αi

∑

Ci∪Hi∪Ri

wo
i +

+ γi
∑

O!{Ci∪Hi∪Ri}

wo
i

]
=

∑

o∈Ci\{Hi∪Ri}

[γi − αi]w
o
i . (7)

Note that the value of Ψi(C) is not influenced by any item
o /∈ Ci. We are now ready to prove the following.

Theorem 1. If every ISP performs efficient updates then the
function Ψ : ×i(Ci) → R defined as Ψ(C) =

∑
i∈N Ψi(C)

increases strictly upon every update and COW terminates in
an equilibrium allocation after a finite number of updates.

Proof: We will start by showing that an efficient update
made by any ISP i in the independent set I strictly increases
Ψi and cannot decrease Ψj of any ISP j ̸= i, hence Ψ is a
generalized group ordinal potential function for efficient updates.
Without loss of generality, consider the efficient update Ci(t)
made by ISP i ∈ It at time slot t. In the following we show that
Ψj(Ci(t), C−i(t − 1)) ≥ Ψj(C(t − 1)) for all j ∈ N . Observe
that from the definition of Ψi(C) it follows directly that for
ISP i

Ψi(Ci(t), C−i(t− 1)) > Ψi(C(t− 1)).

A) Consider k /∈ N (i). Observe that the cost of ISP k is not a
function of Ci:

• if k /∈ I , ISP k does not make any efficient update at time
slot t, thus Ψk(Ci(t), C−i(t− 1)) = Ψk(C(t− 1));

• if k ∈ I, k ̸= i, Ψk is not influenced by Ci.
B) Consider j ∈ N (i). Consider o ∈ Ii(t) and p ∈ Ei(t). From
the cost function defined in (1) it follows that Cp

i (t+1) ≥ Cp
i (t).

Substituting it in the definition of efficient improvement step in
(5), it follows that Co

i (t) > Co
i (t+1)⇒ o /∈ Ri(t)⇒ o /∈ Cj(t),

thus Ψj(Ci(t), C−i(t− 1)) is not affected by item o.
Consider now item p:

• If p /∈ Cj(t), then Ψj(Ci(t), C−i(t− 1)) is not affected by
item p.

• If p ∈ Cj(t), then Ψj(Ci(t), C−i(t − 1)) ≥ Ψj(C(t − 1))
(the inequality is strict if p /∈ {Hj ∪Rj(t+ 1)}).

It follows that the function Ψ increases strictly upon every
efficient update. Since ×i(Ci) is a finite set, Ψ cannot increase
indefinitely and COW must terminate in an equilibrium alloca-
tion after a finite number of updates.

The following corollaries are consequences of Theorem 1

Corollary 1. In the case of coordinated peering under perfect
information there is at least one equilibrium allocation.

Corollary 2. If every ISP performs efficient updates then the
number of time slots needed to reach an equilibrium is finite
with probability 1.

Thus, a network of ISPs in which only non-peering ISPs per-
form efficient updates simultaneously at every time slot reaches
an equilibrium allocation after a finite number of updates.

B. Cache-no-Wait (CNW) Algorithm

A significant shortcoming of COW is that in slot t it disallows
ISPs j /∈ It to perform an update. Since the number of
independent sets equals at least χ(G), the chromatic number
of the ISP peering graph, an ISP can perform an update on
average in every χ(G)th time slot, in the worst case once every
|N | time slots. This restriction would provide little incentive for
ISPs to adhere to the algorithm. In the following we therefore
investigate what happens if every ISP in the system is allowed to
perform an efficient update during every time slot. The pseudo-
code of the CNW algorithm for time slot t ≥ 0 looks as follows.

• Every ISP i ∈ N is allowed to change its cached items
from Ci(t− 1) to Ci(t).

• At the end of the time slot ISP i informs the ISPs j ∈ N (i)
about the new cache contents Ci(t)

Fig. 2. Pseudo-code of the Cache-no-Wait (CNW) Algorithm

Theorem 2. If every ISP performs only efficient updates, CNW
terminates in an equilibrium allocation with probability 1.

Proof: Every update of the cache allocation of an ISP is
triggered by an interest message sent by a local user. Consider
now the arrival of interest messages for item o generated by
the local users of ISP i, which has intensity wo

i . Given that
the distribution F o

i of the inter-arrival times is exponential with
parameter wo

i , there is a non-zero probability e−wo
i ∆ that item

o is not requested during a time slot of length ∆.
Let us consider now a sequence of time slots. For every

ISP i ∈ It there is a positive probability ϵi(Ci(t − 1)) that
the interest messages generated during time slot t are for
items that are either cached locally, are cached by a peering
ISP or are not popular enough for being cached. If the cache
configuration Ci(t− 1) minimizes ISP i’s expected future cost
with respect to C−i(t− 1), then ϵi(Ci(t− 1)) = 1. Otherwise,
with probability 0 < ϵi(Ci(t − 1)) < 1 ISP i does not update
its cache configuration at time slot t, even if in principle its
cache configuration could be improved, because no interest
message arrives for an item o that could improve its cache
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The time for all the ISPs to finish 
cache eviction is too long 	

Both CoW and CnW are proved to converge to stable state theoretically	 14	16/05/19	

algorithm summary： all the ISPs are allowed to update cache independently; after the cache 
eviction, ISPs are required to acknowledge their neighbors about the updated contents	



Validation with simulations	
Simulation settings: 

Ø  topologies: CAIDA graph, ER graph, BA graph 
Ø  616 ISPs with average degree 9.66 
Ø  alpha = 1, gama = 10, cache capacity is “10” 8
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Fig. 6. Average inefficiency as a function of the time
slot duration ∆ for three different peering graphs
and algorithms COW and CNW.
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as a function of the scaling factor at ISP 1, for
two Barabási-Albert peering graphs with different
average node degree.

Each ISP receives interest messages for |O| = 3000 items. The
arrival intensities wo

i follow Zipf’s law with exponent 1, and for
all i ∈ N it holds

∑
o∈O wo

i = 1. Each data point in the figures
is the average of the results obtained from 40 simulations.

Figure 4 shows that the number of iterations the COW
algorithm needs to reach an equilibrium allocation monotonically
decreases with the time slot length. The longer the time slots,
the more interest messages the ISPs receive within a time slot.
This enables the ISPs to insert more highly popular objects per
iteration. Furthermore, since only ISPs in an independent set can
make updates at each iteration, simultaneous cache updates like
the ones shown in Example 1 cannot occur. Consistently, the
total time needed for the COW algorithm to converge, shown
in Figure 5, remains constant independent of the slot length ∆.

The CNW algorithm exhibits significantly different behavior
for long time slots, as the number of iterations needed to termi-
nate increases compared to the COW algorithm. This happens
because using the CNW algorithm a higher number of arrivals
per time slot leads to a higher number of simultaneous updates,
which disturb convergence. Figure 4 shows that simultaneous
updates are most likely to occur in ER graphs. In BA graphs
simultaneous updates would occur mainly among the few nodes
with high degree, and since most ISPs have low node degree, the
CNW algorithm would converge faster than on ER graphs. For
the same reason, for small time slots when simultaneous updates
are unlikely to occur, both the COW and CNW algorithms
perform best on the Erdős-Rényi random graph. From Figure 5
we notice that, as expected, the time for the CNW algorithm
to terminate starts to increase with high values of the slot
length. This increase is fast for the ER graph due to the higher
occurrence of simultaneous updates, as we discussed above.

Figure 6 shows the number of items inserted in cache (po-
tentially several times) for the two algorithms until termination
divided by the minimum number of items needed to be inserted
to reach the same equilibrium. We refer to this quantity as
the inefficiency of updates. While the inefficiency of the COW
algorithm decreases slowly with the time slot length, that of the
CNW algorithm shows a fast increase for high values of ∆, in
particular for the ER and the BA graphs, which can be attributed
to the simultaneous updates under CNW. These results show
that although CNW would be more appealing as it allows ISPs

to update their cache contents all the time, COW terminates
significantly faster and is more efficient.

B. Imperfect Information
In the following we show results for the case when the

estimation of the items’ arrival intensities is imperfect. We
consider that every ISP estimates the arrival intensities of the
items by counting the number of arrivals under a period of τ
seconds. As in the case of imperfect information the COW
algorithm would never terminate, we collected the statistics on
the permanence of the various items in the cache of each ISP
over 105 time slots. We considered 50 ISPs and a time slot
of 70 seconds, which in the case of perfect information would
guarantee a fast termination of the COW algorithm. We first
validate Proposition 6 for the case of Ki = 1, hence we consider
that the item with the highest arrival intensity is different at
every ISP. Figure 7 shows the average relative permanence in the
ISPs’ caches of the three items with highest arrival intensity, as
a function of the estimation interval τ , for three random peering
graphs. The results show that the probability of caching the item
with highest arrival intensity approaches 1 when τ increases,
and thus validate Proposition 6. Furthermore we observe that
the probability of caching items with lower arrival intensities
decreases exponentially with τ .

In the next scenario we start from the setting described in
Proposition 7, where the ranking of the items’ intensities is
the same among all ISPs. We scale the arrival intensity wo

1

of every item o at ISP 1 by the same factor, while keeping
the intensities at the other ISPs constant. Figure 8 shows the
average relative permanence in ISP 1’s cache of the three items
with highest arrival intensities as a function of w1. The results
confirm that a higher w1 leads to a higher relative permanence
in the ISP’s cache of the items with highest arrival intensity.
Concerning the influence of the peering graph, the figure shows
a constantly lower permanence of the best items for the BA
graph with higher average node degree. This is due to that with
a higher number of peering links the probability that the best
items are in a peering ISP’s cache gets higher.

VI. RELATED WORK

There is a large variety of cache eviction policies from
Least recently used (LRU) to the recent Adaptive replacement
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Fig. 3. State transition diagram of the unperturbed
Markov process (solid lines). (o, p) and (p, o) are
absorbing states in the unperturbed Markov process,
but only the equilibrium (o, p) is the domain of µ0.
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an equilibrium allocation as a function of the time
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and algorithms COW and CNW.
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Erdős-Rényi graph

CAIDA graph

Barabási-Albert graph

Fig. 5. Average time needed to terminate as
a function of the time slot duration ∆ for three
different peering graphs and algorithms COW and
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Proof: As a consequence of Lemma 2 it is sufficient to
show that for every absorbing state C′′ such that h(C′′) = 2, it
holds that r(C∗, C′′) > r(C′′, C∗). For brevity define C′′ as in
the proof of Lemma 2. Assume, w.l.o.g., that in the path with
least resistance from C∗ to C′′, ISP i makes a mistake before
ISP j by inserting item q /∈ Ti ∪ Tj in place of item o . Then
r(C∗, C′′) > wo

i −wq
i . Observe now that, since q /∈ Ti∪Tj , from

the absorbing state C′′ the mistake of ISP i of evicting item p
and inserting q, with resistance wp

i −wq
i , is enough to reach C∗.

Hence r(C′′, C∗) ≤ wp
i − wq

i . This proves the Proposition.
The following illustrates the proof on a simple example.

Example 2. Consider a complete graph and Ki = 1. The |N |
most popular items are the same in every ISP, but item o has a
distinct rank at every ISP. In every equilibrium the |N | most
popular items are cached, one at every ISP, and thus there
are |N |! equilibria. Fig 3 shows the state transition diagram of
the unperturbed Markov process (with solid lines) for the case
of two ISPs, |N | = 2. The figure only shows the transitions
between states. X and Y stand for an arbitrary item other than
o and p, and the states (p, Y ) and (X, p) ((o, Y ) and (X, o))
represent all states in which item p (item o) is cached by ISP
1 and ISP 2, respectively. The dashed lines show transitions
due to mistakes that are needed to move from one equilibrium
to a state from which both equilibria are reachable (there
is a positive probability of reaching it) in the unperturbed
process. These transitions only exist in the perturbed Markov
process. With perfect information there are two equilibrium
allocations, which are the absorbing states (o, p) and (p, o) of
the unperturbed process. The two equilibrium allocations are,
however, not equally likely to be visited by the perturbed process.

Observe that in the unperturbed process, equilibrium (o, p)
is reachable from every allocation except from equilibrium
(p, o). Therefore, in the perturbed process one mistake suffices
to leave equilibrium (p, o) and to enter a transient state of the
unperturbed process from which both equilibria are reachable in
the unperturbed process. It takes, however, two mistakes in close
succession to leave equilibrium (o, p) and to enter a transient
state of the unperturbed process from which both equilibria
are reachable in the unperturbed process. As β decreases, the
probability of two successive mistakes decreases exponentially

faster than that of a single mistake, and thus the perturbed process
will be almost exclusively in state (o, p), thus C∗ = (o, p).

A similar reasoning can be used to get insight into the
evolution of the system state in the case that the ranking of
the items is the same among all ISPs, namely Ti = Tj for all
i, j ∈ N . As an example, we show the following.

Proposition 7. If the arrival intensity wo
i for an item o for

which ρi(o) ≤ Ki increases at ISP i, then limβ→0 P (o ∈ Ci(t))
increases.

Proof: Consider the state transition diagram of the perturbed
Markov process P β . For a state C for which o ∈ Ci, the transition
probability that corresponds to ISP i mistakenly evicting o
decreases. For a state C for which o ̸∈ Ci, the transition
probability to the states C′ for which o ∈ C′i increases, and
the transition probability to other states decreases. Reconciling
these changes with the global balance equation for the set of
states {C|o ∈ Ci} proves the proposition.

The impact of the number of peers of an ISP and that of the
amount of storage Ki can be analyzed similarly, but we omit
the analysis due to lack of space.

V. NUMERICAL RESULTS

In the following we show simulation results to illustrate the
analytical results of Sections III and IV for COW and CNW.

A. Perfect Information
Figures 4 and 5 show the average number of iterations and the

average time the algorithms COW and CNW need to terminate
as a function of the time slot duration ∆, respectively. We
report results for three different peering graphs. The CAIDA
graph is based on the Internet AS-level peering topology in
the CAIDA dataset [20]. The dataset contains 36878 ASes and
103485 transit and peering links between ASes as identified
in [21]. The CAIDA graph is the largest connected component
of peering ASes in the data set, and consists of 616 ISPs with
measured average node degree of 9.66. The Erdős-Rényi (ER)
and Barabási-Albert (BA) random graphs have the same number
of vertexes and the same average node degree as the CAIDA
graph. For the COW algorithm, we used the Welsh-Powell
algorithm to find a coloring [22] of the peering graph. We used
αi = 1, γi = 10 and cache capacity Ki = 10 at every ISP.
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Average time needed to terminate as a 
function of the time slot duration Δ for 
three different peering graphs and 
algorithms COW and CNW.	

Average inefficiency as a function of the 
time slot duration Δ for three different 
peering graphs and algorithms COW and 
CNW.	



Summary	

•  A model of the interactions between the caches 
managed by peering ISPs in CCN was proposed 

 
•  Synchronizing algorithms to avoid simultaneous 

cache evictions were introduced for fast 
convergence to a stable cache configuration 

•  This work focused on the convergence of the 
algorithms rather than the ISPs’ benefit from 
content-peering 

16	16/05/19	 5th	ICN	workshop	



Problems and opportunities for future research	

17	

l  Lack of in-depth study with practical situations  
Ø  e.g. considering 95 percentile measurement rule, there are 

opportunities to further improve the ISP coordination benefits	

 (http://www.init7.net/en/backbone/95-percent-rule)	
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l  Lack of incentive mechanisms for ISPs to extend the cooperation targets 
Ø  e.g. to enable the following coordination 	


