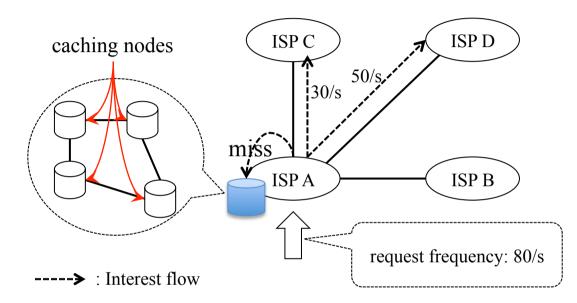
Incentive-Compatible Caching and Inter-Domain Traffic Engineering in CCN

Xun Shao, Hitoshi Asaeda 2016-05-19


National Institute of Information and Communications Technology (NICT)

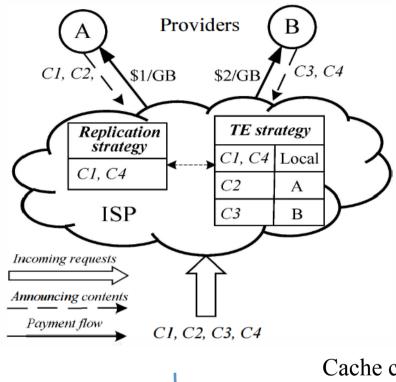
Outline

- Caching and inter-domain traffic engineering in CCN
- Joint optimization of caching and inter-domain traffic engineering for a single ISP (Feng et al. 2015)
- Interaction of multiple peering ISPs in caching and inter-domain traffic engineering (Pacifici et al. 2016)
- Problems and opportunities for future research

Caching and inter-domain traffic engineering in CCN

- Premises and assumptions on caching and inter-domain traffic engineering in CCN
 - The intra-domain cache nodes are abstracted as a single node
 - ISP determines which content to cache according to the properties of content
 - ISP has full control of both outbound traffic and inbound traffic

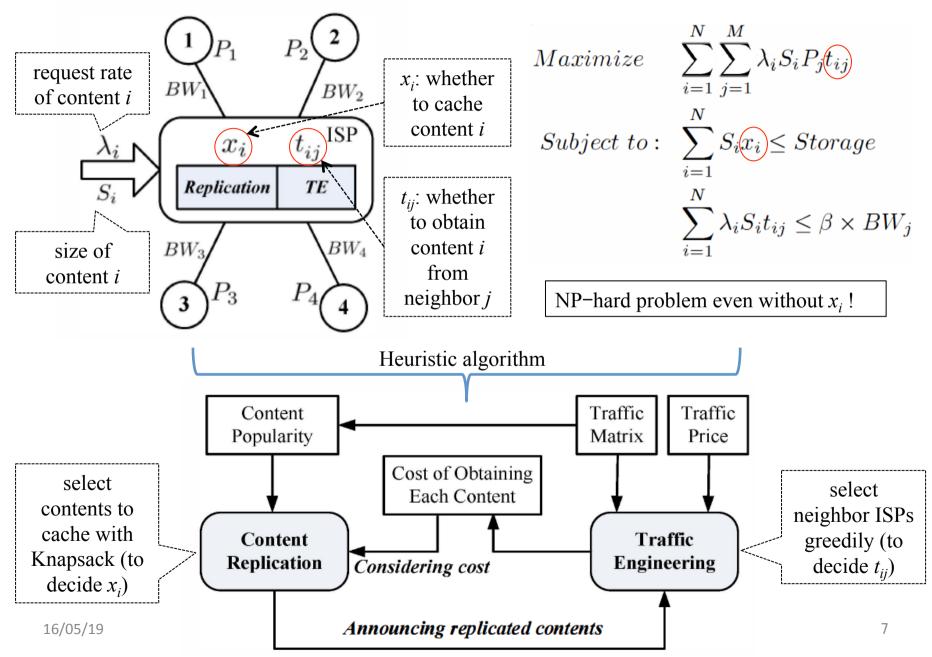
- Opportunities and challenges to ISPs:
 - Make better decision in caching (what to cache) and inter-domain routing (to whom to send specific interests)
 - Explore the opportunities in coordination with neighboring ISPs considering the business relationships (free-settle peering, transit, etc.)


Joint Optimization of Content Replication and Traffic Engineering in ICN

Authors: Z. Feng et al. Proc. IEEE LCN 2015

Introduction

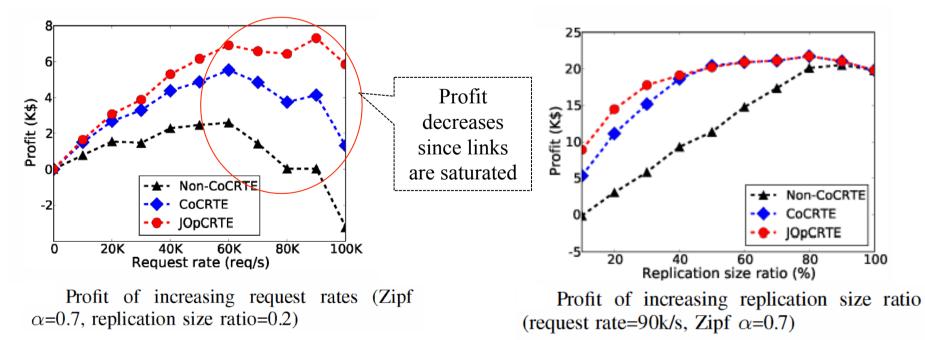
- The opportunity of jointly optimizing caching and inter-domain traffic engineering for CCN-enabled ISP is explored
- A jointly optimization frame work for caching and inter-domain traffic engineering is introduced
- Simulations show that the proposed method can increase the ISP's profit significantly


A toy example

Contents	Requested frequency (times/s)	Size (GB)	Monetary cost (\$/s) if not cached
C1	5	0.1	\$0.5
C2	2.5	0.1	\$0.25
C3	2	0.2	\$0.8
C4	2	0.1	\$0.4

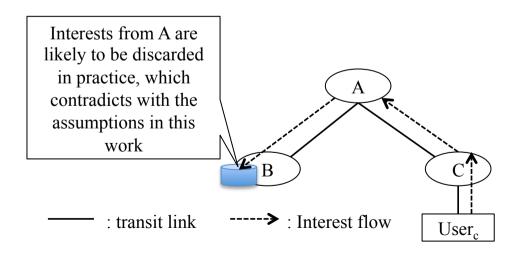
	Cache capacity: 0.2 GB	J
Strategies	Cache	Monetary cost (\$/s)
Popularity prioritized	C1, C2	\$1.2
Price prioritized	C3	\$1.15
Joint optimization	C1, C4	\$1.05

System model and solutions



Evaluation

ASN		ISP Name		# Providers	# Cus	tomers	# Peers	# IP p	prefixes of neight	bors ⁷
AS 8002	Stealth Communications		2	2	3	21		3215		
AS 25973	Global Telecom & Technology		3	2	6	13		5153		
AS 5400	British Telecom		5	1()3	49		14655		
AS 14744	Internap		6	3	6	1		401		
AS 3209	Vodafone		7	12	20	65		7235		
AS 7713	AS 7713 Telkom Indonesia International		8	13	37	19		8326		
Request rateSizes of contentsAverage		erage size of co	ntent	Bandw	vidth of linl	ζS	Transit fee			


Zipf's law	Pareto distribution	1.7 MB	40Gbps	U(0.1, 0.2)	

JOpCRTE: the proposed method; **Non-CoCRTE**: Greedy algorithm with popularity; **CoCRTE**: Greedy algorithm with price

Summary

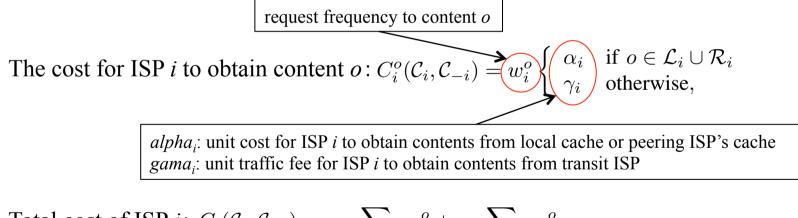
- A jointly optimization frame work for caching and inter-domain traffic engineering which is difficult for IP networking was introduced
- Simulations show that the proposed method can increase ISP's profit up to 66%
- Cache level coordination among ISPs is not considered
- A disputable assumption about routing policy in this work:

Coordinated Selfish Distributed Caching for Peering Content-Centric Networks

Authors: V. Pacifici et al.


IEEE/ACM Trans. Networking, March 2016

Introduction


- A model of the interaction between the caches managed by peering ISPs is introduced
- Peering ISPs can converge to a stable configuration efficiently by avoiding simultaneous updates
- The analytical results are validated using simulations on the measured peering topology of more than 600 ISP

Problem definition and model

- Cache coordination of peering ISPs:
 - Method: ISP advertises the content names in its local cache to peering neighbors periodically
 - Objective: obtain contents from peering ISPs to save transit fee

• The decision variant C_i of ISP *i* : the content set in its local cache

• Total cost of ISP *i*:
$$C_i(\mathcal{C}_i, \mathcal{C}_{-i}) = \alpha_i \sum_{\mathcal{L}_i \cup \mathcal{R}_i} w_i^o + \gamma_i \sum_{\mathcal{O} \setminus \{\mathcal{L}_i \cup \mathcal{R}_i\}} w_i^o$$

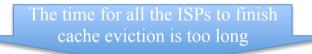
where: $\mathcal{L}_i = C_i \cup \mathcal{H}_i$, $\mathcal{R}_i = \bigcup_{j \in \mathcal{N}(i)} \mathcal{L}_j$
 C_i : the content set in ISP *i*'s local cache
 H_i : the original contents hosted in ISP *i*'s network

12

A toy example showing the oscillation of cached contents

- Scenario:
 - ISP 1 and ISP 2 are in content-peering relationship
 - The capacity of both the caches equals "2"
 - The popularity of the contents: A > B > C > D

Time sequence	Contents in ISP1's cache	Contents in ISP2's cache
tO	A, B	A, B
t1	C, D	C, D
t2	A, B	A, B
t3	C, D	C, D


The proposed algorithms to avoid cache oscillation

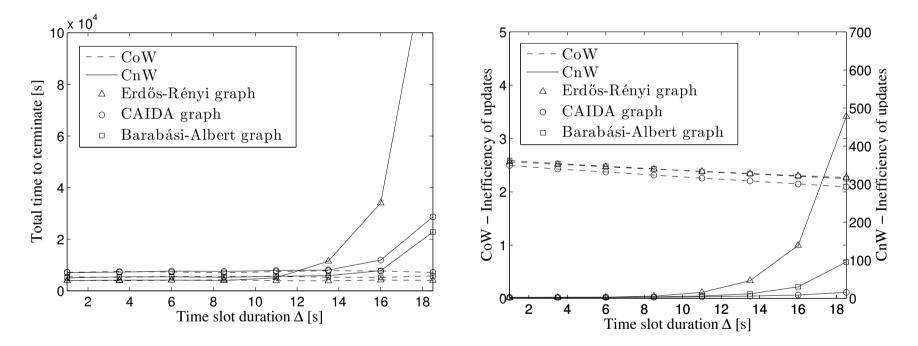
Algorithm1 : Cache-or-Wait (CoW):

Independent set: A set *I* is an independent set of peering graph G if it does not contain peering ISPs

algorithm summary: In time slot t, the ISPs in the independent set I_t update cache to minimize their total cost. The ISPs not belonging I_t are not allowed to update cache, and have to wait for their time slot

- Pick \mathcal{I}_t .
- Allow ISPs $i \in \mathcal{I}_t$ to change their cached items from $\mathcal{C}_i(t-1)$ to $\mathcal{C}_i(t)$,
- For all $j \notin \mathcal{I}_t$, $\mathcal{C}_j(t) = \mathcal{C}_j(t-1)$.
- At the end of the time slot inform the ISPs $j \in \mathcal{N}(i)$ about the new cache contents $C_i(t)$

Algorithm **2**: Cache-No-Wait(CnW):


algorithm summary: all the ISPs are allowed to update cache independently; after the cache eviction, ISPs are required to acknowledge their neighbors about the updated contents

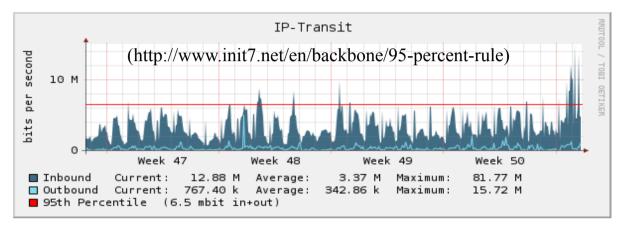
- Every ISP $i \in N$ is allowed to change its cached items from $C_i(t-1)$ to $C_i(t)$.
- At the end of the time slot ISP *i* informs the ISPs $j \in \mathcal{N}(i)$ about the new cache contents $C_i(t)$

Validation with simulations

Simulation settings:

- topologies: CAIDA graph, ER graph, BA graph
- \succ 616 ISPs with average degree 9.66
- \succ alpha = 1, gama = 10, cache capacity is "10"

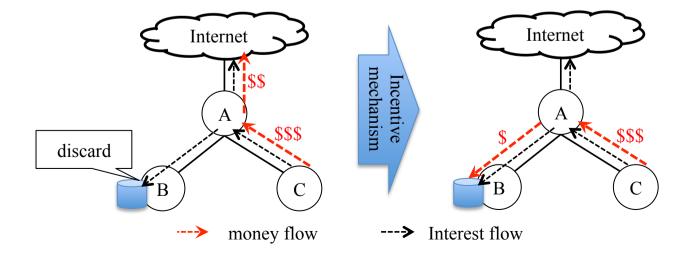
Average time needed to terminate as a function of the time slot duration Δ for three different peering graphs and algorithms COW and CNW.


Average inefficiency as a function of the time slot duration Δ for three different peering graphs and algorithms COW and CNW.

Summary

- A model of the interactions between the caches managed by peering ISPs in CCN was proposed
- Synchronizing algorithms to avoid simultaneous cache evictions were introduced for fast convergence to a stable cache configuration
- This work focused on the convergence of the algorithms rather than the ISPs' benefit from content-peering

Problems and opportunities for future research


- Lack of in-depth study with practical situations
 - e.g. considering 95 percentile measurement rule, there are opportunities to further improve the ISP coordination benefits

• Lack of incentive mechanisms for ISPs to extend the cooperation targets

 \succ e.g. to enable the following coordination

16/05/19

